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Abstract: Established stochastic models for discrete-time long-memory processes

are linear and Gaussian, and commonly require that the dth fractional-difference of

the process has short memory 0 < d ≤ 0.5; if −0.5 < d < 0, the process is said to

have an intermediate memory. Chaotic intermittency maps provide alternative non-

linear, non-Gaussian models for both classes of processes. An asymptotic expression

for the rate at which the correlations of symmetric cusp map decay is developed,

and the class of extended symmetric cusp maps is introduced. The small-frequency

asymptotics of the polynomial, cusp and logarithmic maps are investigated, and

it is shown that these maps can produce spectra with d = 0.5 on the one hand,

d = 0 on the other, and yet the corresponding processes are stationary and have

long-memory. Asymptotic expressions are derived for studying the bias of the

small-frequency periodogram ordinates with these maps. Finite sample behaviour

is examined in a simulation study.
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1. Introduction

The class of stationary processes admitting long-memory has received much

attention lately, see Doukhan, Oppenheim and Taqqu (2002), Rangrajan and

Ding (2003), and the papers therein. Many of the suggested stochastic long-

memory models are, however, linear and, following Box, Jenkins and Reinsel

(1994), typically envisage that a fractionally-differenced process has short-mem-

ory.

Thus, let {wt}, t = . . . ,−1, 0, 1, . . ., denote a weakly stationary process with

mean ηw = E(wt), covariance function Rww(u) = E[{wt − ηw}{wt+u − ηw}],
correlation function rww(u) = Rww(u)/Rww(0), and spectral density function

fww(λ) = (2π)−1
∞∑

u=−∞

Rww(u) exp(−iuλ). (1)
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Also, for two functions h and g defined in the neighbourhood of a point a, let

h(λ) ∼ g(λ) as λ→ a denote the fact that h(λ)/g(λ) → 1 as λ→ a.

The existing long-memory models usually specify that the dth fractional

difference process

xt = (1 − z)dwt, (2)

where z denotes the backshift operator zjwt = wt−j , has exponentially decaying

correlations, 0 < d < 0.5.

The stationary process {wt} so defined admits long-memory as follows:

(a) the correlations decrease to zero at a polynomial rate, rww(u) ∼ Bu2d−1 as

u→ ∞, where B denotes a bounded constant;

(b) the covariance function Rww is not summable:

∞∑

u=−∞

Rww(u) = ∞; (3)

(c) the spectral density function fww has a singularity at the origin,

fww(λ) ∼ |λ|−2d∆(1/|λ|) as λ→ 0, (4)

where ∆(λ) is a bounded slowly-varying function at infinity.

For −0.5 < d < 0, an intermediate-memory process with an absolutely-

summable covariance function is defined; see Mcleod (1998).

Chaotic intermittency maps provide a new and an entirely different approach

to long-memory. These maps are typically non-linear and non-Gaussian and pos-

sess three important properties: first, whereas the Tent, Bernoulli and associated

classical maps possess short memory, the correlations of intermittency maps de-

cay at a sub-exponential rate; second, their invariant density χ can approach

infinity near the origin at a sub-exponential rate; third, the orbit of these maps

displays intermittent chaos, meaning it switches between laminar and chaotic

regions. Indeed, the phenomenon of intermittency motivating this class of maps

has been widely observed, see Barndorff-Nielsen (2001) among others.

Bhansali, Holland and Kokoszka (2005) have developed a formal definition

of the intermittent family of maps and applied this definition for distinguishing

between the Polynomial, Logarithmic, Generalised Polynomial- Logarithmic and

Cusp maps. The asymptotic rates of the decay of correlations for these maps are

also discussed and it is noted that, whereas an exact expression for the decay

rate is now known for the polynomial maps, only an upper bound is available

for the other three. Also, Bhansali, Holland and Kokoszka (2006) investigate, by

a simulation study, the empirical behaviour of the estimated correlations and

invariant densities for the polynomial, logarithmic and asymmetric cusp maps.
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In this paper, we focus on frequency domain properties of intermittency

maps. In Section 3, an asymptotic expression for the rate of decay of correlations

for the symmetric cusp map is developed by connecting this rate to the recurrence

properties of the map. Moreover, the class of extended symmetric cusp maps is

also introduced and related to polynomial maps. Asymptotic expressions for

the rate at which the correlations of logarithmic and generalised polynomial-

logarithmic maps decay are also given in this section.

The asymptotics of the spectral density functions of these maps near the

origin are examined in Section 4. We show, in particular, that the spectral

densities of the symmetric cusp map and polynomial map with α = 0.5 behave

like a logarithmic function near the origin, fww(λ) ∼ B log(|λ|), as |λ| → 0. An

interpretation of this result is that, although d = 0 for these two maps, they

display long-memory, since their correlations decay like a harmonic series. For

the logarithmic map, by contrast, we show that fww(λ) ∼ B|λ|−1| log(|1/λ|) as

|λ| → 0, and hence, although d = 0.5 for this map, it defines a stationary process.

Our results thus enable the behaviour of long-memory time series to be studied at

the boundary of the values of d specified in (4), and show by example that, unless

the slowly-varying function ∆ occurring there is bounded, the hypothesis that

d = 0 need not imply that the process has short memory. Conversely, d = 0.5

need not imply that the process is non-stationary.

On the assumption that a realization of T consecutive observations from an

intermittency map is observed, with the initial value obtained from its invariant

density, some of the asymptotic sampling properties of the low-frequency peri-

odogram ordinates for these maps are examined in Section 5 as T → ∞. The

results here generalise and extend those of Hurvich and Beltrao (1993), who ear-

lier considered a similar problem but assumed that (2) holds; see also Robinson

(1995).

Section 6 presents simulation results examining the empirical properties of

the low-frequency periodogram ordinates for the polynomial, logarithmic and

symmetric cusp maps. The results here complement the earlier ’time domain’

results of Bhansali, Holland and Kokoszka (2005), and throw light on how the

standard GPH and related methods for estimating the long-memory parameter

might perform in the non-standard settings arising in these maps.

The intermittency maps we consider were originally introduced for charac-

terizing transition to turbulence, see Schuster and Just (1999); in these maps,

long-memory is an intrinsic property of the models describing this transition. A

different form of intermittency arises when modelling the sporadic bursts in high-

pass filtered time series, see Frisch (1996); Gao, Anh, Heyde and Tieng (2001)
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consider Gaussian processes exhibiting this particular form of intermittency as

well as long-memory.

