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Abstract: We propose a new nonparametric method for testing the parametric form

of a regression function in the presence of time series errors. The test is motivated

by recent advancement in the theory of ANOVA with large number of factor levels

and also utilizes a new difference-based estimation method in nonparametric regres-

sion with time-series errors proposed by Hall and Van Keilegom (2003). The test

statistic is asymptotically normal under the null and local alternative hypotheses.

We also propose a bootstrap method to calculate the critical values and prove its

consistency. In a Monte Carlo study, we demonstrate that this bootstrap procedure

has good properties for moderate sample size.
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1. Introduction

We consider the problem of testing the parametric form of a trend func-
tion against an omnibus alternative in the presence of time-series errors. Data
(xim, Yim), i = 1, . . . ,m, are generated from the following nonparametric regres-
sion model

Yim = g(xim) + εim, i = 1, . . . ,m, (1.1)

where Yim is the response, g(·) is an unknown smooth regression function, x1m ≤
· · · ≤ xmm are fixed design points, and ε1m, . . . , εmm are stationary time-series er-
rors. The m in the subscript will be omitted from the notation when no confusion
is possible.

Model (1.1) has broad applications. For instance, a large number of stud-
ies have been devoted to investigating the presence of global “warming trend”
due to green house effects. The standard approach is to fit a linear trend
(Woodward and Gray (1993, 1995)), where Yi is the temperature at time i, and
then proceed to test whether the slope equals zero. Rejection of this null hy-
pothesis generally leads to the belief of the existence of linear trend. Despite its
mathematical convenience, there is no special reason to believe a simple linear
trend function would be suitable to model the complex climate system. Making



370 LAN WANG AND INGRID VAN KEILEGOM

the linearity assumption can cause serious bias in both estimation and predic-
tion. Model (1.1) is also used frequently in economics where Yi represents stock
price, GNP growth rate, consumer price index, etc. Kim and Hart (1998) gave
an example of astronomy data, where the successive maxima on the light curve
of the variable star T Centaurus are studied.

In this paper, we propose a nonparametric method for testing

H0 : g(x) ∈ SΘ, (1.2)

where SΘ = {g(·, θ), θ ∈ Θ} is a parametric family of functions, Θ a subset of a
Euclidean space, g(·, θ) is a function on R. This allows us to check, for example,
whether the linearity form of the trend function is a valid assumption. Only a
very weak smoothness condition is imposed on g(x). Our nonparametric test
thus is designed to be powerful against a large class of alternatives. In this sense,
it is called “omnibus”.

When the errors εi are independent, much literature has been devoted to
testing (1.2), see the manuscript of Hart (1997) for a comprehensive review. The
dependent error case, although is common in application, has seen little discus-
sion. See Brillinger (1989), González-Manteiga and Vilar-Fernández (1995), Bai
(1996), Woodward, Bottone and Gray (1997), Kim and Hart (1998), Vogelsang
(1998), Sun and Pantula (1999) and Vilar-Fernández and González-Manteiga
(2000). These papers, however, are restricted to the case where g(x, θ) is a
linear model under the null hypothesis.

Our nonparametric testing procedure is new. It is motivated by recent
advancements in the theory of analysis of variance when the number of fac-
tor levels is large, and it utilizes a new difference-based estimation method
(Hall and Van Keilegom (2003)) for nonparametric regression with time-series
errors. The new test generalizes the work of Wang, Akritas and Van Keilegom
(2002) for independent error case. For moderately large sample size, we use
a bootstrap procedure to calculate the critical values. The consistency of the
bootstrap test is verified.

The paper is organized as follows. We introduce the test statistic in Section
2. In Section 3, we present the asymptotic normality of our test under null and
local alternative hypotheses. The bootstrap procedure is discussed in Section 4.
Numerical simulations, which demonstrate the good level and power performance
of the bootstrapped test, are reported in Section 5. In Section 6, we provide the
technical arguments.

2. Test Statistic

The disturbances εim, i = 1, . . . ,m, form a segment of a covariance-stationary

autoregressive process of order p with zero mean, an assumption frequently sat-

isfied in applications. More specifically, we assume εim =
∑p

j=1 φjεi−j,m + eim,
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where {eim,−∞ < i < ∞} (or simply ei) are i.i.d. random variables with mean

0 and variance σ2.

Instead of the original data, we work with the following autoregressive trans-

formation of (xi, Yi):

Zi =
(
Yi+p−

p∑

j=1

φ̂jYi+p−j

)
−

(
g(xi+p, θ̂)−

p∑

j=1

φ̂jg(xi+p−j, θ̂)
)
, i = 1, . . . , n, (2.1)

with n = m − p, where φ̂j is a
√

n-consistent estimator of φj , j = 1, . . . , p, and

θ̂ is a
√

n-consistent estimator of θ under the null hypothesis, to be defined at

the end of this section. We expect that the Zi’s form an approximate white

noise process under H0. This type of linear filtering has been used to estimate

the parameters in the trend function g(·) in the time series literature. Here we

propose to apply the test statistic of Wang, Akritas and Van Keilegom (2002) to

(2.1) to obtain an omnibus test for (1.2). This application is new, and is dif-

ferent from the related work of González-Manteiga and Vilar-Fernández (1995),

Kim and Hart (1998), and Vilar-Fernández and González-Manteiga (2000) who

handle correlation directly through asymptotic derivations.

