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Abstract: We study the backfitting and profile methods for general criterion func-

tions that depend on a parameter of interest β and a nuisance function θ. We show

that when different amounts of smoothing are employed for each method to esti-

mate the function θ, the two estimation procedures produce estimators of β with

the same limiting distributions, even when the criterion functions are non-smooth

in β and/or θ. The results are applied to a partially linear median regression model

and a change point model, both examples of non-smooth criterion functions.
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1. Introduction

Consider a semiparametric problem that depends on a parameter β0 and an

unknown function θ0(·). The purpose of this paper is to compare backfitting and

profiling methods in semiparametric regression. Our context is quite general and

allows for estimation based on non-smooth criterion functions.

We first introduce the context of the general problem. Assume that the

data (Xi, Yi) (i = 1, . . . , n) are independent replications of a (1+dy)-dimensional

random vector (X,Y ). Let β denote a q × 1 vector of parameters of interest,

with true value β0, belonging to a compact subset B of IRq. Let θ = θ(·) : IR →
IR be an infinite dimensional ‘nuisance’ parameter with true value θ0(·), and

let L{Y, β0, θ0(X)} be a real-valued maximizing function for β0 and θ0, in the

sense that E[Lβ{Y, β0, θ0(X)}] = 0 and E[Lθ{Y, β0, θ0(x)}|X = x] = 0 for all x,

where Lβ{y, β, θ(x)} denotes the vector of partial derivatives of L{y, β, θ(x)} with

respect to the components of β, and Lθ{y, β, θ(x)} denotes the partial derivative

of L(y, β, z) with respect to z, and evaluated at z = θ(x). Inference for β0 is then

carried out by maximizing

n−1
n∑

i=1

L{Yi, β, θ(Xi)} (1)
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with respect to β for some θ(·).
An important example, which we treat in detail in this paper, is given by

the partially linear regression model

Yi = ZT
i β0 + θ0(Xi) + ǫi, (2)

where Zi is a possibly vector-valued covariate of dimension q and Xi is a scalar

covariate. In our general notation, Y = (Y, Z). When med(ǫi|Xi, Zi) = 0, the

maximizing function is given by

L{Y, β, θ(X)} = −|Y − ZTβ − θ(X)|. (3)

Note that Lβ{Y, β, θ(X)} and Lθ{Y, β, θ(X)} do not exist when Y−ZTβ−θ(X) =

0, a point that complicates the theory.

In the semiparametric literature, two approaches have been considered to

maximize (1), these approaches differing in the way they treat the unknown

function θ0(·).
The backfitting procedure has been investigated by many authors in special

contexts, including Rice (1986), Speckman (1988), Buja, Hastie and Tibshirani

(1989), Hastie and Tibshirani (1990), Opsomer and Ruppert (1997, 1999), Mam-

men, Linton and Nielsen (1999), Wand (1999) and Opsomer (2000). The basic

idea is one of iteration. For any given β, let θ̂(·, β) be an estimate of θ0(·): the

estimator we use is defined in the next section. Then define the criterion function

mBF {y, β, θ(x)} = Lβ{y, β, θ(x)}.

The backfitting estimator β̂BF is now defined by the value of β that minimizes

‖n−1
n∑

i=1

mBF {Yi, β, θ̂(Xi, β)}‖ (4)

over B, where ‖ · ‖ is the Euclidean norm in IRq.

The profile method also has a large literature, see for example Severini and

Wong (1992), Severini and Staniswalis (1994), Carroll, Fan, Gijbels and Wand

(1997) and Murphy and van der Vaart (2000), among many others. This method

again starts with θ̂(x, β), which may be different from that constructed for back-

fitting, but it obtains the estimate of β differently. Specifically, it creates a

criterion function mPR by differentiating L{y, β, θ(x, β)} with respect to β, i.e.,

mPR{y, β, θ(x, β), θβ(x, β)} =
d

dβ
L{y, β, θ(x, β)}

= Lβ{y, β, θ(x, β)} + Lθ{y, β, θ(x, β)} ∂

∂β
θ(x, β),
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where θβ(x, β) = ∂
∂β θ(x, β) for any θ(x, β). With these definitions, the profile

estimator β̂PR is the value of β in B for which

‖n−1
n∑

i=1

mPR{Yi, β, θ̂(Xi, β), θ̂β(Xi, β)}‖ (5)

is minimal, where θ̂(·, β) and θ̂β(·, β) are defined in Section 2.

For the example of a partially linear median regression model, see (2) and

(3),

mBF {Y, β, θ(X,β)} = [2I{Y − ZTβ − θ(X,β) > 0} − 1]Z,

mPR{Y, β, θ(X,β), θβ(X,β)}
= [2I{Y − ZT β − θ(X,β) > 0} − 1]{Z + θβ(X,β)}.

It is clear that the development of the properties of β̂BF and β̂PR is challenging

in this example, given that the nuisance function θ(X,β) is inside an indicator

function, whereas this is not the case for a mean regression model. The aim

of this paper is to study the asymptotic properties of β̂BF and β̂PR when the

functions mBF and mPR are not necessarily smooth, as in the above example.

The comparison of backfitting and profiling has been the subject of some

limited research. Consider a Gaussian model with independent data, scalar re-

sponse Yi and predictors (Zi,Xi), so that in our context Yi = (Yi, Zi), and sup-

pose that the true mean is ZT
i β0 + θ0(Xi). Opsomer and Ruppert (1999) showed

that under certain conditions, backfitting and profiling produce asymptotically

equivalent estimators, but only when backfitting an estimated function θ̂(x, β)

undersmoothed compared to that used by profiling. In more global contexts, with

correlated data and multiple arguments for the function, backfitting and profiling

are no longer necessarily asymptotically equivalent, see Hu, Wang and Carroll

(2004) for a counterexample.

In this note we study the two methods when the criterion functions mBF (y, β,

z) and mPR(y, β, z, z′) are not necessarily smooth in β, z and/or z′, and when θ

is estimated by kernel smoothing. We prove that, under certain regularity con-

ditions, the two methods have the same asymptotic distribution, but only when

the driving estimation methods θ̂(x, β) employ different amounts of smoothness.

The paper is organized as follows. In the next section we introduce notation

and develop the general conditions under which the estimators β̂BF and β̂PR are

asymptotically normal. We show that under certain primitive conditions, the

profile estimator and the backfitting estimator have the same asymptotic vari-

ance. Section 3 gives two applications. The first, discussed in Section 3.1, deals
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with the application of the general theory to the partially linear median regres-

sion model, defined in (2) and (3). The second, in Section 3.2, is concerned with

a varying coefficient change point model, motivated by a problem in toxicology.