Processes exhibiting a boundary behaviour of the type discussed in this pa-

per could also arise when an instantaneous polynomial transformation is applied

to a Gaussian long-memory process. Giraitis and Taqqu (1999) have investigated

the asymptotic distribution of the Whittle-likelihood estimators of ’spectral’ pa-

rameters in this situation. For the maps we consider, however, this boundary

behaviour arises directly when modelling intermittency.

Martin and Eccleston (1992) and Martin and Walker (1997) are additional

references related to our work. These authors show that for the process with exact

harmonic correlation structure, r(n) = ρ/n, (n 6= 0), where 0 ≤ ρ ≤ (2 log 2)−1

is a bounded constant, the spectral density fww also diverges to ∞ as λ→ 0, at

a logarithmic rate. However, although motivated by an actual application, see

Russell and Eccleston (1987), these studies do not provide an explicit example

of a stationary process giving rise to this correlation structure.

2. Chaotic Intermittency Maps

2.1. General properties

By a map time series we mean a deterministic sequence, {wt, t ∈ N}, gener-

ated by iteratively applying a one-dimensional map of the following form:

wt+1 = ζ(wt) (t ∈ N), (5)

where ζ : J → J is a non-linear map (function), J denotes a closed interval of

the real line R, N is the set of non-negative integers, and w0 specifies the initial

condition.

If the map ζ is ergodic and admits an invariant density, χ say, then provided

the initial condition w0 is a random number from this invariant density, {wt}
defines a strictly stationary stochastic process, see Berliner (1992), among others.

Denote the first derivative of ζ by ζ ′. A fixed point, w̃ say, is defined as a

solution of the equation ζ(w̃) = w̃. We say that w̃ is an attracting fixed point if

|ζ ′(w̃)| < 1, a repelling fixed point if |ζ ′(w̃)| > 1, and an indifferent, or a neutral,

fixed point if |ζ ′(w̃)| = 1.

An important property of intermittency maps is that they admit a neutral

fixed point, see Bhansali, Holland and Kokoszka (2005). Let H denote the class

of all Hölder continuous functions. If ϕ ∈ H and if ζ is ergodic and admits an

invariant density χ, the expectation and variance of ϕ(wn) are given by, for all

n ∈ N:

E
{
ϕ(wn)

}
=

∫

J
ϕ(w)χ(w)dw, (6)
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V
{
ϕ(wn)

}
= E

{
ϕ(wn)

2
}
− (E

{
ϕ(wn)

}
)2. (7)

Similarly, for all ϕ,ψ ∈ H and n ∈ N, the covariance between ϕ(wn) and

ψ(w0) is

Rϕ,ψ(n) = E
{
ϕ(wn)ψ(w0)

}
−E

{
ϕ(wn)

}
E
{
ψ(w0)

}

=

∫

J
ϕ(ζn(w))ψ(w)χ(w)dw −

∫

J
ϕ(w)χ(w)dw

∫

J
ψ(w)χ(w)dw. (8)

For ψ(w) = ϕ(w) = w, Rϕ,ψ(n) = Rww(n) is the autocovariance function of the

process {wt, t ∈ N}.
As is well known, the Lyapunov exponent gives a measure of how chaotic a

map is, how sensitive the orbit {wn, n ∈ N} is to the initial condition w0. For a

point w it is defined by

L(w) = lim
n→∞

1

n
log |(ζn)′(w)|. (9)

Positive Lyapunov exponents imply that the map is chaotic.

An intermittency map ζ, however, displays chaotic behaviour on a set A ⊂
J , not necessarily over the whole of J . Hence, the Lyapunov exponent for an

intermittency map could either vanish, which is so with the Farey map defined

later by (17) or, as with the symmetric cusp map defined by (14), it could exceed

0.

The Lyapunov exponent does not provide any information on the long (or

short) memory properties of a map. As an example, consider the map χβ(w) =

βw (mod1) with Lyupanov exponent log β, while for all β > 1, it has short

memory.

The rate of decay of correlations is however connected to the recurrence

properties of a map. Suppose that w0 ∈ C, where C ⊂ J is some fixed interval.

The recurrence property that is of interest is the time, TC(w0) say, for the orbit

to return to C for the first time, having started from within this interval. To this

end, let

HC(n) = P (TC(w0) ≤ n | w0 ∈ C) (n = 1, 2, . . .) (10)

denote the distribution function of TC(w0). Clearly, HC(n) → 1, as n→ ∞. For

a short memory map, HC(n) → 1 at an exponential rate as n → ∞ for every

C ⊂ J . By contrast, for an intermittency map there may exist sub-intervals C

for which this rate of decay is sub-exponential.

We summarise below some basic statistical properties of the three different

classes of intermittency maps, namely the Polynomial, Cusp and Logarithmic

maps, see Bhansali, Holland and Kokoszka (2005) for further details.
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2.2. Polynomial maps

This class of maps is defined for J = [0, 1] by

ζα(w) =




w(1 + 2αwα) if 0 ≤ w ≤ 1

2 ,

2w − 1 if 1
2 < w ≤ 1,

(11)

where α > 0 (see Liverani, Saussol and Vaienti (1999) and Young (1999)).

When α ∈ (0, 1), this map is ergodic and admits an invariant density χα. An

explicit expression for χα is unknown, but it is known that

χα(w) =
Vα(w)

wα
, (12)

where Vα(w) depends on the value of α and, for each fixed α, it is a piecewise

continuous, uniformly bounded function of w which is also bounded away from

zero.

2.3. Cusp maps

Balakrishnan, Nicolis and Nicolis (1997, 2001) have investigated this class.

Two different maps are considered, namely an asymmetric cusp map and a sym-

metric cusp map. The former is defined for J = [−1, 1] by

ζC(w) =





1 − 2
√

(−w) if − 1 ≤ w ≤ 0,

2
√

(w) − 1 if 0 < w ≤ 1.
(13)

Its invariant density, χC , coincides with that of a uniform distribution on

J = [−1, 1]. The symmetric cusp map is defined by, with J = [−1, 1],

ζS(w) = 1 − 2
√
|w|. (14)

The map displays intermittent behaviour because it has a neutral fixed point at

w = −1. It is also ergodic with a triangular invariant density (see Balakrishnan,

Nicolis and Nicolis (1997)),

χS(w) =
1

2
(1 − w), (15)

and the Lyapunov exponent is 1/2 for almost all w ∈ J .