Motivated by recent developments in heteroscedastic ANOVA with large

number of factor levels (Akritas and Papadatos (2004) and Wang and Akritas

(2006)), Wang, Akritas and Van Keilegom (2002) proposed a new omnibus test

for the constant mean null hypothesis in (1.1) with independent errors. The basic

idea is to consider each distinct covariate value xi as a ‘category’ and construct

a window Wi around each xi consisting of the kn nearest covariate values (for

some kn going to infinity). That is, they construct an artificial balanced one-way

ANOVA with n categories, where the responses in the ith category are the Y -

values that correspond to the covariate values belonging to Wi. In what follows

each window Wi will also be understood as the set containing the indices j of the

covariate values that belong to the window around xi, that is, for kn odd,

Wi =

{
j : |Ĝ(xj) − Ĝ(xi)| ≤

kn − 1

2n

}
, (2.2)

where Ĝ(x) = (1/n)
∑n

j=1 I (xj ≤ x). To test the null hypothesis of no effects,

i.e., g(x) = C where C is an unknown constant, Wang, Akritas and Van Keilegom

(2002) suggested looking at MST −MSE, where MST is the treatment sum of

squares, MSE is the error sum of squares, both computed from the hypothet-

ical one-way ANOVA. This test statistic is thus related to the classical F -test

statistic. The test is asymptotically normal under the null hypothesis and local

alternatives, it is asymptotically unbiased under the null, and has been demon-

strated to possess an accurate type I error rate and favorable power performance
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in simulations. In the next section, we show that if we apply this testing proce-

dure to the autoregressive transformed data (2.1), the resulting test statistic is

also asymptotically normal.

We now introduce some notation. Using the procedure described above, we

construct a hypothetical one-way ANOVA (n cells, kn observations per cell) from

(xi, Zi), i = 1, . . . , n. We use Vij , j = 1, . . . , kn, to denote the kn observations

in the ith category, i.e., {Vi1, . . . , Vikn
} = {Zj : j ∈ Wi}. Let V be the nkn × 1

vector of all observations in this hypothetical one-way layout. Then our test

statistic is defined as:

Tn = MST − MSE

=
kn

n − 1

n∑

i=1

(
V i. − V ..

)2 − 1

n(kn − 1)

n∑

i=1

kn∑

j=1

(
Vij − V i.

)2
, (2.3)

where V i. = k−1
n

∑kn

j=1 Vij and V .. = n−1
∑n

i=1 V i.. Tn can be expressed as a

quadratic form in V: Tn = V′AV, with

A =
nkn − 1

n(n − 1)kn(kn − 1)

n⊕

i=1

Jkn
− 1

n(n − 1)kn
Jnkn

− 1

n(kn − 1)
Inkn

, (2.4)

where Ikn
is the kn-dimensional identity matrix, Jkn

= 1kn
1′

kn
with 1kn

is the

kn-dimensional column vector of 1’s, and
⊕

is the Kronecker (direct) sum. The

way we define the local window (2.2) enables the ith window to be symmetric

around xi, except for some of the windows at the two edges. However, it is easy to

check that the windows at the two edges have asymptotically negligible influence

on the distribution of the test statistic. Thus one may allow asymmetric windows

at the edge, for example, a local window of size 5 around x2 can be created by

taking responses corresponding to xi, i = 1, 2, 3, 4, 5.

We now discuss how to estimate θ and φj in (2.1). Any
√

n-consistent estima-

tor for θ will work. When g(x, θ) is a linear function, the method of generalized

least squares can be easily applied; in the nonlinear case, a
√

n-consistent estima-

tor of θ was suggested by Gallant and Goebel (1976). Under some appropriate

regularity conditions,
√

n(θ̂ − θ) is asymptotically normal.

For estimating φj , we employ the difference-based estimators newly proposed

by Hall and Van Keilegom (2003), but any other
√

n-consistent estimator can be

used as well (see e.g., Hart (1994)). The procedure of Hall and Van Keilegom

(2003) has the advantage that it does not depend on a bandwidth parameter.

This leads to some computational convenience for the bootstrap version test in

Section 4, since we don’t need to bring in an extra smoothing parameter. Defining
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γ(j) = Cov (εi, εi−j) and the difference operator Dj by (DjY )i = Yi − Yi−j, γ(0)

and γ(j) are estimated by:

γ̂(0) =
1

m2 − m1 + 1

m2∑

m=m1

1

2(n − m)

n∑

i=m+1

{(DmY )i}2,

γ̂(j) = γ̂(0) − 1

2(n − j)

n∑

i=j+1

{(DjY )i}2, for j ≥ 1. (2.5)

The rate at which m1 and m2 go to infinity will be specified later. Let B be the

p × p matrix having γ̂(j1 − j2) as its (j1, j2)th element. Using the Yule-Walker

equations, the φ’s are estimated by

(φ̂1, . . . , φ̂p)
′ = B−1(γ̂(1), . . . , γ̂(p)). (2.6)

Under mild smoothness condition on g(x), Hall and Van Keilegom (2003) proved

that max1≤j≤p |φ̂j − φj | = Op(m
−1/2).

3. Large Sample Results

The following assumptions are made to derive the asymptotic distribution

of Tn.

Assumption A1. The design points x1, . . . , xn on [0,1] satisfy:
∫ xi

0
r(x)dx =

i

n
, i = 1, . . . , n, (3.1)

for some positive Lipschitz continuous design density r(x).