The proofs and the conditions under which the main results for backfitting and

profiling are valid are given in Appendix A and B, respectively.

2. Main Results

Let Kh(u) = h−1K(u/h), K a symmetric kernel density function and h a

smoothing parameter. For the backfitting procedure, let θ̂(x, β) be defined by a

value of θ that maximizes

n−1
n∑

i=1

Kh(Xi − x)L(Yi, β, θ) (6)

for fixed values of β and x. In order to focus on the primary issues, we assume

the existence of a well-defined maximizer of (6).

For the profiling estimator, all we need is that θ̂(x, β) and θ̂β(x, β) sat-

isfy assumption (PR1) given in Appendix B. It implies that the asymptotic dis-

tribution of β̂ does not depend on the estimators of θ0 and θ0β (defined by

θ0β(x, β) = ∂
∂β θ0(x, β)). While other nonparametric estimators, for example

those based on splines or local polynomials, can be used, θ̂ and θ̂β can be esti-

mated in the following way: let θ̂(x, β) be defined as for the backfitting procedure

and let θ̂β(x, β) be the partial derivative of θ̂(x, β) with respect to β, or, in case

θ̂(x, β) is not differentiable with respect to β, define θ̂β(x, β) by

∂

∂β

∫
θ̂(x, b)Lg(β − b) db,

where L is a kernel density function and g is an appropriate bandwidth. Recall

that β̂BF and β̂PR are the estimators of β0 defined in (4) and (5).

Let θ0(x, β) denote a solution of E{Lθ(Y, β, θ)|X = x} = 0 with respect to

θ for fixed β and x, where the expectation is calculated under the distribution

induced by {β0, θ0(·)}. We assume that θ0(x, β) is unique. Clearly, θ0(·, β0) ≡
θ0(·).

For any function H ≡ {H1(β, θ), . . . ,Hd(β, θ)} of (say) dimension d, we use

the notation ∂
∂β H(β, θ) and d

dβ H(β, θ) to denote the d × q matrix with (i, j)th-

element (i = 1, . . . , d, j = 1, . . . , q) given by

∂

∂β
H(β, θ)ij = lim

τ→0

1

τ
[Hi{β + τej , θ(·, β)} − Hi{β, θ(·, β)}] (7)

and
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d

dβ
H(β, θ)ij = lim

τ→0

1

τ
[Hi{β + τej , θ(·, β + τej)} − Hi{β, θ(·, β)}] (8)

respectively, where ej = (ej1, . . . , ejq) and ejk = δjk = I(j = k) (k = 1, . . . , q).

We are now ready to state the main result concerning the asymptotic nor-

mality of β̂BF and β̂PR. Let G(β) = d
dβ E[Lβ{Y, β, θ0(X,β)}] and define

Σ = cov
[
Lβ{Y, β0, θ0(X,β0)} + Lθ{Y, β0, θ0(X,β0)}

∂

∂β
θ0(X,β0)

]
.

Theorem 2.1. Assume (BF1)–(BF8) and, in particular, assume that the band-

width h satisfies nh4 → 0 and not h ∝ n−1/5. Then n1/2(β̂BF − β0)
d→ Normal{

0,G−1(β0)ΣG−1(β0)
T
}
.

Theorem 2.2. Assume (PR1)–(PR4) and, in particular, allow that the band-

width h satisfies h ∝ n−1/5. Then n1/2(β̂PR − β0)
d→ Normal{0,G−1(β0)ΣG−1

(β0)
T }.
The proof of these results, as well the assumptions under which they are

valid, can be found in Appendix A for the backfitting method, and in Appendix

B for the profiling method.

As a consequence, the backfitting and profiling method produce estimators

with the same asymptotic distribution even when mBF or mPR are not smooth

in β or θ. The backfitting procedure requires however that undersmoothing be

used to estimate θ̂(x, β), whereas the profiling procedure does not.

The assumptions stated in the appendices reveal some of the difficulties

related to working with non-smooth criterion functions. For instance, in the

statement of conditions (BF6) and (PR2), the expected values are necessary to

transform a non-smooth function into a smooth one. If the criterion function

were smooth, these expected values would not be needed and the proofs would

become considerably easier in that case.

Note that, although the asymptotic variance G−1(β0)ΣG−1(β0)
T has an ex-

plicit formula, its actual computation might be complicated in certain situa-

tions. In such cases, a bootstrap approximation can be useful. See Theorem B

in Chen, Linton and Van Keilegom (2003) for general conditions under which a

naive bootstrap procedure is valid.

3. Applications

In this section we consider two examples in detail : a partially linear me-

dian regression model, and a varying coefficient change point model. Both are

examples of models with non-smooth criterion functions. The two models can

be considered as generic examples, many other examples can be developed along

similar lines.
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3.1. Partially linear median regression

Consider the model

Yi = ZT
i β0 + θ0(Xi) + ǫi, (9)

where Zi is a possibly vector-valued covariate of dimension q, Xi is a scalar

covariate with compact support RX , whose density is positive on that support,

and med(ǫi|Xi, Zi) = 0. In our general notation, let Y = (Y, Z). The maximizing

function is

L{Y, β, θ(X)} = −|Y − ZTβ − θ(X)|. (10)

The backfitting estimator β̂BF of β0 has been considered in Chen, Linton and Van

Keilegom (2003), see their Example 2. Here, we consider the profiling estimator.

It is readily seen that for fixed β, θ0(x, β) = med(Y − ZTβ|X = x). Let

θ̂(x, β) be the kernel estimator of the conditional median of Y−ZTβ given X = x.

Note that θ̂(x, β) is not smooth in β, because θ̂(x, β) is piecewise constant as a

function of β. Hence we define θ̂β(x, β) by

θ̂β(x, β) =
∂

∂β

∫
θ̂(x, b)Lg(β − b) db.