It is possible to generalize both symmetric and asymmetric cusp maps so as

to incorporate other types of singularities and neutral fixed points. One such
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generalization is the family of extended symmetric cusp maps defined over J =

[−1, 1], and parametrised by two parameters, τ > 0, θ ∈ (0, 1):

ζτ,θ(w) =





w + (w + 1)1+τ , −1 ≤ w ≤ −1 + δ,

ζ̃(w), −1 + δ < w ≤ −δ,
1 − |w|θ , −δ < w ≤ 0,

ζτ,θ(−w), 0 < w ≤ 1,

(16)

where δ > 0 is a small constant, ζ̃(w) is chosen to be a uniformly expanding

(everywhere sensitive dependent) map on [−1 + δ,−δ], and such that the map

ζτ,θ is continuous on J . For example, ζ̃τ,θ(w) can be chosen to be the linear map

on [−1 − δ,−δ] given by

ζ̃(w) =

(
2 − δ − δ1+τ − δθ

1 − 2δ

)
(w + 1 − δ) − 1 + δ + δ1+τ .

The laminar region of the map is Jδ = [−1,−1 + δ], τ controls the expected

time spent in Jδ , assuming that the initial condition w0 ∈ Jδ, while θ controls the

expected time spent in Jδ, assuming the initial condition is outside the laminar

region.

When τθ > 1 the map is not ergodic. For τθ < 1 a smooth invariant density

does exist, although an explicit formula for it is unknown.

When θ = 1, the recurrence properties of the map are related to those of the

polynomial maps.

The Farey map is an additional example of a cusp map. It has been con-

sidered, see Pronzato, Wynn and Zhigliavsky (2001), in connection with certain

line search algorithms and, for J = [0, 1],

ζF (w) =





w
1−w if 0 ≤ w ≤ 1

2 ,

1−w
w if 1

2 < w ≤ 1.
(17)

This map has a neutral fixed point at w = 0 and it is ergodic. The invariant

density is however improper, χF (w) ∝ w−1. A normalized version of χF (w)

coincides with the density of a degenerate Dirac distribution. An equivalence

between the Farey map and the polynomial map with α = 1 can be established

by noting that, up to terms of second order, a Taylor expansion gives ζF (w) =

w + w2 + O(w3) as w → 0 which, on ignoring O(w3) terms, agrees with the

definition of the polynomial map with α = 1, up to a multiplying constant.
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An equivalence between the Farey map and the modified cusp map, with

(τ, θ) = (1, 1), may also be established by an analogous argument.

2.4. Logarithmic maps

This class of intermittency maps was introduced by Holland (2005) as a

generalisation of the polynomial map. It is defined on J = [0, 1] by

ζβ(w) =




w
[
1 + Y (β)w(− logw)1+β

]
if 0 ≤ w ≤ 1

2 ,

2w − 1 if 1
2 < w ≤ 1,

(18)

where Y (β) = 2(log 2)−(1+β) is chosen to ensure that limw→1/2− ζβ(w) = 1, β a

parameter of the map.

The map is ergodic for all β ∈ (0, 2 log 2− 1), and its invariant density takes

the following form on (0, 1/2):

χβ(w) =
Vβ(w)

w log( 1
w )β+1

∀w ∈ J. (19)

Here Vβ(w) depends on β and, for each fixed β, it is a uniformly bounded piece-

wise continuous function that is also bounded away from zero; on [1/2, 1], the

invariant density is a bounded piecewise continuous function.

It is also possible to combine the polynomial and logarithmic maps by defin-

ing the generalised polynomial-logarithmic maps as

ζγ(w) =




w [1 + Y (γ)wγL(w)] if 0 ≤ w ≤ 1

2 ,

2w − 1 if 1
2 < w ≤ 1,

(20)

where γ > 0, Y (γ) = 2γ/L(1/2), and L(1/w) is slowly varying function at

∞ that is twice differentiable for all w ∈ [C,∞], C a bounded constant, see

Bhansali, Holland and Kokoszka (2006).

3. Asymptotic Rates of Correlation Decay

Let

rϕ,ψ(n) = Rϕ,ψ(n)/
√{

V
{
ϕ(wn)

}
V
{
ψ(w0)

}}
(21)

denote the cross-correlation function between ϕ(wn) and ψ(w0), n = 0,±1, . . .,

where ϕ(wn) and ψ(wn) are two Hölder continuous functions of the map time

series {wt}. In this section, we derive asymptotic results for the rate at which

rϕ,ψ(n) decreases to 0 as n → ∞, for the symmetric cusp and the extended
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symmetric cusp maps, and relate these rates to the corresponding rates for the

polynomial map. In addition, we also examine the correlation decay rate for the

logarithmic and the generalized polynomial-logarithmic maps.

3.1. Polynomial maps

For the map (11), the asymptotic decay of rϕ,ψ has been studied by several
authors, see Bhansali, Holland and Kokoszka (2005), and a general result is due
to Sarig (2002) and Gouëzel (2004b), who show that for ϕ,ψ ∈ H,

lim
n→∞

n
1

α−1 rϕ,ψ(n) = U, (22)

where U is a constant. Hence, like the fractionally-differenced time series defined
by (2), the correlations for the polynomial map decay at a polynomial rate.

Indeed we may set d = 1 − (2α)−1, and for α ∈ (0.5, 1.0) the map admits
long-memory, while for α ∈ (1/3, 0.5) the map admits intermediate memory.
If [x] denotes the integer part of a real number x, for α ∈ (0, 1/3] the cor-
relations behave asymptotically like that of a time series whose p-th difference,
p = [1−(2α)−1], is a fractionally-differenced process. By contrast, for α = 0.5 the
correlations decay harmonically, rϕ,ψ(n) ∼ Bn−1, for some B > 0 and, although
d = 0, the series still displays long memory.

3.2. Cusp maps

Exact expressions for the mean, variance and the first correlation coeffi-
cient of the symmetric cusp map may be written down from the known invari-
ant density. We have, for all t, E(wt) = −(1/3), Var(wt) = Rww(0) = (2/9),
cov(wt, wt+1) = Rww(1) = (8/63), corr(wt, wt+1) = (4/7). The evaluation of
rww(n) for n ≥ 2 is not straightforward. The following theorem gives the asymp-
totic rate of decay of the covariances Rww(n) for the symmetric cusp map. A
proof of this theorem is given in the Appendix.

