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Abstract: The main purpose of this article is to investigate a nonlinear structural

equation model with covariates and mixed continuous and ordered categorical out-

comes, in the presence of missing observations and missing covariates that are

missing with a nonignorable mechanism. The nonignorable missingness mechanism

is specified by a logistic regression model. A Bayesian approach is proposed for ob-

taining the joint Bayesian estimates of structural parameters, latent variables and

parameters in the logistic regression model. An algorithm that combines the Gibbs

sampler and the Metropolis-Hastings algorithm is developed for sampling obser-

vations from the posterior distributions, and for obtaining the Bayesian solution.

A procedure for computing the Bayes factor for model comparison is developed

via path sampling. Sensitivity analyses of the results with respect to the assumed

model for the missingness mechanism, the prior inputs, and the missing covariate

distributions are conducted via simulation studies. An example is presented to

illustrate the newly developed Bayesian methodologies.

Key words and phrases: Bayes factor, Gibbs sampler, Metropolis-Hastings algo-
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1. Introduction

Latent variables are often encountered in behavioral, educational, medical,

psychological, and social research. Investigation and analysis of latent vari-

ables for assessing the relationships of observed variables and latent variables

have received a great of attention in biostatistics, psychometrics, and statistics.

One approach has focused on analyzing the effects of latent variables and fixed

covariates on the mean of the observed variables; see Laird and Ware (1982)

and Chib and Greenberg (1998). Another approach, commonly referred to as

structural equation models (SEMs, see Bollen (1989) among others), has fo-

cused on identifying the latent variables from the manifest variables, and on

investigating the relationships of latent variables among themselves. On the

basis of more than a dozen user-friendly software packages in the field, SEMs

have been widely applied to various fields, such as organization and management

(Williams, Edwards and Vandenberg (2003)), marketing (Bagozzi, Gopinath and
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Nyer (1999)), quality of life (Lee, Song, Skevington and Hao (2005)), and trans-

portation (Golob (2003)), among others.

In this paper, we first introduce nonlinear SEMs (NSEMs) that accommodate

covariates, in the context of mixed continuous and ordered categorical variables.

In the literature, a factor analysis model with covariates has been developed

by Sammel and Ryan (1996). This model was generalized to a linear SEM by

Lee and Shi (2000), and to NSEMs by Lee and Song (2003b), respectively. How-

ever, these papers did not consider missing data. Methods for the treatment of

missing data that are missing at random (MAR) with an ignorable mechanism

(Little and Rubin (1987)) have received much attention in SEMs without covari-

ates; see for example Song and Lee (2002) and Lee and Song (2004a,b), among

others. However, missing response data are often nonignorable in the sense that

the reason for missingness depends on the missing values themselves. In light

of this, the main purpose of this paper is to develop a Bayesian approach for

analyzing NSEMs with covariates and mixed continuous and ordered categorical

outcomes, in the presence of nonignorable missing data that can come from the

observed variables as well as the covariates.

In the literature, there are important studies of maximum likelihood es-

timation with nonignorable missing observations for the normal random effects

model (Laird and Ware (1982)), the conditional linear model (Follmann and Wu

(1995)), and the generalized linear mixed model (Ibrahim, Chen and Lipsitz

(2001)). Methods for treating missing covariates are given by Rathouz, Satten

and Carroll (2002) for the semiparametric method in matched case-control stud-

ies, by Lipsitz, Ibrahim and Zhao (1999) and Parzen, Lipsitz, Ibrahim and Lip-

shultz (2002) for the weighted estimating equation method, by Ibrahim, Chen

and Lipsitz (1999) for the Monte Carlo EM method in parametric regression

models, and by Stubbendick and Ibrahim (2003) for the maximum likelihood

method combing the Gibbs sampler and the MCEM algorithm. However, these

methods cannot be applied to NSEMs with ordered categorical variables. In

our development, we will employ a Bayesian approach for the following reasons:

(i) it allows the use of genuine prior information for achieving better results,

and (ii) as pointed out in Bayesian analyses of latent variable models and SEMs

(Dunson (2000), Lee and Song (2004c) and Scheines, Hoijtink and Boomsma

(1999)), sampling-based Bayesian methods do not depend on asymptotic theory,

and hence give more reliable results with small sample sizes.