Let Θ = {θ : θ(·, β) ∈ Cα
M (RX) for all β} for some α > 1 and 0 < M < ∞, see

Appendix A for the definition of the class Cα
M (RX). Assume that θ0 and the

components of θ0β belong to Θ. Then, using kernel theory for median regression

(see e.g., Chaudhuri (1991)), it can be seen that assumption (PR1) is valid : for

θ̂β − θ0β note that

‖θ̂β − θ0β‖∞ ≤
∥∥∥

∂

∂β

∫
{θ̂(x, b) − θ0(x, b)}Lg(β − b) db

∥∥∥
∞

+
∥∥∥

∂

∂β

∫
{θ0(x, b) − θ0(x, β)}Lg(β − b) db

∥∥∥
∞

and this is oP (n−1/4) provided L is a symmetric, compactly supported kernel

function, ng8 → 0, nh2g4 → ∞, nh8g−4 → 0, ‖θ̂ − θ0‖∞ = OP {(nh)−1/2 + h2},
and θ0 is three times continuously differentiable with respect to the components

of β. For example, take h = C1n
−1/5 and g = C2n

−1/7 for some C1, C2 > 0.

In order to show that ‖θ̂ − θ0‖∞ = OP {(nh)−1/2 + h2}, note that Chaudhuri

(1991) shows that supx |θ̂(x, β)− θ0(x)| = OP {(nh)−1/2 + h2} for fixed β and for

h ∝ n−1/5. It is possible to extend this result to bandwidths h that satisfy the

above constraints, and to prove that the given rate holds uniformly over all β.

It suffices for this to replace the supremum over β, in an appropriate way, by a
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maximum over a set of grid points (of size tending to infinity) and to prove the

consistency uniformly over the set of grid points.

Direct calculations show that

E[Lβ{Y, β, θ(X,β)}|X] = −E([2FY|X,Z{ZTβ + θ(X,β)} − 1]Z|X),

E[Lθ{Y, β, θ(X,β)}|X] = −E[2FY|X,Z{ZTβ + θ(X,β)} − 1|X].

In addition,

G(β0) = −2E
[
fY|X,Z{ZTβ0 + θ0(X)}Z

{
Z +

∂

∂β
θ0(X,β0)

}T]
.

Hence, assumption (PR2) is verified under standard smoothness conditions on

FY|X,Z . Also, (PR4) holds under classical identifiability conditions. It is readily

seen that (PR3)(i) is valid for rℓ = 2 and sℓ = 1/2. Finally, for assumption

(PR3)(ii) we make use of Theorem 2.7.1 in van der Vaart and Wellner (1996). It

is easily checked that

∫ ∞

0

√
log N(ε2, Θ̃, ‖ · ‖∞) dε ≤ C

∫ (2M)
1
2

0
ε−

1
α dε < ∞,

for some C > 0. The asymptotic normality of β̂PR now follows. Note that

Σ = cov
(
{2I(ǫ ≥ 0) − 1}

[
Z −

E{fǫ|X,Z(0)Z|X}
fǫ|X(0)

])
,

since it is easily seen that θ0β(X,β0) = −E{fǫ|X,Z(0)Z|X}/fǫ|X(0).

3.2. Varying coefficient change point model

Consider the model

Yi = θ01(Xi) + θ02(Xi)|Zi − β0|+ + ǫi, (11)

where E(ǫi|Xi, Zi) = 0, Xi and Zi are scalar covariates and z+ = zI(z > 0). An

interesting application can be found in toxicology, where models of the form

E(Yi|Zi) = θ01 + θ02|Zi − β0|λ0
+ (12)

are compatible with accepted understanding of the basic structure of dose-re-

sponse curves for exposure to dioxin. Roberts (1991) states that “new findings

suggest that responses to dioxin increase slowly at first but then shoot up after

passing a critical concentration”. Indeed, researchers have “agreed that before

dioxin can cause any of its myriad toxic effects . . . it must first bind to and

then activate a receptor. . . . If receptor binding is indeed the essential first step
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. . . then that implies there is a safe dose or practical threshold below which no

toxic effects occur”. Feder (1975) constructs
√

n-consistent and asymptotically

normally distributed estimators for (θ01, θ02, β0) in (12) when λ0 = 1, see his

Example 1 on p. 77, setting his θ12 = 0. Model (11) goes one step further, in

the sense that it allows the average response before and the slope after critical

concentration to depend on e.g., age or any other individual characteristic.

Let Y = (Y, Z) and define the maximizing function

L{Y, β, θ(X)} = −{Y − θ1(X) − θ2(X)|Z − β|+}2.

Note that the theory developed in Section 2 can be extended in an obvious way

to bivariate nuisance functions. Straightforward calculations show that for fixed

β,

θ02(X,β) = θ02(X)
Cov (|Z − β0|+, |Z − β|+|X)

Var (|Z − β|+|X)
=

Cov (Y, |Z − β|+|X)

Var (|Z − β|+|X)
,

θ01(X,β) = E(Y|X) − θ02(X,β)E(|Z − β|+|X).

Also, let θ̂1(X,β) and θ̂2(X,β) be the estimators obtained by replacing the con-

ditional means, variances and covariances in the above expressions by the cor-

responding kernel estimators, and let θ̂1β(X,β) and θ̂2β(X,β) be obtained by

replacing |Zi − β|+ in these kernel estimators by −I(Zi ≥ β) (i = 1, . . . , n).

As for the example on partially linear median regression, the main assump-

tions to verify are (BF7) for the backfitting procedure and (PR1) and (PR3) for

the profiling method. We start with (PR1). Assume (BF1)-(BF4) hold, and let

Θ = {θ : θ(·, β) ∈ Cα
M (RX) for all β} for some α > 1/2, 0 < M < ∞, and some

compact interval RX , see Appendix A for the definition of Cα
M (RX). Assume

that θ0 and θ0β belong to Θ. We show that ‖θ̂jβ −θ0jβ‖∞ = oP (n−1/4) (j = 1, 2),

the other conditions in (PR1) can be proved similarly. Since θ0j(·, β) is composed

of variances, covariances and means, it suffices to consider each of these factors

separately. For simplicity, we restrict attention to the mean, i.e., we consider

sup
x,β

∣∣∣∣∣n
−1

n∑

i=1

Kh(Xi − x)∑n
j=1 Kh(Xj − x)

I(Zi ≥ β) − P (Z ≥ β|X = x)

∣∣∣∣∣ = oP (n− 1
4 )

provided nh2 → ∞, nh8 → 0, and P (Z ≤ ·|X = x) is twice continuously differ-

entiable with respect to x, see e.g., Proposition 4.1 in Akritas and Van Keilegom

(2001).