Assumption A2. g(x, θ) is twice continuously differentiable with respect to x

and θ, and

sup
x,θ

∣∣∣∣
∂

∂θj
g(x, θ)

∣∣∣∣ < ∞, sup
x,θ

∣∣∣∣
∂2

∂x2
g(x, θ)

∣∣∣∣ < ∞,

sup
x,θ

∣∣∣∣
∂2

∂x∂θj
g(x, θ)

∣∣∣∣ < ∞, sup
x,θ

∣∣∣∣
∂2

∂θj∂θk
g(x, θ)

∣∣∣∣ < ∞,

for j, k = 1, . . . ,dim(Θ).

Assumption A3. The estimator θ̂ satisfies θ̂ − θ = Op(n
−1/2) under H0.

Assumption A4. {eim,−∞ < i < ∞} are i.i.d. variables with mean 0, variance

σ2 and finite fourth moment; εim =
∑p

j=1 φjεi−j,m + eim is a stationary and

causal autoregressive process of order p.

Assumption A5. m1 ≤ m2, m1/ log n → ∞ and m2 = O(n1/2).
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The asymptotic distribution of the test statistic of Wang, Akritas and Van

Keilegom (2002) applied to (2.1) turns out to have the same form as for the

independent case.

Theorem 3.1. Assume conditions A1−A5. If n → ∞ and kn → ∞ such that

n−1k
3/2
n → 0, then under H0,

(
n

kn

) 1

2

Tn → N

(
0,

4σ4

3

)

in distribution.

Remark 1. Note that the asymptotic distribution does not depend on the

covariance structure of the error process. This is because the effect of the covari-

ance structure has been taken out when transforming the responses (see (2.1)).

The variance σ2 can be estimated by applying Rice’s (1984) estimator to the

autoregression transformed data (2.1):

σ̂2 =
1

2(n − 1)

n∑

i=2

(Zi − Zi−1)
2. (3.2)

Originally, this estimator was proposed for independent observations. The Zi’s

mimic a white noise sequence and it is easily shown that σ̂2 p→ σ2, using the

consistency of θ̂ and φ̂j.

Remark 2. Our test statistic can detect local alternatives converging to the null

at rate (nkn)−1/4. We state below the asymptotic normality for the case g(·) is

linear and p = 1, i.e., εi = φεi−1 + ei. The local alternative sequences are

g(x) = a + bx + (nkn)−
1

4 l(x), (3.3)

where l(x) is Lipschitz continuous, and satisfies
∫

l(x)r(x)dx =
∫

xl(x)r(x)dx = 0

and
∫

l2(x)r(x)dx < ∞. Assume that the conditions of Theorem 3.1 hold, then

under (3.3), we can show

(
n

kn

) 1

2

Tn → N

(
(1 − φ)2

∫
l2(x)r(x)dx,

4

3
σ4

)

in distribution. The proof is analogous to that in Wang, Akritas and Van Keile-

gom (2002). The same proof applies when g(·) has some general parametric form

but the bias term will be different.

Remark 3. The above asymptotic results also hold in the stochastic design

setting where the design points X1, . . . , Xn are ordered values of independent and

identically distributed random variables whose density is r(x). In the random
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design case, we need the additional assumption that the Xi’s and the random

errors ei’s are independent.

4. A Bootstrap-based Testing Procedure

As has been observed by several authors (González-Manteiga and Vilar-

Fernández (1995) Woodward, Bottone and Gray (1997), Kim and Hart (1998),

and Vilar-Fernández and González-Manteiga (2000)), lack-of-fit tests in regres-

sion with time-series errors that are based on asymptotic distributions tend to

overreject in finite sample situations, especially when the autoregressive coef-

ficients are positive and close to 1. To avoid size distortion, we propose to

bootstrap the test statistic. More specifically, we adopt the residual bootstrap

approach for autoregressions. Consider the following estimator for the noise ei:

êi =
(
Yi −

p∑

j=1

φ̂jYi−j

)
−

(
g(xi, θ̂) −

p∑

j=1

φ̂jg(xi−j , θ̂)
)

for i = p + 1, . . . ,m (note that êi = Zi−p), where the φ̂’s are the difference-based

estimators of Hall and Van Keilegom (2003), and θ̂ is a
√

n-consistent estimator

of θ under the null hypothesis. Bickel and Freedman (1983) suggested using the

scaled residual (m
/ (m − 1))1/2êi (an ad hoc action) because the residuals tend

to be smaller than the true errors, see also Li and Maddala (1996). Denote the

centered êi’s by êc
i and the empirical distribution function of these êc

i ’s by

F̂n(x) =
1

n

m∑

i=p+1

I(êc
i ≤ x). (4.1)

From F̂n(x) we obtain a sample of independent and identically distributed ran-

dom variables e∗i , i = p + 1, . . . ,m, and construct the error series:

ε∗i =

p∑

j=1

φ̂jε
∗
i−j + e∗i , for i = p + 1, . . . ,m.