Theorem 3.1. For the symmetric cusp map, Rww(n) = 4/(9n) + o(1/n).

By a study of the recurrence properties of the extended symmetric cusp maps,
the following theorem can be established. A proof of this theorem is omitted,
since it is similar to that for the symmetric cusp map but in a slightly more
general setting.

Theorem 3.2. The family of extended symmetric cusp maps ζτ,θ, possesses the

following properties:

(a) For τθ < 1, ζτ,θ admits an absolutely continuous invariant probability measure

µτ,θ that is ergodic;

(b) for all Hölder continuous functions ϕ,ψ, as n→ ∞, Rϕ,ψ(n) = O
(
n1−1/(τθ)

)
;

(c) there exists a constant Cτ,θ such that, as n→ ∞, Rww(n) ∼ Cτ,θ
{
n1−1/(τθ)

}
.
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3.3. The Logarithmic map

The asymptotic behaviour of the correlations for this class of maps has been

studied by several authors. The following theorem may be deduced from the

work of Gouëzel (2004a).

Theorem 3.3. (a) For the Logarithmic map defined by (18),

Rww(n) =
η2
wχβ(

1
2 )

2β(log n)β
+ o

(
1

(log n)β

)
,

where χβ(w) denotes the invariant density of the map and ηw = E(wt) for all t.

(b) For the generalized polynomial-logarithmic map defined by (18),

Rww(n) = M(γ)L∗(n)n
1− 1

γ + o(L∗(n)n
1− 1

γ ),

where M(γ) is a constant and L∗(n) is a slowly varying function at infinity.

4. Small Frequency Analysis of the Spectral Density Function

Based on the results given in Section 3, the limiting behaviour of the spectral

density function fww(λ) as λ → 0 may be investigated by appealing to classical

Fourier Analysis, see (Zygmund, 1988, Chap. V). We distinguish between the

following scenarios, in which B > 0 denotes a constant, though not necessarily

the same constant each time; also, for convenience, we write r(n) for rww(n) and

consider the normalized spectral density, f(λ) = fww(λ)/Rww(0):

Scenario 1: The correlations decrease to 0 at a polynomial rate:

r(n) ∼ Bn−κ as n→ ∞, 0 < κ <∞, κ 6= 1; (23)

Scenario 2: The correlations decrease to 0 like an harmonic sequence:

r(n) ∼ Bn−1, (n→ ∞); (24)

Scenario 3: The correlations decrease to 0 at a logarithmic rate:

r(n) ∼ B(log n)−β, as n→ ∞, 0 < β <∞; (25)

Scenario 4: The correlations decrease to 0 as follows:

r(n) ∼ B∆(n)n2d−1, (n→ ∞), (26)

where d ∈ (−∞, 0.5] and ∆(n) is a slowly varying function at ∞.

Note that Scenario 4 encompasses Scenarios 1, 2 and 3.
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It follows from (22) that, with κ = α−1 − 1, α ∈ (0, 1), the Polynomial map
generates correlations according to Scenario 1 provided α 6= 0.5; moreover, part
(c) of Theorem 3.2 shows that for κ = (τθ)−1 − 1, τθ ∈ (0, 1), the correlations
of the extended symmetric cusp map also accord with this scenario. Similarly,
Theorem 3.1 shows that the correlations of symmetric cusp map follow Scenario
2 with B = 2; in addition, by (22), the correlations of the Polynomial map with
α = 0.5 also follow this scenario. Finally, Theorem 3.3 shows that Scenario 3
holds for the Logarithmic map and Scenario 4 for the generalised Polynomial-
Logarithmic map.

The various intermittency maps may thus be applied for generating real-
izations whose correlations follow Scenarios 1−4 outlined above and, also, for
investigating the efficacy of various statistical methods for estimating the long-
memory parameter under these scenarios. It should nevertheless be observed
that the value of B, the multiplying constant, in these scenarios is known only
for the symmetric cusp map, since a closed-form expression for its invariant den-
sity is given at (15). Exact analytic expressions for the invariant densities of the
remaining maps are as yet unavailable, and hence the relevant value of B for
these maps is also unknown.

It is readily checked, see Beran (1998), that under Scenario 1, the spectral
density is given by (4) with d = (1 − κ)/2. Scenarios 2 and 3 have hitherto
not been considered in the literature and, see Section 1, they represent the two
boundary points of the values of d specified by (2). Theorems 4.1 and 4.2. below
give the asymptotics of the normalized spectral density function for these two
scenarios, as λ→ 0, and Theorem 4.3 does the same for Scenario 4.

Theorem 4.1. If Scenario 2 holds, the normalized spectral density function has

the form

f(λ) = f ∗(λ) log

∣∣∣∣2 sin(
λ

2
)

∣∣∣∣ (27)

as λ → 0, where f ∗ is a function that is bounded away from zero and infinity,

and f∗(λ) → −Bπ−1 as λ→ 0.

Proof. We have, see Zygmund (1988), that

∑

n≥1

1

n
cosnλ = − log

∣∣∣∣2 sin(
λ

2
)

∣∣∣∣ .

Also, for a fixed, arbitrary ε > 0, there exists anN > 0 such that |B−1nr(n)−
1| < ε for all n ≥ N . Moreover, for this N , there exists a λN > 0 such that
−ε log |2 sin(λ/2)| > 2πN for any |λ| < λN . Hence, for the given choice of N we
have, for all |λ| < λN ,

f(λ) ≤ −B
π

(1 + 2ε) log

∣∣∣∣2 sin(
λ

2
)

∣∣∣∣ .
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Similarly for the same choice of ε and |λ| < λN , we have

f(λ) ≥ −B
π

(1 − 2ε) log

∣∣∣∣2 sin(
λ

2
)

∣∣∣∣ .

Since ε > 0 is arbitrary the conclusion of the theorem follows.

Theorem 4.2. If Scenario 3 holds, the normalized spectral density function,

f(λ), has the form,

f(λ) =
f∗β(λ)

λ

(
log(

1

λ
)
)1+β

(28)

as λ→ 0, where f ∗β is a continuous function that is bounded away from zero and

infinity.

Proof. It can be shown that, see Zygmund (1988, Theorem 2.17),

∑

n≥2

cosnλ

(log n)β
∼ βπ

2λ

(
log(

1

λ
)
)1+β

(λ→ 0).

Arguing in the same way as in the proof of Theorem 4.1, the required expression

for f follows.