Part (i) of conditions (BF7) and (PR3) can be easily seen to hold true for

sℓ = 1 and rℓ = 2. For part (ii), since N(ε,Cα
M (RX), ‖ · ‖∞) = O{exp(Kε−1/α)},

(see Thm. 2.7.1 in van der Vaart and Wellner (1996)), it follows that the integral

in part (ii) is finite. The asymptotic normality of both β̂BF and β̂PR now follows.
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The calculation of the asymptotic variance is straightforward but leads to lengthy

formulas, and is left to the reader.
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Appendix A. Proofs for Backfitting

Make the definitions

MnBF (β, θ) = n−1
n∑

i=1

mBF {Yi, β, θ(Xi, β)},

MBF (β, θ) = E[mBF {Y, β, θ(X,β)}],

and define the q×q matrix ΓBF,β(β, θ) = d
dβ MBF (β, θ) = d

dβ E[Lβ{Y, β, θ(X,β)}].
Also, for a function ξ(·)=ξ(X,β), let ΓBF,θ(β, θ)[ξ] denote the Gâteaux-derivative

of MBF (β, θ) in the direction ξ, i.e.,

ΓBF,θ(β, θ)[ξ] = lim
τ→0

1

τ
{MBF (β, θ + τξ) − MBF (β, θ)}

= lim
τ→0

1

τ
E[Lβ{Y, β, (θ + τξ)(X,β)} − Lβ{Y, β, θ(X,β)}]

= E

(
∂

∂θ
E[Lβ{Y, β, θ(X,β)}|X]ξ(X,β)

)
,

where ∂
∂θE[Lβ{Y, β, θ(X,β)}|X] = ∂

∂z E{Lβ(Y, β, z)|X}|z=θ(X,β). Note that MBF

(β0, θ0) = 0.

For any function g = (g1, . . . , gd) of (say) dimension d defined on a set

A in IRa, for any y ∈ A and any k, let ∂k

∂yk g(y) denote the vector of all partial

derivatives of order k of the form ∂k

∂y
k1
1 ...∂yka

a

gj(y), where
∑a

i=1 ki = k and 1 ≤ j ≤
d. Let ‖g‖∞ = max1≤j≤d supy∈A |gj(y)|. In particular, for a function θ = θ(x, β),

‖θ‖∞ = supx,β |θ(x, β)| and ‖ ∂θ
∂β ‖∞ = max1≤ℓ≤q supx,β | ∂θ

∂βℓ
(x, β)|.

Further, let Θ be some space of functions θ = θ(x, β) (x ∈ IR, β ∈ B) for

which ‖θ‖∞ ≤ M for some M > 0.

The conditions below use the concept of covering number which is defined

as follows. For ǫ > 0 and any normed space (Θ, ‖ · ‖) of functions, the covering
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number N(ǫ,Θ, ‖ · ‖) is the minimal number of balls {η : ‖η − θ‖ < ǫ} of radius

ǫ needed to cover Θ. The centers of the balls need not belong to Θ, but they

should have finite norms.

(BF1) The bandwidth h satisfies nh4 → 0 as n tends to infinity.

(BF2) The probability density function K has compact support and
∫

uK(u)du

= 0.

(BF3) X is absolutely continuous and has compact support RX , its density fX

is twice continuously differentiable and infx fX(x) > 0.

(BF4) θ0 ∈ Θ, ∂k+ℓ

∂xk∂βℓ θ0(x, β) (0 ≤ k + l ≤ 3) exists for almost all x and β, and

‖ ∂k+ℓ

∂xk∂βℓ θ0‖∞ < ∞.

(BF5) (i) P (θ̂ ∈ Θ) → 1 as n → ∞ and ‖θ̂ − θ0‖∞ = oP (n−1/4).

(ii) supx |(θ̂ − θ0)(x, β̂) − (θ̂ − θ0)(x, β0)| = oP (1)‖β̂ − β0‖.
(iii) supx |n−1

∑n
i=1 Kh(Xi − x)Lθ{Yi, β0, θ̂(x, β0)}| = oP (n−1/2).

(BF6) (i) For all y, L(y, β, θ) is differentiable with respect to β and θ, for

almost all β and θ.

(ii) ∂
∂θE[Lβ{Y, β, θ0(X,β)}|X] and ∂

∂β E[Lθ{Y, β, θ0(X,β)}|X] exist for

all β ∈ B, and they are equal.

(iii)E
{

sup|θ|≤M |Lθ(Y, β0, θ)|2
}

< ∞.

(iv) ∂j+k+ℓ

∂θj∂xk∂βℓ E{Lβ(Y, β, θ)|X = x} and ∂j+k+ℓ

∂θj∂xk∂βℓ E{Lθ(Y, β, θ)|X = x}
exist for 0 ≤ j + k + ℓ ≤ 2 and for all β, θ and x, and

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂j+k+ℓ

∂θj∂xk∂βℓ
E{Lβ(Y, β, θ)|X = x}

∣∣∣ < ∞,

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂j+k+ℓ

∂θj∂xk∂βℓ
E{Lθ(Y, β, θ)|X = x}

∣∣∣ < ∞.

(v) G(β) exists for β in a neighborhood of β0, is continuous at β0 and

G(β0) is of full rank.

(BF7) (i)

E

{
sup

(β′,θ′):‖β−β′‖≤δ,‖θ−θ′‖∞≤δ
|Lθ(Y, β, θ)−Lθ(Y, β′, θ′)|r0

}
≤K0δ

r0s0 ,

E

{
sup

(β′,θ′):‖β−β′‖≤δ,‖θ−θ′‖∞≤δ
|Lβ,ℓ(Y, β, θ)−Lβ,ℓ(Y, β′, θ′)|rℓ

}
≤Kℓδ

rℓsℓ,

for r0 = 2, 2+η, for some rℓ ≥ 2 (ℓ = 1, . . . , q), for all (β, θ) ∈ B×Θ,

all δ > 0, for some η > 0, some 0 < sℓ ≤ 1 and some Kℓ > 0

(ℓ = 0, . . . , q).
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(ii)
∫ ∞
0

√
log N(ε1/sℓ , Θ̃, ‖ · ‖∞) dε < ∞, for ℓ = 0, . . . , q, where Θ̃ =

{θ(·, β) : θ ∈ Θ, β ∈ B}.
(BF8) (i) For all δ>0, there exists a ε>0 such that inf‖β−β0‖>δ ‖MBF (β, θ0)‖

≥ ε.

(ii) Uniformly for all β ∈ B, MBF (β, θ) is continuous in θ at θ0 (with

respect to the ‖ · ‖∞ norm).

(iii) ΓBF,θ(β, θ0)[θ − θ0] exists in all directions θ − θ0 ∈ Θ.