(We may take ε∗i = ε̂i or 0 for i ≤ p. We allow a burn-in period to make the

effect of the initial value negligible.) The bootstrap sample (xi, Y
∗
i ), i = 1, . . . , n,

is obtained by letting Y ∗
i = g(xi, θ̂) + ε∗i , for i = 1, . . . ,m. Let Z∗

i , θ̂∗, φ̂∗
j and

T ∗
n be calculated from the bootstrap sample in the same way as Zi, θ̂, φ̂j and Tn

were calculated from the original observations. Repeat the above steps a large

number of times. The critical value of the test is obtained as the upper-α quantile

of the bootstrap distribution of n1/2k
−1/2
n T ∗

n . The null hypothesis is rejected if

n1/2k
−1/2
n Tn is greater than this critical value.
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This residual-based scheme for generating bootstrap samples from a station-

ary time series process was first used in Freedman and Peters (1984) and then by

many other authors, including Efron and Tibshirani (1986), Kreiss and Franke

(1992) Hjellvik and Tjøstheim (1995), Kim and Hart (1998) and Vilar-Fernández

and González-Manteiga (2000). Our bootstrap-based test is appropriate in the

sense that it gives the asymptotically correct α-level under the null hypothesis.

Theorem 4.1. Assume A1−A5 and assume in addition that θ̂∗−θ̂ = Op∗(n
−1/2).

If n → ∞ and kn → ∞ such that n−1k
3/2
n → 0, then under H0,

sup
t

|P ∗(n1/2k−1/2
n T ∗

n ≤ t) − P (n1/2k−1/2
n Tn ≤ t)| = oP (1),

where P ∗ denotes the probability measure conditional on the original sample.

We assume the order of autoregression p is known. Kreiss (1997) has shown

that the above residual bootstrap also works in the case where the order of the

fitted autoregressive model depends on the data, for instance, it may be estimated

by a certain order selection procedure.

Note that the same bootstrap testing procedure can also be applied to the

random design setting discussed in Remark 3 of Section 3. In that case we replace

the xi’s by a bootstrap sample from their empirical distribution, independent of

the e∗i ’s.

5. Numerical Results

In this section, we summarize the results from a Monte Carlo study, and

sheds light on the finite sample size and power behavior of our test statistic.

The data (xi, Yi), i = 1, . . . ,m, are generated from (1.1). We assume that the

errors follow a stationary AR(1) process: εi = φεi−1 + ei, where ei, i = 1, . . . ,m,

constitute an independent and identically distributed sequence of normal random

variables with zero mean and variance σ2. We test the no effect null hypothesis

g(x) = C. The design points xi are equal-distant on [0,1].

The bootstrap test is computed as described in the previous section. We

generate 500 samples of observations, for each sample 500 bootstrap samples

are produced. The autoregressive coefficient is estimated using the estimator of

Hall and Van Keilegom (2003). Following their advice, we take m1 = n0.1 and

m2 = n0.5. The level of the test is 0.05.

We first investigate the empirical size of our bootstrap test. To reveal the

seriousness of the size distortion when the correlation is ignored, we include the

results for the nonparametric test of Wang, Akritas and Van Keilegom (2002),

which assumes that the data are independent. We also make a comparison with

the test of Vogelsang (1998). Vogelsang’s test is based on partial sum regressions.
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It does not require estimation of the serial correlation coefficient and can handle

unit root.

Data under the null hypothesis are generated by setting g(x) = 0. Table 1

gives the observed size of the bootstrap test when φ = −0.8, −0.6, −0.4, −0.2,

0, 0.2, 0.4, 0.6, 0.8, and σ = 0.5, for sample size n = m− 1 = 100 or 200. For the

new test and the test assuming independence, different local window sizes kn are

considered.

Table 1. Empirical level of several tests for sample size 100 and 200 (α = 0.05).

sample size n = 100

φ

Test kn −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

5 0.054 0.066 0.048 0.054 0.062 0.050 0.064 0.088 0.214

New 7 0.050 0.058 0.050 0.046 0.068 0.046 0.072 0.084 0.202
9 0.048 0.056 0.048 0.044 0.066 0.054 0.070 0.092 0.190

5 0.000 0.000 0.000 0.002 0.065 0.537 0.954 0.996 1.000

Indep. 7 0.000 0.000 0.000 0.002 0.050 0.437 0.892 0.992 1.000

9 0.000 0.000 0.000 0.003 0.048 0.377 0.828 0.986 1.000

Vogelsang 0.064

sample size n = 200
φ

Test kn −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

7 0.048 0.056 0.062 0.040 0.050 0.062 0.050 0.066 0.132

New 9 0.048 0.056 0.064 0.048 0.040 0.060 0.048 0.058 0.116

11 0.046 0.054 0.066 0.060 0.050 0.060 0.048 0.066 0.108

7 0.000 0.000 0.000 0.002 0.070 0.644 0.992 1.000 1.000

Indep. 9 0.000 0.000 0.000 0.002 0.060 0.560 0.972 1.000 1.000
11 0.000 0.000 0.000 0.002 0.056 0.514 0.950 1.000 1.000

7 0.024 0.026 0.032 0.032 0.036 0.026 0.054 0.180 0.612

Asy. 9 0.026 0.022 0.034 0.036 0.040 0.036 0.066 0.192 0.566

11 0.028 0.022 0.036 0.042 0.036 0.044 0.076 0.188 0.542

Vogelsang 0.047

Note: “New” is the bootstrap test proposed in this paper; “Indep.” is the test of

Wang, Akritas and Van Keilegom (2002) for independent data; “Asy.” is the test based

on asymptotic normality and “Vogelsang” is the test of Vogelsang (1998).

We observe that for φ ≤ 0.6 both the bootstrap test and Vogelsang’s test give

quite accurate type I error rates, while for the test assuming independence the

size is much too conservative or much too liberal. When n = 100, the empirical

size is a little liberal for φ = 0.6 but it is close to the desired level when n = 200.
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We also tried σ = 0.2 and σ = 1 and found similar results (not reported).