The following theorem generalizes Theorems 4.1 and 4.2; its proof follows

from a result in Zygmund (1988, p.187), and is omitted.

Theorem 4.3. If Scenario 4 holds, the normalized spectral density function has

the form

f(λ) = |λ|−2d∆̃(
1

λ
) (29)

as λ→ 0, where ∆̃ is a slowly varying function at infinity.

5. An Analysis of the Periodogram for Long Memory Map Time Series

Given a (part) realisation, wt, t = 0, . . . , T−1, of a weakly stationary process

{wt}, the sample autocovariance function is defined by

RT (u) =
1

T

T−u−1∑

t=0

(wt − wT )(wt+u −wT ), wT =
1

T

T−1∑

t=0

wt, (30)

and, with λ = λj = 2πj/T , the periodogram function by

IT (λ) =
1

2πT

∣∣∣
T−1∑

t=0

(wt − wT )e−iλt
∣∣∣
2

=
1

2π
[RT (0) + 2

T−1∑

j=1

RT (j) cos(jλ)]. (31)
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The periodogram is a basic statistic for estimating the memory parameter, d,

of a long memory process, see Robinson (1995). If {wt} is a weakly stationary

process and the mean η = E(wt) is known, the expectation of the periodogram

is given by, see Hurvich and Beltrao (1993),

E{IT (λ)} =

∫ π

−π

1

T

(
sin(T (λ−θ)

2 )

sin(λ−θ2 )

)2

f(θ) dθ. (32)

On the assumption that (2) holds, Hurvich and Beltrao (1993) but see also

Robinson (1995), study the asymptotic bias

Lj = lim
T→∞

E

(
IT (λj)

f(λj)

)
, (33)

and show that

Lj = Lj(d) =
2

π

∫ ∞

−∞

sin2(x2 )

(2πj − x)2

∣∣∣∣
x

2πj

∣∣∣∣
−2d

dx. (34)

These authors also investigate the various properties of Lj(d) as a function

of d, and show that Lj(0) = 1. Note that our Scenario 1 is equivalent to requiring

that (2) holds.

Below, we study the asymptotic bias of the periodogram under Scenarios 2,

3 and 4. We show in particular that under Scenario 2, Lj = 1 and E (IT (λj)) →
f(λj), as T → ∞, for each fixed j. This last result implies that there exists a

long memory process with slowly-decaying correlations for which the asymptotic

unbiasedness property of the periodogram holds.

Theorem 5.1. Suppose that Scenario 2 holds. Then

Lj = lim
T→∞

E

(
IT (λj)

f(λj)

)
=

2

π

∫ ∞

−∞

sin2(x/2)

(2πj − x)2
dx = Lj(0) = 1.

Proof. We follow Hurvich and Beltrao (1993). Let gT (x) = FT (λj−x)f(x)f(λj)
−1.

We have

Lj = lim
T→∞

E

(
IT (λj)

f(λj)

)
= lim

T→∞

∫ π

−π
gT (x) dx.

For a suitable δ ∈ (0, 1), let

JT =

∫ T δ

−T−δ

gT (x) dx. (35)
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From the spectral representation of g(x) we can show that that JT → Lj as

T → ∞. The proof is now completed by demonstrating that

lim
T→∞

JT =
2

π

∫ ∞

−∞

sin2( z2 )

(2πj − z)2
dz = Lj(0) = 1.

Theorem 5.2. Suppose that Scenario 3 holds. Then

Lj = lim
T→∞

E

(
IT (λj)

f(λj)

)
=

2

π

∫ ∞

−∞

sin2(x2 )

(2πj − x)2

∣∣∣∣
x

2πj

∣∣∣∣
−1

dx = Lj(
1

2
).

Proof. The method of proof is similar to that for Theorem 5.1, but we now have

lim
T→∞

JT = 4j

∫ ∞

−∞

sin2(x2 )

x(2πj − x)2
dx = Lj(

1

2
). (36)

Theorem 5.3. Suppose that Scenario 4 holds. If, in addition, there exists a

δ ∈ (0, 0.5) such that for each j,

lim
T→∞

∫ T δ

−T 1−δ

{
∆̃(Tx )

∆̃( 1
λj

)
− 1

}
sin2(x2 )

(2πj − x)2

∣∣∣∣
x

2πj

∣∣∣∣
−2d

dx = 0,

then

Lj = lim
T→∞

E

(
IT (λj)

f(λj)

)
=

2

π

∫ ∞

−∞

sin2(x2 )

(2πj − x)2

∣∣∣∣
x

2πj

∣∣∣∣
−2d

dx = Lj(d).

Remark 5.4. If {wt} is generated by a deterministic map ζ so that wt = ζt(w0),

Theorems 5.1, 5.2 and 5.3 apply to this map time series provided ζ is ergodic

and w0 is a realization of the invariant distribution of the map.

6. Simulation Results

We investigate the extent to which the asymptotic result on the rate of

decay of correlations for the symmetric cusp map applies with simulated real-

izations of T consecutive observations from this map. In addition, we examine

the low-frequency behaviour of the estimated spectral density functions of the

polynomial, logarithmic and symmetric cusp maps. We also consider the autore-

gressive spectral estimate. For a linear process admitting an infinite autoregres-

sive representation, Berk (1974) shows that the autoregressive spectral estimate

is asymptotically equivalent to a smooth periodogram estimate of the spectral

density. Their relative sampling properties for simulated series of finite length
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are examined by Beamish and Priestley (1981) and Bhansali (1997), among oth-

ers. By contrast, however, much of the current ’long-memory’ literature has

focussed on the periodogram and little is currently known, either theoretically

or empirically, about the properties of the autoregressive spectral estimate for

this class of processes. Moreover we consider non-linear chaotic maps, and the

simulations should provide further information on their relative performance in

this situation.

A motivation underpinning the simulation study is that the existing statis-

tical explanations for the long-memory phenomenon are based on the notion of

aggregation, see Park and Willinger (2000), among others. The intermittency

maps considered in this paper provide a different physical explanation of how

long memory could arise, namely through their recurrence properties and the

rather long periods the orbit could spend in the laminar region, close to the

neutral fixed point. At the same time, however, the ergodic results only show

that the various ’time averages’ converge to the corresponding ’ensemble aver-

ages’ as the number of observations over which the time averages are taken grows

indefinitely. An estimate of the rate at which the convergence occurs is as yet

unavailable. It is hoped that the simulation study can help to bridge the gulf

between mathematical dynamical systems theory and a practical verification of

its asymptotic results with generated series of moderately large length.