Assumption (BF1) requires that undersmoothing is used to estimate the

nuisance function θ0. This is not required for the profiling method. Conditions

(BF2)-(BF4) are standard regularity conditions that are common when using

kernel smoothing methods. The properties required in (BF5) are a rate of con-

vergence of θ̂, a modulus of continuity-type result for θ̂, and the sample analogue

of the equation E[Lθ{Y, β0, θ0(x, β0)}|X = x] = 0. In the classical situation

where ‖θ̂ − θ0‖∞ = OP {(nh)−1/2(log n)1/2}, condition (BF5)(i) requires that

nh2(log n)−2 → ∞. Note that assumption (BF6) does not impose smoothness

conditions on Lβ and Lθ, but instead requires that E(Lβ) and E(Lθ) are differ-

entiable. Also note that in (BF6)(i), we allow for functions L that are smooth,

except at a finite number of values, as in the example of a partially linear me-

dian regression model. The condition on the covering number in (BF7) can be

checked by using e.g., the results obtained by van der Vaart and Wellner (1996).

A common special case is ‘one’ in which the class Θ̃ belongs to Cα
M (RX), defined

by the set of all continuous functions θ : RX → IR with ‖θ‖α ≤ M , where

‖θ‖α = max
k≤α

sup
x

|θ(k)(x)| + sup
x1,x2

|θ(α)(x1) − θ(α)(x2)|
|x1 − x2|α−α

,

and α is the largest integer strictly smaller than α. Theorem 2.7.1 (page 155 in

their book) gives a bound on the covering number for this space. For (BF7)(ii) to

be valid, it is clear that the space Θ should not be too large. On the other hand,

condition (BF5)(i) stipulates that at the same time Θ should not be too small.

Finally, (BF8) is a common condition in the context of estimating equations.

For the proofs below, we restrict attention for simplicity to the case q = 1.

The general case q ≥ 1 can be obtained in a similar way, but requires more

complex notation.

We start with a technical lemma.

Lemma A.1. Assume (BF1)−(BF8). Then,

n−1
n∑

i=1

EX

(Kh(Xi−X)

fX(X)

∂

∂β
θ0(X,β0)[Lθ{Yi, β0, θ0(Xi)}−Lθ{Yi, β0, θ̂(X,β0)}]

)
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= EX1,X2,Y1

(Kh(X1 − X2)

fX(X2)

∂

∂β
θ0(X2, β0)[Lθ{Y1, β0, θ0(X1)}

−Lθ{Y1, β0, θ̂(X2, β0)}]
)

+ oP (n−1/2),

where the expectations are taken conditionally on the data (Xi, Yi) (i=1, . . . , n).

Proof. Throughout the proof, C denotes a generic constant, whose value may

change from one line to another. The following abbreviated notations will be

used : let H(Y, θ) = Lθ(Y, β0, θ) and g(X) = ∂
∂β θ0(X,β0). To prove this result we

make use of modern empirical process theory see e.g., van der Vaart and Wellner

(1996). Consider the process
∑n

i=1 Zni(θ), where

Zni(θ) = n− 1
2

{
EX

(Kh(Xi − X)

fX(X)
g(X)[H{Yi, θ0(Xi)} − H{Yi, θ(X)}]

)

− EX1,X2,Y1

(Kh(X1 − X2)

fX(X2)
g(X2)[H{Y1, θ0(X1)} − H{Y1, θ(X2)}]

)}
,

where θ belongs to Θ. For simplicity we suppress the dependence of θ on β0.

Note that by assumption (BF5)(i), P (θ̂ ∈ Θ) → 1. In order to show the

weak convergence of this process we verify the conditions of Theorem 2.11.9

in van der Vaart and Wellner (1996):

n∑

i=1

E

[
sup
θ∈Θ

|Zni(θ)|I
{

sup
θ∈Θ

|Zni(θ)| > η
}]

→ 0 for every η > 0; (13)

∫ δn

0

√
log N[ ](ε,Θ, Ln

2 )dε → 0 for every δn ↓ 0; (14)

n∑

i=1

Zni(θ) converges marginally for every θ ∈ Θ, (15)

where N[ ](ε,Θ, Ln
2 ) is the bracketing number, defined as the minimal number of

sets Nε in a partition Θ = ∪Nε
j=1Θεj, such that for every j = 1, . . . , Nε,

n∑

i=1

E

{
sup

θ1,θ2∈Θεj

|Zni(θ1) − Zni(θ2)|2
}

≤ ε2. (16)

The conditions (13) and (14) imply the asymptotic tightness of the process and

can be proved separately for the four terms in the definition of
∑n

i=1 Zni. We

restrict ourselves to showing (13) and (14) for the second term:

n∑

i=1

Z̃ni(θ) = n− 1
2

n∑

i=1

EX

[Kh(Xi − X)

fX(X)
g(X)H{Yi, θ(X)}

]
.
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We start with verifying (14). Fix ε > 0. From assumption (BF7)(ii) it follows

that there exist functions θ1, . . . , θNε in Θ such that
∫ δn

0

√
log Nε dε → 0, and

such that the balls {θ : ‖θ − θj‖∞ ≤ ε1/s0} (j = 1, . . . , Nε) cover Θ. We show

that for any 1 ≤ j ≤ Nε,

n∑

i=1

E

{
sup

‖θ−θj‖∞≤ε
1
s0

|Z̃ni(θ) − Z̃ni(θj)|2
}

≤ ε2. (17)

The left hand side of (17) equals

E
(

sup
‖θ−θj‖∞≤ε1/s0

|
∫

Kh(X1 − x)g(x)[H{Y1, θ(x)} − H{Y1, θj(x)}]dx|2
)

= E
(

sup
‖θ−θj‖∞≤ε1/s0

|
∫

K(u)g(X1 − hu)[H{Y1, θ(X1 − hu)}

−H{Y1, θj(X1 − hu)}]du|2
)

≤ sup
x

|g(x)|2
∫

K(u)E
[

sup

‖θ−θj‖∞≤ε
1

s0

|H{Y1, θ(X1 − hu)}

−H{Y1, θj(X1 − hu)}|2
]
du

≤ C sup
x

|g(x)|2ε2,

where the last inequality follows from assumption (BF7)(i). This shows (17), up

to a universal constant, and hence, (14) is satisfied for the class
∑n

i=1 Z̃ni(θ). We

next verify (13). With Zni replaced by Z̃ni, the left hand side of (13) is bounded

by

n
1
2 sup

x
|g(x)|E

(
sup

θ
|Lθ(Y, β0, θ)|I

[
sup

θ
|Lθ(Y, β0, θ)|>ηn

1
2 {sup

x
|g(x)|}−1

])