For φ equal to 0.8 (positive and strong correlation), even the bootstrap

test becomes quite liberal, the empirical level is roughly 0.20 for n = 100 and

0.12 for n = 200. Increasing the sample size to 400 does not help much. This

phenomenon has also been observed by González-Manteiga and Vilar-Fernández

(1995), Woodward, Bottone and Gray (1997), Kim and Hart (1998) and Vilar-

Fernández and González-Manteiga (2000). Woodward, Bottone and Gray (1997)

conjectured that it occurs because the usual estimate (such as the ordinary

least squares estimator or the maximum likelihood estimator ) of φ is biased

towards zero. This is indeed the case here. For example, when n = 100, using

m1 = n0.1 = 1.6 and m2 = n0.5 = 10 results in an estimator with mean 0.6754

and variance 0.0046 based on 500 runs when the true value of the autocorrelation

coefficient is 0.8. In this situation a more accurate estimator can be obtained by

using a larger m1. In the previous example, when we use m1 = 8 and m2 = 10,

the estimator of φ in 500 runs has mean 0.7472 and variance 0.0053. With this

improved estimate of φ, the observed levels become 0.056, 0.062 and 0.064 for

kn = 5, 7, 9, respectively. An intuitive understanding of why a larger m1 works

better for the strong positive correlation case can be obtained by taking a closer

look at (2.5). In the definition of γ̂(0), (n−m)−1
∑n

i=m+1{(DmY )i}2 is supposed

to approximate 2Var (εi). For large m, (DmY )i = Yi − Yi−m is not a good ap-

proximation of εi − εi−m. So m should not be chosen too large. On the other

hand, when m is too small, (DmY )i
2 is more or less ε2

i + ε2
i−m − 2εiεi−m. For

the first two terms, the average (over all i and m) will tend to the variance of εi.

The third term should tend to zero, which is only true when m tends to infinity.

This explains why we take m larger than a certain m1 and less than a certain

m2. When the correlation is strong, the third term can be quite big for small m.

In that case the lower bound m1 should be chosen sufficiently large.

For n = 200, Table 1 also displays the empirical levels for the test based

on the asymptotic normality given in Theorem 3.1. The observed level is close

to the specified level and somewhat conservative when φ < 0.6 and deteriorates

rapidly when φ becomes larger. Although the computation is faster compared

to the bootstrap test, we do not recommend using critical values computed from

asymptotic normality due to its unstable behavior. Quite a few authors have

observed that the asymptotic theory for the smoothing-based test does not work

very well for moderate sample size and have recommended a bootstrap method

as an alternative. In addition to the references given at the beginning of Section

4, Hjellvik and Tjøstheim (1995, p.355) commented in a similar setting that “It

is very difficult to use the asymptotic theory with any degree of confidence...”.
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For the power analysis, we consider two types of alternatives: g(x) = 1 + 2x

and g(x) = cos(2x). Simulation results are displayed in Table 2, for σ = 1,

φ = 0, 0.2, 0.4, 0.6, 0.8 and sample size n = 100. For φ = 0.8, as discussed in the

previous paragraph, m1 = 8 and m2 = 10 are used to estimate φ. Vogelsang’s

test is more powerful in the first case since it is designed to detect linear deviation

from a constant mean. However, Vogelsang’s test has no power to detect the cos

alternative while our bootstrap based nonparametric test gives good power in

this case.

Note that in both Tables 1 and 2, the choice of kn does not have a large

influence on the level of the bootstrap test. Choosing a bandwidth to maximize

the power of the smoothing-based test is still an open problem. See 6.4 of Hart

(1997) for some related discussion. Azzalini and Bowman (1991) suggest calcu-

lating the p-value for several different choices of the smoothing parameter, and

call the plot of P -values versus the smoothing parameter a “significant trace”.

Table 2. Power of the bootstrap test and the test of Vogelsang for n = 100

and α = 0.05.

g(x) = 1 + 2x

φ

Test kn 0.0 0.2 0.4 0.6 0.8

5 0.975 0.858 0.618 0.498 0.158

New 7 0.980 0.840 0.605 0.438 0.163

9 0.983 0.843 0.590 0.433 0.142

Vogelsang 0.812

g(x) = cos(2x)

φ

Test kn 0.0 0.2 0.4 0.6 0.8

5 0.863 0.690 0.455 0.303 0.130

New 7 0.863 0.668 0.435 0.275 0.110
9 0.860 0.680 0.438 0.260 0.110

Vogelsang 0.000

Note: “New” is the bootstrap test proposed in this paper; “Vo-

gelsang” is the test of Vogelsang (1998).