The rest of the paper is organized as follows. In Section 2, we formulate a

NSEM with covariates, and describe the mixed continuous and ordered categor-

ical data that can be missing with a nonignorable mechanism. The specification

of the missingness mechanism is also discussed. In Section 3, we present the

Bayesian approach, and derive novel conditional distributions for implementing
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the sampling-based methods. Numerical illustrations, which include a simulation

study and an example, are presented in Section 4. Technical details are given in

the appendices.

2. Model and Notation

Inspired by the LISREL model (Jöreskog and Sörbom (1996)), we propose an

SEM with a measurement equation and a structural equation. The measurement

equation is defined by the following factor analysis model with covariates:

yi = Aci + Λωi + εi, i = 1, . . . , n, (1)

where yi is a p by 1 random vector of manifest variables, ci is an r by 1 vector

of covariates which may come from a continuous or discrete distribution, ω i is

a q by 1 random vector of latent variables, A and Λ are matrices of unknown

parameters, and εi is a random vector of error measurements with distribution

N [0,Ψε], in which Ψε is a diagonal matrix with diagonal elements ψε1, . . . , ψεp.

It is assumed that for i = 1, . . . , n, the ωi are independently distributed, the

εi are independently and identically distributed (i.i.d.), and the ω i and εi are

independent. The main purpose of this measurement equation is to identify the

latent variables in ωi via the manifest variables (indicators) in yi. The covariates

can be explanatory or other kind of variables that are helpful in achieving a

better model for relating yi with ωi. Let ωi = (ηT
i , ξ

T
i )T be a partition of ωi

into endogenous latent variables in ηi (q1 by 1) and exogenous latent variables

in ξi (q2 by 1). The following nonlinear structural equation is used to model the

relationship between ηi and ξi:

ηi = Πηi + Bxi + ΓH(ξi) + ζi, (2)

where xi is an s by 1 vector of covariates that can come from continuous or

discrete distributions, H(ξi) = (h1(ξi), . . . , ht(ξi))
T is a vector-valued function

containing non-zero differentiable functions h1, . . . , ht, t ≥ q2, Π,B and Γ are

matrices of unknown parameters, ξi is distributed as N [0,Φ], ζ i is a vector

of residuals with distribution N [0,Ψζ ], in which Ψζ is a diagonal matrix, and

ξi and ζi are independent. Similar to many SEMs, it is assumed that Π0 =

|Iq1
− Π| is nonzero and independent of any element of Π. This condition is

assumed so that the computational burden is reduced, it can be relaxed with

appropriate modification. Again the covariates can be explanatory variables or

other variables that are not involved in the measurement equation but have

significance in explaining η.

To account for the ordered categorical data, without loss of generality let

y = (yT
(1),y

T
(2))

T , where y(1) = (y1, . . . , yk)
T is a subset of manifest variables
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that cannot be directly observed, whilst y(2) can be directly observed. For

h = 1, . . . , k, the information of a variable yh is given by an observable or-

dered categorical value zh such that zh = j if αhj < yh ≤ αh,j+1, where j is

in {0, 1, . . . , bh}. Let αh = (αh1, . . . , αhbh
)T for h = 1, . . . , k, and assume that

αh0 = −∞, αh,bh+1 = ∞. In particular, if bh = 1 and αh1 = 0, the information of

yh is given by an observable dichotomous value zh such that zh = 1 if yh > 0, and

0 otherwise. These ordered categorical variables can be identified by the method

given by Shi and Lee (2000) and Lee and Song (2004d).

To deal with the missing data problem, let y(1)i = {y(1)oi,y(1)mi}, y(2)i =

{y(2)oi,y(2)mi}, and xi = {xoi,xmi}, where y(2)oi and xoi denote the observed

data, whilst y(1)mi,y(2)mi and xmi represent the missing data of y(1)i,y(2)i and

xi. For simplicity, we assume that ci is fully observed for all i = 1, . . . , n. This

assumption can be relaxed with minor modification. Let r i = (ri1, . . ., ri,p+s)
T be

a missing indicator vector for vi = (yT
i ,x

T
i )T such that rij equals 1 if vij is missing

and 0 if vij is observed. Moreover, let zoi be the observed ordered categorical data