= o(1),

where we have used assumption (BF6)(iii). For the convergence of the marginals

of
∑n

i=1 Zni(θ), we verify Liapunov’s condition :
∑n

i=1 E|Zni(θ)|2+η

[
∑n

i=1 Var {Zni(θ)}]
(2+η)

2

→ 0

for some η > 0. First, consider the variance. Using a similar derivation as above,

we obtain for any θ ∈ Θ,

n∑

i=1

Var {Zni(θ)}
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≤ sup
x

|g(x)|2
∫

K(u)E|H{Y1, θ0(X1)} − H{Y1, θ(X1 − hu)}|2du

≤ C sup
x

|g(x)|2
∫

K(u) sup
x

|θ0(x) − θ(x − hu)|2s0du

≤ Ch2s0 sup
x

|g(x)|2 sup
x

| ∂

∂x
θ0(x)|2s0

∫
K(u)|u|2s0du + 2CM sup

x
|g(x)|2

= O(1). (18)

In a similar way one can show that
∑n

i=1 E|Zni(θ)|2+η = O(n−η/2), since as-

sumption (BF7)(i) assures that E|H{Y1, θ0(X1)} − H{Y1, θ(X1 − hu)}|2+η ≤
C supx |θ0(x) − θ(x − hu)|2s0 . Hence, the Liapunov ratio is O{n−η/2} = o(1).

This shows the weak convergence of the process
∑n

i=1 Zni(θ) (θ ∈ Θ). It now

follows that supθ∈Θ |∑n
i=1 Zni(θ)| = OP (1). Finally, arguments similar to those

in (18) show that
∑n

i=1 Var {Zni(θ̂)} = oP (1) (where the variance is calculated

conditionally on the value of θ̂), so that
∑n

i=1 Zni(θ̂) = oP (1), from which the

result follows.

Lemma A.2. Assume (BF1)−(BF8). Then,

ΓBF,θ(β0, θ0)[θ̂ − θ0]=n−1
n∑

i=1

Lθ{Yi, β0, θ0(Xi, β0)}
∂

∂β
θ0(Xi, β0)+oP (n− 1

2 ). (19)

Proof. Recall the definitions of ∂
∂β and d

dβ given in (7) and (8). First note that

ΓBF,θ(β0, θ0)[θ̂ − θ0]

= lim
τ→0

1

τ
E(Lβ [Y, β0, {θ0 + τ(θ̂ − θ0)}(X,β0)] − Lβ{Y, β0, θ0(X,β0)})

= E
( ∂

∂θ
E[Lβ{Y, β0, θ0(X,β0)}|X](θ̂ − θ0)(X,β0)

)

= E
( ∂

∂β
E[Lθ{Y, β0, θ0(X,β0)}|X](θ̂ − θ0)(X,β0)

)

= −E
( ∂

∂θ
E[Lθ{Y, β0, θ0(X,β0)}|X](θ̂ − θ0)(X,β0)

∂

∂β
θ0(X,β0)

)
, (20)

since E[Lθ{Y, β, θ0(X,β)}|X] = 0 for all β. Next, let g(X) = ∂
∂β θ0(X,β0) and

H(Y, θ) = Lθ(Y, β0, θ). The right hand side of (19) equals

n−1
n∑

i=1

EX

[
Kh(Xi − X)

fX(X)
g(X)

]
H{Yi, θ0(Xi, β0)} + oP (n− 1

2 )

= n−1
n∑

i=1

EX

(
Kh(Xi − X)

fX(X)
g(X)[H{Yi, θ0(Xi, β0)} − H{Yi, θ̂(X,β0)}]

)
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+oP (n− 1
2 ),

since n−1
∑n

i=1 Kh(Xi − x)H{Yi, θ̂(x, β0)} = oP (n−1/2) uniformly in x, see as-

sumption (BF5)(iii). Note that throughout this proof all expectations are condi-

tional on the data (Xi, Yi), which implies that θ̂ is considered as constant.

Using Lemma A.1 the latter expression can be written as

EX1,X2,Y1

(
Kh(X1 − X2)

fX(X2)
g(X2)[H{Y1, θ0(X1, β0)} − H{Y1, θ̂(X2, β0)}]

)

+oP (n− 1
2 )

= EX1,X2

(
Kh(X1 − X2)

fX(X2)
g(X2)[k{X1, θ0(X1, β0)} − k{X1, θ̂(X2, β0)}]

)

+oP (n− 1
2 ),

where k(X, θ) = E[H(Y, θ)|X]. Using a Taylor expansion of order two and as-

sumptions (BF1), (BF3), (BF4) and (BF6)(iv) this can be written as

EX2

(
EX1{Kh(X1 − X2)}

fX(X2)
g(X2)[k{X2, θ0(X2, β0)} − k{X2, θ̂(X2, β0)}]

)

+EX2

(EX1{(X1 − X2)Kh(X1 − X2)}
fX(X2)

g(X2)

× d

dx
[k{x, θ0(x, β0)} − k{x, θ̂(X2, β0)}]x=X2

)
+ oP (n− 1

2 )

= E(g(X)[k{X, θ0(X,β0)} − k{X, θ̂(X,β0)}]) + oP (n− 1
2 )

= −E
[
g(X)

∂

∂θ
k{X, θ0(X,β0)}{θ̂(X,β0) − θ0(X,β0)}

]
+ oP (n− 1

2 ),

since supx |θ̂(x, β0) − θ0(x, β0)| = oP (n−1/4). The latter expression equals ΓBF,θ

(β0, θ0)[θ̂ − θ0] + oP (n−1/2), by using (20). Hence, the result follows.