6. Proofs

We give the proof of Theorem 3.1 and Theorem 4.1 for the case dim(Θ) = 1

and p = 1, i.e., εi = φεi−1+ei, i = 1, . . . , n, for some |φ| < 1. The case dim(Θ) > 1

and p > 1 can be proved similarly with slightly more complex notation.
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Proof of Theorem 3.1. We have

Zi = (Yi+1 − φ̂Yi) −
(
g(xi+1, θ̂) − φ̂g(xi, θ̂)

)

= (Yi+1 − g(xi+1, θ)) + (g(xi+1, θ) − g(xi+1, θ̂)) − φ(Yi − g(xi, θ))

−φ(g(xi, θ) − g(xi, θ̂)) + (φ − φ̂)(Yi − g(xi, θ)) + (φ − φ̂)(g(xi, θ) − g(xi, θ̂))

= ei+1 + (g(xi+1, θ) − g(xi+1, θ̂)) − φ(g(xi, θ) − g(xi, θ̂))

+(φ − φ̂)(Yi − g(xi, θ)) + (φ − φ̂)(g(xi, θ) − g(xi, θ̂)), (6.1)

for i = 1, . . . , n. Let η1(xi) = g(xi+1, θ)−g(xi+1, θ̂), η2(xi) = φ(g(xi, θ)−g(xi, θ̂)),

η3(xi) = (φ − φ̂)(Yi − g(xi, θ)) and η4(xi) = (φ − φ̂)(g(xi, θ) − g(xi, θ̂)). Let η1

be the nkn × 1 vector of all observations in the hypothetical one-way ANOVA

constructed from (xi, η1(xi)), i = 1, . . . , n. Similarly, we define η2, η3, η4, e and

Z. By (6.1), Z = e+η1−η2 +η3 +η4. Thus our test statistic Tn, which is equal

to Z′AZ in this new notation, can be decomposed as

Tn = e′Ae + 2e′Aη1 − 2e′Aη2 + 2e′Aη3 + 2e′Aη4+η
′
1Aη1−2η′

1Aη2+2η′
1Aη3

+2η′
1Aη4 + η

′
2Aη2 − 2η′

2Aη3−2η′
2Aη4+η

′
3Aη3+2η′

3Aη4+η
′
4Aη4. (6.2)

Since {ei} are i.i.d., by the result of Wang, Akritas and Van Keilegom (2002),

n1/2kn
−1/2e′Ae

d→ N
(
0, 4σ2/3

)
, where σ2 = Var (ei). We need to show that all

the other terms in (6.2) are asymptotically negligible. As representative exam-

ples, we show

n
1

2 k
− 1

2
n e′Aη1

p→ 0, n
1

2 k
− 1

2
n e′Aη3

p→ 0, n
1

2 k
− 1

2
n η

′
3Aη3

p→ 0. (6.3)

We first show that n1/2k
−1/2
n e′Aη1

p→ 0.

e′Aη1 =
nkn − 1

n(n − 1)kn(kn − 1)

n∑

i=1




n∑

j=1

η1(xj)I(j ∈ Wi)




[
n∑

k=1

ek+1I(k ∈ Wi)

]

− 1

n(n − 1)kn

[
kn

n∑

i=1

η1(xi)

] [
kn

n∑

k=1

ek+1

]
− kn

n(kn − 1)

n∑

i=1

η1(xi)ei+1

=
nkn − 1

n(n − 1)(kn − 1)

n∑

i=1

η1(xi)

[
n∑

k=1

ek+1I(k ∈ Wi)

]

− kn

n(n − 1)

[
n∑

i=1

η1(xi)

] [
n∑

k=1

ek+1

]
− kn

n(kn − 1)

n∑

i=1

η1(xi)ei+1

+
nkn − 1

n(n − 1)(kn − 1)
Op(n

− 3

2 kn)

n∑

i=1

∣∣∣∣∣

n∑

k=1

ek+1I(k ∈ Wi)

∣∣∣∣∣ , (6.4)
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since |η1(xi) − η1(xj)| ≤ supθ,x

∣∣∣ ∂2

∂θ∂xg(x, θ)
∣∣∣ |θ̂ − θ| |xi+1 − xj+1| = Op(n

−3/2)

uniformly in 1 ≤ i ≤ n and j ∈ Wi. It follows that (6.4) is

(nkn − 1)kn

n(n − 1)(kn − 1)

n∑

k=1

η1(xk)ek+1 −
kn

n(n − 1)

[ n∑

i=1

η1(xi)
][ n∑

k=1

ek+1

]

− kn

n(kn − 1)

n∑

i=1

η1(xi)ei+1 +
nkn − 1

n(n − 1)(kn − 1)
Op(n

−3/2k2
n)

n∑

k=1

|ek+1|

=
kn

n − 1
(θ − θ̂)

n∑

k=1

( ∂

∂θ
g(xk+1, θ) − n−1

n∑

i=1

∂

∂θ
g(xi+1, θ)

)
ek+1

+
kn

2(n − 1)
(θ − θ̂)2

n∑

k=1

( ∂2

∂θ2
g(xk+1, θ̃) − n−1

n∑

i=1

∂2

∂θ2
g(xi+1, θ̃)

)
ek+1

+Op(n
− 3

2 k2
n)

= Op(n
−1kn) + Op(n

− 3

2 k2
n),

where θ̃ is between θ and θ̂, and where the last step follows from the Central

Limit Theorem for triangular arrays (use Liapunov’s condition and the fact that

E|ei|4 < ∞). Thus n1/2k
−1/2
n e′Aη1 = Op(n

−1/2k
1/2
n )+Op(n

−1k
3/2
n ) = op(1). We

now look at e′Aη3.

e′Aη3 =
nkn − 1

n(n − 1)kn(kn − 1)
(φ − φ̂)

n∑

i=1

[ n∑

j=1

εjI(j ∈ Wi)
][ n∑

k=1

ek+1I(k ∈ Wi)
]

− kn

n(n − 1)
(φ − φ̂)

[ n∑

i=1

εi

][ n∑

k=1

ek+1

]
− kn

n(kn − 1)
(φ − φ̂)

n∑

i=1

εiei+1

= D1 − D2 − D3,

where the definition of Di, i = 1, 2, 3, should be clear from the context. Evaluate

D3 first. Since εj = φεj−1+ej , and since the ei’s (−∞ < i < ∞) are independent,

ei+1 is independent of εj for j ≤ i. Hence,

E
( n∑

i=1

εiei+1

)2
=

n∑

i=1

E(ε2
i e

2
i+1) + 2E

( ∑

i<i′

εiεi′ei+1ei′+1

)
=

nσ4

1 − φ2
+ 0 = O(n).