of zi under y(1)i and let [ri|y(2)i, zoi,xi, ci,ωi,ϕ] be the conditional distribution

of ri given y(2)i, zoi, xi, ci, and ωi, with a parameter vector ϕ and a density

function p(ri|y(2)i, zoi,xi, ci,ωi,ϕ). The missing data mechanism is decided by

this distribution. Let α = {α1, . . . ,αk}, and let θ = (θT
1 ,θ

T
2 )T in which θ1

contains all unknown distinct parameters in A,Λ,Ψε that are associated with

the measurement equation, and θ2 contains all unknown distinct parameters

in Π,B,Γ,Ψζ , and Φ that are associated with the structural equation. Let

Y o = {y(2)oi : i = 1, . . . , n}, Zo = {zoi : i = 1, . . . , n}, Y m = {(y(1)mi,y(2)mi) :

i = 1, . . . , n}, Y (1)o = {y(1)oi : i = 1, . . . , n}, Y = {yi : i = 1, . . . , n}, F =

{ωi : i = 1, . . . , n}, Xo = {xoi : i = 1, . . . , n}, Xm = {xmi : i = 1, . . . , n},

X = {xi : i = 1, . . . , n}, and C = {ci : i = 1, . . . , n}. The main purpose of

this paper is to develop Bayesian methods to analyze the proposed model on the

basis of the missing data indicator r = {ri : i = 1, . . . , n} and the observed data

set {Y o,Zo,Xo,C}.

Theoretically, any general model can be taken to specify a model for r i. How-

ever, as pointed out by Ibrahim, Chen and Lipsitz (2001), one must be careful in

using a complicated or large model, because it can easily become unidentifiable.

Moreover, a complex model can induce difficulty in deriving the corresponding

conditional distribution of the missing manifest given the observed data, and

inefficient sampling from that conditional distribution. As the covariance matrix

of the error measurement, εi, is diagonal, it follows from (1) that when ω i is

given, the components of yi are independent. Hence, for j 6= l ∈ {1, . . . , p}, it

is reasonable to assume that the conditional distributions of rij and ril given ωi

are independent. Moreover, we also assume that rij and ril are independent for
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j 6= l ∈ {p + 1, . . . , p + s}. Under this assumption, we consider the following

nonignorable missingness mechanism (Ibrahim, Chen and Lipsitz (2001)):

p(ri|y(2)i, zoi,xi, ci,ωi,ϕ) =

p+s
∏

j=1

{pr(rij = 1|y(2)i, zoi,xi, ci,ωi,ϕ)}rij

×{1 − pr(rij = 1|y(2)i, zoi,xi, ci,ωi,ϕ)}1−rij ,

where pr(rij = 1|y(2)i, zoi,xi, ci,ωi,ϕ) is modelled by logistic regression models

logit{pr(rij = 1|y(2)i, zoi,xi, ci,ωi,ϕ)} = ϕT
y myi, j = 1, . . . , p, (3)

logit{pr(ri,p+j = 1|y(2)i, zoi,xi, ci,ωi,ϕ)} = ϕT
x mxi, j = 1, . . . , s, (4)

in which myi and mxi are functions of y(2)i, zoi,xi, ci, and ωi, ϕy and ϕx are

vectors of regression coefficients, and ϕ = (ϕT
y ,ϕ

T
x )T .

3. Bayesian Analysis of the Model

Let ϑ = (α, τ ,ϕ)T be the vector of nuisance parameters. The Bayesian anal-

ysis is focused on log p(θ,ϑ|Y o, Xo,Zo,C, r) ∝ log p(Y o,Xo,Zo,C, r|θ,ϑ) +

log p(θ,ϑ), where p(θ,ϑ) is the prior density of θ and ϑ, and p(Y o,Xo,Zo,C, r

|θ,ϑ) is the likelihood function. In the posterior analysis, the observed data

{Y o,Xo,Zo,C} and r are augmented with the missing quantities {Y m,Y (1)o,

Xm,F } to produce a complete-data set {Y ,X ,Z o,C,F , r}. Therefore, the joint

posterior distribution of interest is [F ,Y m,Y (1)o,Xm,θ,ϑ|Y o,Xo,Zo,C, r].