Proof of Theorem 2.1. We make use of Theorem 2 in Chen, Linton and Van

Keilegom (2003) (CLV hereafter), which states primitive conditions under which

β̂BF is asymptotically normal. First of all, we need to show that β̂BF − β0 =

oP (1). For this, we verify the conditions of Theorem 1 in CLV. Condition (1.1)

holds by definition of β̂BF , while the second, third and fourth conditions are

guaranteed by assumptions (BF5)(i) and (BF8). Finally, condition (1.5) is weaker

than condition (2.5) of Theorem 2 of CLV, which we verify below. So, the

conditions of Theorem 1 are verified, up to condition (1.5) which we postpone

to later. Next, we verify conditions (2.1)–(2.6) of Theorem 2 in CLV. Condition

(2.1) is, as for condition (1.1), valid by construction of the estimator β̂BF , while
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condition (2.2) follows from assumption (BF6)(v). Since ΓBF,θ(β, θ0)[θ − θ0] =

E{ ∂
∂θd(X, θ0)(θ − θ0)(X,β)}, where d(X, θ) = E[Lβ{Y, β, θ(X,β)}|X], we have

MBF (β, θ) − MBF (β, θ0) − ΓBF,θ(β, θ0)[θ − θ0]

= E
{

d(X, θ) − d(X, θ0) −
∂

∂θ
d(X, θ0)(θ − θ0)(X,β)

}

=
1

2
E

{ ∂2

∂θ2
d(X, ξ)(θ − θ0)

2(X,β)
}

, (21)

where ξ(X) is in between θ(X,β) and θ0(X,β). Hence the norm of (21) is

bounded by a constant times ‖θ − θ0‖2
∞. This shows the first part of (2.3). For

the second part, it follows from the proof of Theorem 2 in CLV that it suffices

to show that

‖ΓBF,θ(β̂, θ0)[θ̂ − θ0] − ΓBF,θ(β0, θ0)[θ̂ − θ0]‖ = oP (1)‖β̂ − β0‖,

and this in turn follows from (BF4), (BF5)(ii) and (BF6)(iv). Next, (2.4) follows

from assumption (BF5)(i), while (2.5) is guaranteed by Theorem 3 in CLV to-

gether with assumption (BF7). It remains to verify (2.6). Since ΓBF,θ(β0, θ0)[θ̂−
θ0] and MnBF (β0, θ0) are sums of i.i.d. terms plus negligible terms of lower order

(see Lemma A.2.), this follows immediately. The asymptotic normality of β̂BF

now follows.

Appendix B. Proofs for Profiling

As for the backfitting estimator define, for any θ ∈ Θ and η ∈ Θq,

MnPR(β, θ, η) = n−1
n∑

i=1

mPR{Yi, β, θ(Xi, β), η(Xi, β)},

MPR(β, θ, η) = E[mPR{Y, β, θ(X,β), η(X,β)}],

and let ΓPR,β(β, θ, η) = d
dβ MPR(β, θ, η). Note that MPR(β0, θ0, θ0β) = 0 and

that

ΓPR,β(β, θ0, η) =
d

dβ
E[Lβ{Y, β, θ0(X,β)}] +

d

dβ
E

[
Lθ{Y, β, θ0(X,β)}η(X,β)

]

=
d

dβ
E[Lβ{Y, β, θ0(X,β)}],

since E[Lθ{Y, β, θ0(X,β)}|X] = 0. For functions ξ(·) and ζ(·), let

ΓPR,θ,η(β, θ, η)[ξ, ζ] = lim
τ→0

1

τ
{MPR(β, θ + τξ, η + τζ) − MPR(β, θ, η)}.



BACKFITTING AND PROFILING 813

Recall that Θ is some space of functions θ = θ(x, β) (x ∈ IR, β ∈ B) for

which ‖θ‖∞ ≤ M for some M > 0. For any r ≥ 1 and any θ1, . . . , θr ∈ Θ, let

‖(θ1, . . . , θr)‖∞ = max1≤j≤r ‖θj‖∞.

The assumptions we need to impose for the main result, are the follow-

ing:

(PR1) θ0 ∈ Θ, θ0 is partially differentiable with respect to the components

of β, ∂θ0
∂β ∈ Θq, P (θ̂ ∈ Θ) → 1 and P (θ̂β ∈ Θq) → 1 as n → ∞,

‖θ̂ − θ0‖∞ = oP (n−1/4), and ‖θ̂β − θ0β‖∞ = oP (n−1/4).

(PR2) (i) For all y, L(y, β, θ) is differentiable with respect to β and θ, for

almost all β and θ.

(ii) ∂
∂θE[Lβ{Y, β, θ0(X,β)}|X] and ∂

∂β E[Lθ{Y, β, θ0(X,β)}|X] exist for

all β ∈ B, and they are equal.

(iii) ∂2

∂θ2 E{Lβ(Y, β, θ)|X = x} and ∂2

∂θ2 E{Lθ(Y, β, θ)|X = x} exist for all

β, θ and x, and

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂2

∂θ2
E{Lβ(Y, β, θ)|X = x}

∣∣∣ < ∞,

sup
β∈B,|θ|≤M,x∈RX

∣∣∣
∂2

∂θ2
E{Lθ(Y, β, θ)|X = x}

∣∣∣ < ∞,

where RX is the support of X.

(iv) G(β) exists for β in a neighborhood of β0, is continuous at β0 and

G(β0) is of full rank.

(PR3) (i)

E

{
sup

(β′,θ′):‖β−β′‖≤δ,‖θ−θ′‖∞≤δ,‖η−η′‖∞≤δ
|mPR,ℓ(Y, β, θ, η)

−mPR,ℓ(Y, β′, θ′, η′)|rℓ

}
≤ Kℓδ

rℓsℓ

for some rℓ ≥ 2, for all (β, θ, η) ∈ B × Θq+1, all δ > 0, for some

0 < sℓ ≤ 1 and some Kℓ > 0 (ℓ = 1, . . . , q).

(ii)
∫ ∞
0

√
log N(ε1/sℓ , Θ̃, ‖ · ‖∞) dε < ∞ for ℓ = 1, . . . , q, where Θ̃ =

{θ(·, β) : θ ∈ Θ, β ∈ B}.
(PR4) (i) For all δ > 0, there exists a ε > 0 such that inf‖β−β0‖>δ ‖MPR(β, θ0,

θ0β)‖ ≥ ε.

(ii) Uniformly for all β ∈ B, MPR(β, θ, η) is continuous in (θ, η) at

(θ0, θ0β) (with respect to the ‖ · ‖∞ norm).
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The discussion of these conditions is very similar to that for the backfitting

method. We therefore refer to Appendix A for more details.

Lemma B.1. Assume (PR1)−(PR4). Then, for any ξ ∈ Θ, ζ ∈ Θq and β ∈ B,

ΓPR,θ,η(β, θ0, θ0β)[ξ, ζ] = 0.