Thus n1/2k
−1/2
n D3 = n1/2k

−1/2
n Op(n

−1) = Op(n
−1/2k

−1/2
n ) = op(1). Now check

D2. Note that
∑n

k=1 ek+1 = Op(n
1/2) and

∑n
i=1 εi = Op(n), and so D2 =

Op(n
−1kn) = op(n

−1/2k
1/2
n ). Finally consider D1. We first evaluate the order

of
∑

j,k

∑
j′,k′ E(εjεj′ek+1ek′+1). Consider three cases for the four indices in the

sum: (1) (j, j ′, k, k′) contains exactly two pairs, the order of such terms is O(n2);
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(2) (j, j′, k, k′) contains exactly one pair, the order of such terms is O(n3); (3)

there is no pair in (j, j ′, k, k′). For case (3),

n∑

j,j′,k,k′ are distinct

E(εjεj′ek+1ek′+1)

= 4
∑

j<j′

∑

k<k′,j,j′,k,k′ are distinct

E(εjεj′ek+1ek′+1)

= 4
∑

k<k′<j<j′

E(εjεj′ek+1ek′+1) + 4
∑

k<j<k′<j′

E(εjεj′ek+1ek′+1)

+4
∑

j<k<k′<j′

E(εjεj′ek+1ek′+1)

= Q1 + Q2 + Q3,

where the definition of Qi, for i = 1, 2, 3, is clear from the context. Look at

Q1 first. Since for any k, εj = φj−kεk +
∑j−k

`=1 φj−k−`ek+`, εj′ = φj′−kεk +∑j′−k
`=1 φj′−k−`ek+`, the only terms in the product εjεj′ek+1ek′+1 with nonzero

expectation are φj−k−1e2
k+1φ

j′−k′−1e2
k′+1 and φj−k′−1e2

k′+1φ
j′−k−1e2

k+1. Thus,

Q1 = O
( n∑

k<k′<j<j′

φj+j′−k−k′−2
)

= O
( n∑

j′=4

j′−1∑

j=3

j−1∑

k′=2

k′−1∑

k=1

φj+j′−k−k′−2
)

= O
( n∑

j′=4

j′−1∑

j=3

j−1∑

k′=2

φj+j′−k′−2 φ−(k′−1) − 1

1 − φ

)

= O
( n∑

j′=4

j′−1∑

j=3

j−1∑

k′=2

φj+j′−2k′−1
)

= O
( n∑

j′=4

j′−1∑

j=3

φj+j′−1 φ−2(j−2) − 1

φ2 − φ4

)
= O(n2), (6.5)

since |φj+j′−1[(φ−2(j−2) − 1)/(φ2 − φ4)]| ≤ 1 is bounded. Q2 and Q3 can be

evaluated similarly. Similarly as above, we can show

E




n∑

i=1

n∑

i′=1

∑

j,k

∑

j′,k′

εjεj′ek+1ek′+1I(j, k ∈ Wi)I(j′, k′ ∈ Wi′)


 = O(n2k2

n),
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hence n1/2k
−1/2
n D1 = Op(k

−1/2
n ) = op(1). We thus obtain n1/2k

−1/2
n e′Aη3

p→ 0.

At last, we evaluate η
′
3Aη3.

η
′
3Aη3 =

nkn − 1

n(n − 1)kn(kn − 1)
(φ − φ̂)2

n∑

i=1

[ n∑

j=1

εjI(j ∈ Wi)
]2

− kn

n(n − 1)
(φ − φ̂)2

[ n∑

i=1

εi

]2
− kn

n(kn − 1)
(φ − φ̂)2

n∑

i=1

ε2
i

= (φ − φ̂)2(E1 − E2 − E3) = Op(n
−1)(E1 − E2 − E3),

where the definition of E1, E2 and E3 is clear from the context. Look at E3 first

: E3 ≥ 0 and

E(E3) =
kn

n(kn − 1)

n∑

i=1

E(ε2
i ) = O(n−1)

nσ2

1 − φ2
= O(1),

thus n1/2k
−1/2
n Op(n

−1)E3 = op(1). Next, E2 ≥ 0 and E(E2) = O(n−2knn2) =

O(kn). So n1/2k
−1/2
n Op(n

−1)E2 = Op(n
−1/2k

1/2
n ) = op(1). Now check E1, we

have E1 ≥ 0 and E(E1) = O(n−1k−1
n nk2

n) = O(kn), and so Op(n
−1)E1 =

Op(n
−1kn) = op(n

−1/2k
1/2
n ). The derivation for the remaining terms in (6.2)

is similar, or easier than the derivation for the three terms we have considered.

The result follows.

To prove Theorem 4.1, we use two lemmas.

Lemma 6.1. Let F be the cumulative distribution function of ei. Then for any

k ≥ 1 and F̂n defined in (4.1) dk(F̂n, F ) → 0, in probability under H0, where dk

denotes Mallow’s distance (see Shao and Tu (1995), pp.73-74).