3.1. An Algorithm for Simulating Observations

The Gibbs sampler (Geman and Geman (1984)) is used to generate a se-

quence of random observations from the above joint posterior distribution.

In this algorithm, observations {F ,Y m,Y (1)o,Xm,θ,ϑ} are iteratively sam-

pled from the following conditional distributions: p(F |Y ,X ,C,Z o, r,θ,ϕ),

p(Y m|X,Y (1)o,Y o,Zo,C,F , r,θ,ϕ), p(Xm|Y ,Xo,Zo,C,F , r,θ, τ ,ϕ), p(θ

|Y ,X ,C,F ), p(τ |X), p(ϕ|Y ,X ,C, F ,Zo, r) and p(α,Y (1)o|C,F , Zo,θ). As

the observations are independent, we only need to derive the first three condi-

tional distributions for each i. Note that once y(1)mi is given, it is not necessary

to simulate zmi. Thus, {zmi : i = 1, . . . , n} is not involved in the Gibbs sampler.

The full conditional distributions that are required in the implementation of the

Gibbs sampler are briefly discussed here.

For p(F |Y ,X ,C, Zo, r,θ,ϕ), it can be shown that

p(ωi|yi,xi, ci, zoi, ri,θ,ϕ)

∝ p(yi|ci,ωi,θ1)p(ηi|xi, ξi,θ2)p(ξi|θ2)p(ri|y(2)i, zoi,xi, ci,ωi,ϕ).
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Let Λω = (Π,B,Γ) and G(xi,ωi) = (ηT
i ,x

T
i ,H(ξi)

T )T . Then, p(ωi|yi,xi, zoi,

ci, ri,θ,ϕ) is proportional to

exp
{

−
1

2
(yi − Aci −Λωi)

TΨ−1
ε (yi − Aci −Λωi)

−
1

2
(ηi −ΛωG(xi,ωi))

T Ψ−1
ζ (ηi −ΛωG(xi, ωi))

−
1

2
ξT

i Φ−1ξi +

p
∑

j=1

(rijϕ
T
y myi − log(1 + eϕ

T
y myi))

+

s
∑

j=1

(ri,p+jϕ
T
x mxi − log(1 + eϕ

T
x mxi))

}

. (5)

Consider the conditional distribution of Y m given (X,Y (1)o,Y o,Zo,C,F , r).

As Ψε is diagonal, y(1)mi is independent of y(2)mi and y(1)oi, and y(2)mi is inde-

pendent of y(2)oi. Hence, p(y(1)mi,y(2)mi|y(1)oi,y(2)oi,xi, zoi, ci,ωi, ri,θ,ϕ) ∝

p(y(1)mi|ci,ωi,θ1)p(y(2)mi|ci,ωi,θ1)p(ri |y(2)i,zoi,xi, ci,ωi,ϕ). According to

the definition of the models for yi and ri, we have

[y(1)mi|ci,ωi,θ1]
D
= N [A(1)mici + Λ(1)miωi,Ψε(1)mi],

where A(1)mi and Λ(1)mi are the submatrices of A and Λ with rows correspond-

ing to y(1)mi, respectively, and Ψε(1)mi is the submatrix of Ψε with rows and

columns corresponding to y(1)mi. Moreover, p(y(2)mi|xi, zoi, ci,ωi, ri,θ,ϕ) is

proportional to

exp{−
1

2
(y(2)mi − A(2)mici −Λ(2)miωi)

TΨ−1
ε(2)mi(y(2)mi − A(2)mici −Λ(2)miωi)

+

p
∑

j=1

(rijϕ
T
y myi − log(1 + exp(ϕT

y myi)))

+

s
∑

j=1

(ri,p+jϕ
T
x mxi − log(1 + exp(ϕT

x mxi)))}, (6)

where A(2)mi and Λ(2)mi are the submatrices of A and Λ with rows corresponding

to y(2)mi, and Ψε(2)mi is the submatrix of Ψε with rows and columns correspond-

ing to y(2)mi.

For p(Xm|Y ,Xo,Zo,C,F , r,θ, τ ,ϕ), it can be shown that

p(xmi|yi,xoi, zoi, ci,ωi, ri,θ, τ ,ϕ)

∝ p(ηi|xi, ξi,θ2)p(ri|y(2)i, zoi,xi, ci,ωi,ϕ)p(xmi|τ ).