6.1. Plan of the study

A stretch of N = 107 iterations of the polynomial, logarithmic and symmet-

ric cusp maps was generated, but only the last T = 104 observations, {wt, t =

M + 1, . . . ,M + T}, with M = 107 − 104, were actually retained for estimating

the correlations, spectral density and related statistics, and the first M val-

ues were discarded; a ’burn-in’ period of similar length was earlier adopted in

Bhansali, Holland and Kokoszka (2006).

Let u0 be uniform(0, 1). The initial value of the symmetric cusp map was:

w0 = −1 + 2(1 − u0)
1

2 . (37)

The initial value, w0, for the polynomial and logarithmic maps was generated,

see Bhansali, Holland and Kokoszka (2006), from an exponential distribution

with mean 0.2, truncated at 1.0. We set α = 0.4, 0.5, 0.667 and β = 0.05, 0.2, 0.35.

The NAG routines G05DAF and G05FBF were used for generating the uniform

and exponential random numbers. The correlations, r(T )(u) (u = 1, . . . , 300),

were computed as follows:

r(T )(u) =
RT (u)

RT (0)
, (38)
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where RT (u) is defined at (30). The associated estimated partial correlations,

π̂(k), (k = 1, . . . , 50), were then computed by the NAG routine G13ACF in

accordance with the Durbin-Levinson algorithm. The order of an appropriate

linear autoregressive approximation was also determined by minimising the BIC

criterion:

BIC(k) = T log σ̂2(k) + (log T )k (k = 0, . . . , 50), (39)

with σ̂2(k) = σ̂2(k − 1){1 − π̂2(k)}, σ̂2(0) = RT (0). An autoregressive model

of order k = k̂, where k̂ denotes the value of k selected by the BIC criterion,

was fitted by the NAG maximum likelihood routine G13AFF ; the goodness of

the fitted model was tested by the NAG routine G13ASF . An autoregressive

spectral estimate, f̂k was computed as

f̂k(λ) =
σ̂2(k)

2π
|Âk(λ)|−2, (40)

where

Âk(λ) =

k∑

u=0

âk(u) exp(iuλ), âk(0) = 1, (41)

denotes the estimated autoregressive transfer function and the âk denote the

maximum likelihood estimates of the autoregressive coefficients.

A NAG fast Fourier routine, C06ECF , was applied for computing the pe-

riodogram IT and the autoregressive transfer function Âk(λ), for λ = λ̃j =

(2πj)/2T , j = 0, . . . , T − 1; moreover, the estimated covariances RT were com-

puted by an inverse Fourier transform of the periodogram. The normalized pe-

riodogram, IT (λ) = IT (λ)/RT (0), and the normalized autoregressive spectral

estimate, fk(λ) = f̂k(λ)/RT (0), were then computed.

The simulated sampling means, variances and standard deviations (SD) of

the various estimates were determined by replicating the computations described

above NRP = 1, 000 times, and with a different initial condition each time.

In addition, the simulated sampling distributions of r(T )(u), u = 1, 2, 3, âk(1),

w̄, RT (0) and k̂, the autoregressive order selected by the BIC criterion, were

obtained, as were the histograms of the retained orbits wt (t = 1, . . . , 10, 000)

for the first two replications of each map. There were, however, Q replications

for which the NAG routine G13ASF failed to converge. The numerical value

of Q varied in [0, 55], the larger values occurring for the logarithmic map with

β = 0.05, 0.2, and smaller values with other maps; moreover, there were some

maps, for example the polynomial maps with α = 0.4, 0.5, for which Q was

0. As the asymptotic results discussed in Sections 2 and 3 do not apply to

these replications, it was decided to exclude them from our simulation study.



CHAOTIC INTERMITTENCY MAPS 31

Nevertheless, for ensuring that the reported results were uniformly based on

1, 000 replications, the value of NRP was increased to 1, 000 +Q.

To save space, we present detailed results only for the symmetric cusp map.

For the polynomial and logarithmic maps, we only consider the simulated sam-

pling means of the normalized periodogram and the autoregressive spectral es-

timate; see Bhansali, Holland and Kokoszka (2006), however, for a discussion of

the ’time domain’ results for the sample correlations and related statistics for

these maps.

6.2. The Symmetric cusp map

A histogram of T = 10, 000 consecutive observations generated from this map

with w0 = −0.09473545285 is shown in Figure 1a, together with the correspond-

ing triangular invariant density. The latter is given at (15), see Balakrishnan,

Nicolis and Nicolis (1997); also, the histogram shown in Figure 1a is one with 25

class intervals, each of width 0.08. Apart from the first two class intervals close
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Figure 1. Histograms for the symmetric cusp map.
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to −1.0, the neutral fixed point, the shape of the rest of the histogram accords
with that of the triangular invariant density, though the relative frequencies of
observations falling in the corresponding intervals are consistently overestimated.
The relative frequency of the orbit remaining close to the neutral fixed point is
underestimated by the invariant density.

A P −P plot, which gets around grouping into class intervals, was obtained
and is shown in Figure 2, together with the corresponding 45◦ line. Apart from
the quantiles near −1.0, or 1.0, the P − P plot is close to the 45◦ line, indicat-
ing that the invariant density provides a reasonably good fit for the simulated
observations in the middle-part of the distribution.

°
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Figure 2. P-P plot for the symmetric cusp map.

Figures 1b and 1c show the histograms of the sampling distributions of the
mean w and the first correlation r(T )(1). The former is centered around the
corresponding theoretical value, η = E(w) = −1/3, in fact the sampling mean
was −0.33418, and the latter around rww(1) = 0.571. Both histograms display a
tail behaviour: the histogram of the mean is left-skewed and contains some very
small values; that of r(T )(1) is right-skewed and contains some large values. The
latter feature was also evident in the histograms of the sampling distributions of
r(T )(2) and r(T )(3), not shown here. This tail behaviour is further exacerbated if
the results for the discarded Q = 10 replications are included in the simulation
study, see the discussion in Section 6.1.