Proof. Denote by Fn the usual empirical distribution function based on the

unobserved e2, . . . , em. By Bickel and Freedman (1981, Lemma 8.4),

dk(Fn, F ) → 0, as n → ∞, almost everywhere. (6.6)

Let J be the Laplace distribution on {2, . . . ,m}, that is, J = j with probability

1/n, j = 2, . . . ,m. We define random variables U1 and V1 with marginals Fn and

F̂n according to U1 = eJ and V1 = êJ respectively. We have

dk
k(Fn, F̂n) = inf

U,V
E(U − V )k ≤ E(U1 − V1)

k =
1

n

m∑

j=2

(ej − êj)
k,

where the infimum is taken over all random variables U and V that have distribu-

tion Fn and F̂n respectively. Under H0, ej = (Yj−φYj−1)−(g(xj , θ)−φg(xj−1, θ)),
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êj = (Yj − φ̂Yj−1) − (g(xj , θ̂) − φ̂g(xj−1, θ̂)), and so we have

ej − êj = (φ̂ − φ)Yj−1 + (g(xj , θ̂) − g(xj , θ)) − (φ̂ − φ)g(xj−1, θ̂)

−φ(g(xj−1, θ̂) − g(xj−1, θ)).

From the consistency of θ̂ and φ̂ (see Hall and Van Keilegom (2003) for the lat-

ter), it is easy to show that (1/n)
∑m

j=2(ej − êj)
k = op(1) and thus dk(Fn, F̂n) =

op(1). Combined with (6.6), we finish the proof.

Lemma 6.2. Under the conditions of Theorem 4.1, max1≤j≤p |φ̂∗
j − φ̂j | =

Op∗(n
−1/2).

Proof. We show that sup0≤j≤n |γ̂∗(j) − γ̂(j)| = Op∗(n
−1/2), where γ̂∗(j) is ob-

tained by replacing Y by Y ∗ in the definition of γ̂(j). The result then follows im-

mediately. For this, we closely follow the proof of (2.11) in Hall and Van Keilegom

(2003), up to the point where it is shown that γ̂(j) = γ(j) + ∆j + op(n
−1/2) and

∆j = Op(n
−1/2). The proof of their (4.1)−(4.3) and of the rate of ∆j follows

from calculations similar to the ones in (6.5). In the bootstrap world the ana-

logue of this derivation continues to hold provided sup1≤j≤p |φ̂j − φj | = op(1)

and E∗|e∗j |k
p→ E|ej |k for k = 1, 2, 3, 4. The former assertion follows from

Hall and Van Keilegom (2003), the latter follows from Lemma 6.1 in combination

with Lemma 8.3 in Bickel and Freedman (1981).

Proof of Theorem 4.1. We have

T ∗
n = (e∗)′Ae∗ + 2(e∗)′Aη

∗
1 − 2(e∗)′Aη

∗
2 + 2(e∗)′Aη

∗
3 + 2(e∗)′Aη

∗
4 + (η∗

1)
′Aη

∗
1

−2(η∗
1)

′Aη
∗
2 + 2(η∗

1)
′Aη

∗
3 + 2(η∗

1)
′Aη

∗
4 + (η∗

2)
′Aη

∗
2 − 2(η∗

2)
′Aη

∗
3

−2(η∗
2)

′Aη
∗
4 + (η∗

3)
′Aη

∗
3 + 2(η∗

3)
′Aη

∗
4 + (η∗

4)
′Aη

∗
4, (6.7)

where η∗1(xi) = g(xi+1, θ̂) − g(xi+1, θ̂
∗), η∗2(xi) = φ̂(g(xi, θ̂) − g(xi, θ̂

∗)), η∗3(xi) =

(φ̂−φ̂∗)(Y ∗
i −g(xi, θ̂)), η∗4(xi) = (φ̂−φ̂∗)(g(xi, θ̂)−g(xi, θ̂

∗)), and η
∗
j (j = 1, 2, 3, 4)

(respectively e∗) is the nkn×1 vector of all observations in the hypothetical one-

way ANOVA constructed from (xi, η
∗
j (xi)) (respectively (xi, e

∗
i )), i = 1, . . . , n.

Similarly as in the proof of Theorem 2.2 in Wang, Akritas and Van Keilegom

(2002), we can show that n1/2k
−1/2
n (V ∗)−1/2(e∗)′Ae∗

d∗→ N (0, 1), where

V ∗ =
2

n(kn − 1)2kn

n∑

i1=1

n∑

i2=1

∑

j 6=l

V ar∗(e∗j )V ar∗(e∗l )I(j, l ∈ Wi1 ∩ Wi2).

By Lemma 8.3 in Bickel and Freedman (1981) and Lemma 6.1, Var ∗(e∗j )
p→ σ2.

It is thus easy to show that V ∗ p→ 4σ4/3. It remains to show that all the other

terms in (6.7) are op∗(1). First note that the consistency of θ̂∗ and φ̂∗
j follows
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from the statement of the theorem and Lemma 6.2, respectively. The proof is

now similar to that of Theorem 3.1 (for the verification of Liapunov’s condition,

use the fact that E∗|e∗j |4
p→ E|ej |4 < ∞, and to derive (6.5) recall φ̂−φ

p→ 0 and

Var ∗(e∗j )
p→ σ2). This finishes the proof.
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