ANALYSIS OF NONLINEAR STRUCTURAL EQUATION MODELS 1123

Then, it follows from (3) and (4) that p(xmi|yi,xoi, zoi, ci,ωi, ri,θ, τ ,ϕ) is pro-

portional to

exp
{

−
1

2
(ηi −ΛωG(xi, ξi))

T Ψ−1
ζ (ηi −ΛωG(xi, ξi))

+

p
∑

j=1

(rijϕ
T
y myi − log(1 + exp(ϕT

y myi)))

+

s
∑

j=1

(ri,p+jϕ
T
x mxi − log(1 + exp(ϕT

x mxi)))
}

p(xmi|τ ). (7)

Note that the distribution of the missing covariates is involved.

Let p(ϕy) be the prior density of ϕy with distribution N [ϕ0y,V y], where

ϕ0y and V y are the given hyper-parameters. Under this prior distribution and

the fact that the distribution of rij only involves y(2)i, zoi,xi, ci,ωi, and ϕy for

j ∈ {1, . . . , p}, it follows from the independence of rij and rih, and (3), that

p(ϕy|Y ,X ,C,Zo,F , r)

∝

exp{
n
∑

i=1
(

p
∑

j=1
rij)ϕ

T
y myi −

1
2(ϕy − ϕ0y)

T V −1
y (ϕy − ϕ0y)}

n
∏

i=1
(1 + exp(ϕT

y myi))p
. (8)

Similarly, let p(ϕx) be the prior density of ϕx with distributionN [ϕ0x,V x],where

ϕ0x and V x are the given hyper-parameters. Similarly, it follows from (4) that

p(ϕx|Y ,X ,C,Zo,F , r)

∝

exp{
n
∑

i=1
(

s
∑

j=1
ri,p+j)ϕ

T
x mxi −

1
2(ϕx − ϕ0x)T V −1

x (ϕx − ϕ0x)}

n
∏

i=1
(1 + exp(ϕT

x mxi))s
. (9)

Given Y m, the model defined in (1) becomes the model discussed by

Lee and Zhu (2000). Hence, the conditional distribution of (α,Y (1)o) given

(C,Zo,F ,θ) can be obtained by similar derivations as given in Lee and Zhu

(2000). Consider the following conjugate prior distributions for components in

θ: ψ−1
εk

D
= Gamma(α0Ak, β0Ak), ΛAk

D
= N [Λ0Ak, ψεkH0Ak], ψ

−1
ζk

D
= (α0ζk, β0ζk),

Λ0ωk
D
= N [Λ0ωk, ψζkH0ωk], and Φ

D
= IW [R0, ρ0], where ΛAk is the kth row

of (A,Λ), Λωk is the kth row of (B,Γ), ψεk and ψζk are the kth diagonal ele-

ments of Ψε and Ψζ , respectively, IW denotes the inverted Wishart distribution,

and quantities with a subscript ‘0’ are the given hyperparameter values. Under
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these prior distributions, the conditional distribution of θ given (Y ,X ,C,F )
can also be obtained as by Lee and Zhu (2000). To save space, the related
discussion is not presented. The implementation of the Metropolis-Hastings
(MH) algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)
and Hastings (1970)) for simulating observations from the complex conditional
distributions in (5)−(9) is presented in Appendix I.

3.2. Bayesian model comparison

As pointed out by Lipsitz and Ibrahim (1996), the parametric form of the
assumed missingness mechanism itself is not ‘testable’. However, the Bayes factor
(Berger (1985)) can be used to compare competing models M0 and M1, which
may have different missingness mechanisms or model structures. The Bayes
factor for evaluating M1 against M0 is defined as

B10 =
p(Y o,Xo,Zo,C, r|M1)

p(Y o,Xo,Zo,C, r|M0)
,

where p(Y o,Xo,Zo,C, r|Mk) is the marginal density of (Y o,Xo,Zo,C, r) un-
der Mk. As this marginal density involves an intractable multiple integral, the
computation of the Bayes factor is difficult. Based on the comparative study
of DiCiccio, Kass, Raftery and Wasserman (1997), bridge sampling (Meng and
Wong (1996)) is an attractive method. Gelman and Meng (1998) developed
path sampling, which is a generalization of bridge sampling, and argued that
it has the potential to be even better. Based on the nice features presented by
Gelman and Meng (1998), and inspired by many successful applications to var-
ious SEMs (see, e.g., Lee and Song (2003b)), path sampling is used to compute
the Bayes factor for model comparison in the current problem. For completeness,
the description of the path sampling is given in Appendix II.