Figures 3a and 3b show plots of the simulated means of the sample corre-
lations, r(T )(u)(u = 1, . . . , 300) and partial correlations, π̂(k) (k = 1, . . . , 50),
together with two curves representing mean+SD and mean-SD. The mean corre-
lations decrease more slowly than the theoretical asymptotic rate given in The-
orem 3.1. The numerical magnitude of the standard deviation, SD, is, however,
relatively large at high lags u, and it remains approximately constant as u in-
creases. Hence, it is not feasible to draw meaningful conclusions concerning the
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extent to which the simulation results support the asymptotic theory. Although

the first few values of the mean partial correlations dominate the rest of the val-

ues, the mean - SD curve is above 0 for all u < 15, indicating that a relatively high

order may be needed for developing a linear autoregressive approximation for the

map from only a finite realization of the corresponding time series. An inspection

of the frequency distributions of the autoregressive order selected by the BIC

criterion revealed that, whereas the average autoregressive order selected for this

map was 8.02, and for the polynomial map with α = 0.5, was 3.84, the percentiles

of the distributions of the autoregressive order selected for the former map are

higher than those for the latter map although they have the same asymptotic

decay of correlations. Figure 1d shows the histogram of âk(1), with k = k̂, the

autoregressive order selected by the BIC criterion, for the symmetric cusp map.

The histogram is almost symmetric and close in shape to the density function of

a Normal distribution, suggesting that the maximum likelihood estimates of the

autoregressive coefficients are well-behaved for this map.
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Figure 3. Means for the symmetric cusp map.
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A plot of the logarithm of the simulated means of the normalized peri-

odogram IT (λj) against the logarithm of frequency for λ̃j = jπ/T, j = 1, . . . , 316,

is shown in Figure 3c, together with the logarithm of the corresponding theoret-

ical spectral density, f ; the latter was computed from (27). Figure 3d shows

the same information for the normalized autoregressive spectral estimate f k. By

Theorem 5.1, the periodogram provides an asymptotically unbiased estimator of

the spectral density function of this map, as T → ∞. The simulation results in

Figure 3c are partially in agreement with this theoretical result, since the overall

shape of the simulated means accords with that of the theoretical spectrum. The

numerical values of the simulated means differ considerably from the correspond-

ing theoretical values however, indicating a substantial bias with finite-length

realizations generated from the map. A slight dip in the mean periodogram for

the two frequencies closest to the origin arises because the periodogram was com-

puted by subtracting the sample mean w from each wt, thus treating the mean,

η = E(wt), as unknown. Since the latter is known, the periodogram was also

recomputed from the realization w̃t = wt + 1/3. To save space, the correspond-

ing simulated means are not shown here. Suffice it to say that, away from the

origin, these new means differ little from those shown in Figure 2c, but at the

two frequencies closest to the origin, the dip visible in this figure disappears and

the new means follow the same overall shape as that at other low frequencies.

By Theorem 4.1, d = 0 for this map. It may, however, be gleaned from Figure

3c that a log-log plot of the simulated means of the periodogram is quite linear in

a neighbourhood of the zero frequency and, if d is estimated by a log-periodogram

regression, this estimate could be badly biased upwards. A log-log plot of the

simulated means of the autoregressive spectral estimate is, however, quite flat

for small frequencies and its appearance is consistent with the theoretical value

of d = 0. On the other hand, the autoregressive spectral estimate is numerically

not as close to the theoretical spectrum as the periodogram, and its functional

shape is also quite different from that of the theoretical spectrum.

6.3. The polynomial and logarithmic maps

Figures 4a and 4b show the means of the periodogram and the autoregressive

spectral estimate for α = 0.5. Apart from a multiplying constant, Theorem 4.1

also applies to this map and shows that in a neighbourhood of the origin, the

theoretical spectrum of this map and that of the symmetric cusp map are given

by (4.1). Nevertheless, the relevant multiplying constant for the former map

is, as yet, unknown, and therefore, unlike Figures 3c and 3d, the corresponding

theoretical spectrum is not shown in Figures 4a and 4b. The simulation results

partially agree with the asymptotic theory, since the simulated means shown in

Figures 4a and 4b and those shown in Figures 3c and 3d have similar shapes.
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(a) periodogram (α=0.5). (b) ar spectral estimate (α=0.5).
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(c) periodogram (α = 0.667). (d) ar spectral estimate (α = 0.667).

Figure 4. Simulated means for the polynomial map.

As may be gleaned from Figure 4c, for α = 0.667 the simulation results for the

periodogram broadly accord with the asymptotic theory, and in a neighbourhood

of the origin a log-log plot of their simulated means decreases linearly. This is

not so, however, for the autoregressive estimate, since Figure 4d shows that its

behaviour with α = 0.667 is quite similar to that for α = 0.5.

For α = 0.4, the asymptotic theory shows that the theoretical spectral den-

sity should increase with the frequency. The simulated means of the periodogram

and the autoregressive spectral estimate decrease as the frequency increases how-

ever, and thus their behaviour is not as sensitive to the choice of α as implied by

the asymptotic theory. To save space, the corresponding plots are omitted.

Theorem 4.2 shows that, for small frequencies, the spectral density log fβ of

the logarithmic map is dominated by a linear function of log(λ), whose slope of

−1 does not depend upon the parameter β. The corresponding simulated means

of the periodogram and autoregressive spectral estimate are shown in Figures 5a

to 5f with β = 0.05 and 0.2. Although the former do appear linear, the slopes

of the fitted regression lines depend upon the value of β, and numerically esti-

mated slopes calculated from the mean-periodogram are consistently less than
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the asymptotic value. For frequencies very close to the origin, the autoregressive

spectral estimate is more curved than either the periodogram or the correspond-

ing autoregressive estimates shown in Figures 3 and 4 for the symmetric cusp

and polynomial maps. It is however possible to identify, see Figures 5e and 5f, a
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(a) periodogram (β = 0.05). (b) periodogram (β = 0.2).
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(c) ar spectral estimate (β = 0.05). (d) ar spectral estimate (β = 0.2).
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Figure 5. Means for the logarithmic map.
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band of small frequencies, somewhat away from the origin, where this estimate

is almost linear. The estimated slope, while closer to the asymptotic value than

that for the periodogram, still depends upon the value of β. The corresponding

results with β = 0.35 are not shown, to save space,. Suffice it to say, however,

that the estimated slope with the autoregressive spectral estimate is now −0.76,

indicating that even when the band of frequencies for estimating the memory

parameter from an autoregressive spectral estimate is carefully chosen, the rela-

tive agreement between the asymptotic theory and simulation results decreases

as β increases. Moreover the question of how to choose an appropriate frequency

band for applying such a procedure requires further consideration.