Proof. Write

ΓPR,θ,η(β, θ0, θ0β)[ξ, ζ]

= lim
τ→0

1

τ
E[Lβ{Y, β, (θ0 + τξ)(X,β)} − Lβ{Y, β, θ0(X,β)}]

+ lim
τ→0

1

τ
E

{
[Lθ{Y, β, (θ0 + τξ)(X,β)}−Lθ{Y, β, θ0(X,β)}](θ0β + τζ)(X,β)

}

+ lim
τ→0

1

τ
E

[
Lθ{Y, β, θ0(X,β)}τζ(X,β)

]
. (22)

The third term of (22) equals E(E[Lθ{Y, β, θ0(X,β)}|X]ζ(X,β)) = 0, since

E[Lθ{Y, β, θ0(X,β)}|X] = 0. The first term of (22) can be written as

E

{(
∂

∂θ
E[Lβ{Y, β, θ0(X,β)}|X]

)
ξ(X,β)

}
,

while the second term equals

E

{(
∂

∂θ
E[Lθ{Y, β, θ0(X,β)}|X]

)
ξ(X,β)

∂

∂β
θ0(X,β)

}
. (23)

Since E[Lθ{Y, β, θ0(X,β)}|X] = 0 for all β, it follows that

∂

∂β
E [Lθ{Y, β, θ0(X,β)}|X] +

∂

∂θ
E[Lθ{Y, β, θ0(X,β)}|X]

∂

∂β
θ0(X,β) = 0,

and hence, plugging in this expression into (23) gives

−E

{
∂

∂β
E[Lθ{Y, β, θ0(X,β)}|X]ξ(X,β)

}
.

Hence, ΓPR,θ,η(β, θ0, θ0β)[ξ, ζ] = 0, since ∂
∂β E(Lθ) = ∂

∂θE(Lβ).

Proof of Theorem 2.2. In a manner similar to the backfitting procedure,

we proceed by checking the primitive conditions of Theorem 2 in Chen, Linton

and Van Keilegom (2003) (CLV hereafter). Note that the results in that paper

are valid for one-dimensional nuisance functions θ, but it is readily seen how

to extend their primitive conditions to the current setup of (q + 1)-dimensional

nuisance functions.

The verification of the conditions in that theorem is much the same as

for the backfitting procedure, except for conditions (2.3) and (2.5). Let us
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start by verifying (2.3). Since it follows from the proof of Lemma B.1 that

ΓPR,θ,η(β, θ0, θ0β) [θ−θ0, η−θ0β ] = E{ ∂
∂θd1(X, θ0)(θ−θ0)(X,β)}+E{ ∂

∂θ d2(X, θ0)

(θ−θ0)(X,β) ∂
∂β θ0(X,β)}, where d1(X, θ) = E[Lβ{Y, β, θ(X,β)}|X] and d2(X, θ)

= E[Lθ{Y, β, θ(X,β)}|X], we have

MPR(β, θ, η) − MPR(β, θ0, θ0β) − ΓPR,θ,η(β, θ0, θ0β)[θ − θ0, η − θ0β]

= E
{

d1(X, θ) − d1(X, θ0) −
∂

∂θ
d1(X, θ0)(θ − θ0)(X,β)

}

+E
[
{d2(X, θ) − d2(X, θ0) −

∂

∂θ
d2(X, θ0)(θ − θ0)(X,β)}η(X,β)

]

+E
{

d2(X, θ0)(η − θ0β)(X,β)
}

+E
{ ∂

∂θ
d2(X, θ0)(θ − θ0)(X,β)(η − θ0β)(X,β)

}

=
1

2
E

{ ∂2

∂θ2
d1(X, ξ1)(θ − θ0)

2(X,β)
}

+
1

2
E

{ ∂2

∂θ2
d2(X, ξ2)(θ − θ0)

2(X,β)
∂

∂β
θ0(X,β)

}

+E
{ ∂

∂θ
d2(X, θ0)(θ − θ0)(X,β)(η − θ0β)(X,β)

}
, (24)

since d2(X, θ0) ≡ 0, where ξ1(X) and ξ2(X) are in between θ(X,β) and θ0(X,β).

Hence the norm of (24) is bounded by a constant times ‖(θ−θ0, η−θ0β)‖2
∞. This

shows the first part of (2.3). The second part is obvious by Lemma B.1.

Finally, (2.5) is guaranteed by Theorem 3 in CLV together with assumption

(PR3). Note that N(ε1/sℓ , Θ̃q, ‖·‖∞) ≤ N(ε1/sℓ , Θ̃, ‖·‖∞)q, and hence the second

condition in Theorem 3 in CLV is implied by (PR3)(ii). The result now follows.

References

Akritas, M. G. and Van Keilegom, I. (2001). Nonparametric estimation of the residual distri-

bution. Scand. J. Statist. 28, 549-568.

Buja, A., Hastie, T. J. and Tibshirani, R. J. (1989). Linear smoothers and additive models

(with Discussion). Ann. Statist. 17, 453-555.

Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-
index models. J. Amer. Statist. Assoc. 92, 477-489.

Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur

representation. Ann. Statist. 19, 760-777.

Chen, X., Linton, O. and Van Keilegom, I. (2003). Estimation of semiparametric models when

the criterion function is not smooth. Econometrica 71, 1591-1608.

Feder, P. I. (1975). On asymptotic distribution theory in segmented regression problems - iden-

tified case. Ann. Statist. 3, 49-83.

Hastie, T., and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall,

London.



816 INGRID VAN KEILEGOM AND RAYMOND J. CARROLL

Hu, Z., Wang, N. and Carroll, R. J. (2004). Profile-kernel versus backfitting in the partially

linear model for longitudinal/clustered data. Biometrika 91, 251-262.

Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a

backfitting projection algorithm under weak conditions. Ann. Statist. 27, 1443-1490.

Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc.

95, 449-485.

Opsomer, J. D. (2000). Asymptotic properties of backfitting estimators. J. Multivariate Anal.

73, 166-179.

Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial

regression. Ann. Statist. 25, 186-211.

Opsomer, J. D. and Ruppert, D. (1999). A root-n consistent backfitting estimator for semipara-

metric additive modeling. J. Comput. Graph. Statist. 8, 715-732.

Rice, J. A. (1986). Convergence rates for partially splined models. Statist. Probab. Lett. 4,

204-208.

Roberts, L. (1991). Dioxin risks revisited. Science 251, 624-626.

Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric

models. J. Amer. Statist. Assoc. 89, 501-512.

Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models.

Ann. Statist. 20, 1768-1802.

Speckman, P. E. (1988). Regression analysis for partially linear models. J. Roy. Statist. Soc.

Ser. B 50, 413-436.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer-Verlag, New York.

Wand, M. P. (1999). A central limit theorem for local polynomial backfitting estimators. J.

Multivariate Anal. 70, 57-65.
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