6.4. Summary and Conclusions

For all three maps, the simulation results only partially agree with the asymp-

totic theory. The disparity in the case of the symmetric cusp map could be

attributed to the relative preponderance of simulated observations near the neu-

tral fixed point than predicted by the asymptotic theory. The estimate of the

memory parameter d obtained from the autoregressive spectral estimate appears

closer to the theoretical value for both the symmetric cusp and polynomial map

with α = 0.5, i.e., at the lower boundary of the interval, [0.0, 0.5] than that from

the periodogram. The converse however holds for the polynomial map where the

estimate of d obtained from the former is not as sensitive to the choice of α as the

latter. This may be because the shape of the autoregressive estimate depends

upon the properties of the fitted autoregressive model and less directly on that

of the underlying theoretical spectrum, see Beamish and Priestley (1981). For

the logarithmic map, whose memory parameter falls at the upper boundary of

the interval [0.0, 0.5], it is possible to identify a narrow band of small frequencies

where the logarithm of the mean of autoregressive spectral estimate is almost

linear and the slope of the fitted line is closer to the corresponding theoretical

value than that for the periodogram. This observation, however, raises the ques-

tion of how to choose an appropriate frequency band for estimating the memory

parameter from an autoregressive spectral estimate, and requires further inves-

tigation; moreover, a similar difficulty applies also to the well-known GPH and

related non-parametric and semi-parametric methods of estimating the mem-

ory parameter from the periodogram. A surprising finding of the simulations

is the approximate normality of the estimated autoregressive coefficient for the

symmetric cusp map. A similar result was noticed also for the polynomial and

logarithmic maps, suggesting that the classical result on the asymptotic normal-

ity of the maximum likelihood estimates of the autoregressive parameters could

also apply more generally to time series generated by intermittency maps.
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Appendix: Proof of Theorem 3.1

Following Young (1999), we analyse the recurrence time statistics of the

symmetric cusp map ζ(w). The idea is as follows: choose a set Y ⊂ J , and

consider the first return map T̃ (w) : Y → Y , where T̃ (w) = ζR(w)(w), and

R(w) = inf{n ≥ 0 : ζn(w) ∈ Y }. Partition Y into subsets {Yi} such that

R |Yi
= Ri is constant, and T̃ (Yi) = Y with bounded distortion on the derivatives

of T̃ |Yi
. An estimate of the tail of the return times, namely the quantity µ{w ∈

Y : R(w) > n} can be used to estimate the rate of decay of correlations. Here

µ is the invariant measure of ζ(w) with density χS(w). In particular a result of

Gouëzel (2004a) is used to infer that the correlations behave asymptotically as∑
k≥n µ{w ∈ Y : R(w) > n}, up to a known multiplication constant. For the

symmetric cusp map we show that this latter quantity decays like O(1/n).

For an appropriate subinterval Y , we construct the partition {Yi} of Y , and

show that the return time function R(w) has the appropriate asymptotics.

Let Y r = [0, p], where p is the (hyperbolic repelling) fixed point of T , namely

the point p > 0 such that p = 1−2
√
p. Let Y l = [−p, 0], and note that ζ(−p) = p.

We now identify subsets Y r
n ⊂ Y r and Y l

n ⊂ Y l such that ζk(Y l
n), ζ

k(Y r
n ) are

disjoint from Y l ∪ Y r for k = 1, . . . , n− 1, and ζn(Y r
n ), ζn(Y l

n) = Y l ∪ Y r so that

R |Y r
n
, R |Y l

n
= n. By construction, it will follow that the restriction of ζn to Y l

n

and Y r
n has uniformly bounded distortion.

Lemma 6.1. The sets Y l
n, Y

r
n have the form Y l

n = [−yn,−yn+1], Y
r
n = [yn+1, yn],

where yn ∼ n−2. Moreover µ{R > n} ∼ n−1, where R is the first return time

function to Y l ∪ Y r, and R | Y l
n, R | Y r

n = n.

The proof of this lemma goes as follows. Let wn = ζ−n(p) ∩ [−1, 0], so that

wn → −1 as n→ ∞. An elementary argument (see Holland (2005) for example)

shows that wn+1 ∼ 2n−1. Under the map ζ, the intervals Y r, Y l each map onto

[p, 1], and therefore T 2 maps each of Y r, Y l bijectively onto [−1, p]. Hence the

intervals Y r
n , Y

l
n correspond to intervals which map to [wn−1, wn−2] under ζ2(w).

For w > 0, ζ−1(w) = (1 − w)2/4, and

yn = ζ−2(wn−2) =
1

4

(
1 − 1

4
(1 − wn−2)

2)2 ∼ 1

n2

as n → ∞. Therefore µ{R > n} =
∫ yn

−yn
χS(x)dx where χS(x) = (1 − x)/2, and

we obtain µ{R > n} = yn ∼ n−2.
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The following lemma summarizes bounded distortion for ζn(w) on Y l
n, Y

r
n .

We do not give the proof as it follows from the techniques used in (Holland, 2005,

Proposition 2).

Lemma 6.2. There exists a constant D > 0 independent of n, such that for all

Y l
n, Y

r
n and w ∈ Y l

n ∪ Y r
n we have

|(ζn)′′(w)|
(ζn)′(w)2

≤ D. (42)

From the return time asymptotics and bounded distortion we now use the

result of Gouëzel (2004a) to obtain the correlations. The following estimate holds.

Proposition 6.3. Let ϕ(w) and ψ(w) be two functions which tend to 0 at

w = −1. Then
∫
ϕ(w)ψ(ζnw)χS(w) dw −

∫
ϕ(w)χS(w) dw

∫
ψ(w)χS(w) dw

=
( ∞∑

k=n

µ{R > k}
) ∫

ϕ(w)χS(w) dw

∫
ψ(w)ρ(w) dw + o

( ∞∑

k=n

µ{R > k}
)
.

For a proof of Proposition 6.3 we refer to Gouëzel (2004a). To complete the

proof of Theorem 3.1, we use Proposition 6.3 applied to the functions ϕ(w) =

ψ(w) = w + 1. Notice that these functions vanish at w = −1. Moreover the

correlation functions are unaffected by constant translation, and therefore

Rw,w = Rw+1,w+1 =
4

9n
+ o

(
1

n

)
.

Remark 6.4. The corresponding result for the extended cusp, namely Theorem

3.2, is proved in a completely analogous way, we do not give the details.
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