4. Numerical Examples

Numerical results are presented to illustrate various aspects of the proposed
Bayesian methods. In the simulation studies, two covariates are independently
generated from a Binomial distribution and a normal distribution. In our ex-
ample, the covariates are continuous and ordered categorical outcomes with an
underlying bivariate normal distribution N [0,Φx], where Φx is an unknown ma-
trix. For completeness, the relating conditional distributions (see (7)) under
these situations are presented in Appendix III.

4.1. Simulation Studies

The main purpose is to illustrate the influence of the missingness mechanism,
and to study the sensitivity of the Bayesian estimates with respect to prior in-
puts and missing covariate distributions. Complete-data sets {y i, i = 1, . . . , 500}
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are generated from an NSEM defined in (1) and (2) with nine manifest vari-

ables that are related to three basic latent factors ηi = ηi, and ξi = (ξi1, ξi2)
T .

The covariate in the measurement equation is taken to be ci = (1, . . . , 1)T . For

the structural equation, xi1 is generated from a Binomial distribution, Bi(1, τ1),

and xi2 is independently generated from a normal distribution N(τ2, 1.0). Vari-

ables yi1 and yi2 are transformed to ordered categorical observations zi1 and

zi2 with the same thresholds αk = (−1.2∗,−0.5, 0.5, 1.2∗) for k = 1, 2, where

parameters with asterisks are treated as being fixed for identification. Vari-

ables yi3 and yi4 are transformed to dichotomous observations zi3 and zi4 with

the fixed threshold 0.0∗, and ψε3 and ψε4 are fixed at 1.0∗ for identification.

The specifications of A and Λ in relation to the measurement equation are:

A = diag(0.0∗, 0.0∗, 0.0∗, 0.0∗, µ5, . . . , µ9), and

ΛT =





1.0∗ λ21 λ31 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 1.0∗ λ52 λ62 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 1.0∗ λ83 λ93



 , Φ=

[

φ11 φ12

φ12 φ22

]

;

recall that the values 1.0∗ and 0.0∗ with asterisks are treated as fixed for achieving

an identified model. The structural equation is defined by ηi = b1xi1 + b2xi2 +

γ1ξi1 + γ2ξi2 + γ3ξi1ξi2 + ζi. True population values of the unknown parameters

are given by µ5 = · · · = µ9 = 0.36, λ21 = λ31 = λ52 = λ62 = λ83 = λ93 = 0.36,

ψε1 = ψε2 = ψε5 = · · · = ψε9 = 0.36, b1 = b2 = 0.36, γ1 = γ2 = γ3 = 0.36,

ψζ = 0.36, (φ11, φ12, φ22) = (1.0, 0.36, 1.0), and τ1 = τ2 = 0.5.

Missing data of y(2)i = (yi5, . . . , yi9) are generated from the logistic regression

model,

logit{pr(rij = 1|y(2)i,xi, zoi, ci,ωi,ϕ)}

= ϕy0 + ϕy1zi1 + · · · + ϕy4zi4 + ϕy5yi5 + · · ·

+ϕy9yi9 + ϕy10xi1 + ϕy11xi2 + ϕy12ξi1 + ϕy13ξi2, (10)

with true parameters ϕy0 = −2.0, and ϕy1 = · · · = ϕy13 = 0.1; the missing data

for (xi1, xi2) are generated from the logistic regression model,

logit{pr(ri,9+j = 1|xi,ϕ)} = ϕx0 + ϕx1xi1 + ϕx2xi2, j = 1, 2, (11)

with true parameter values ϕx0 = −2.0 and ϕx1 = ϕx2 = 0.1. There are 50

unknown parameters in the full model. The average proportions of missing data

corresponding to the y’s and x’s are about 0.18 and 0.13, respectively.

To investigate the sensitivity of Bayesian estimates to prior inputs, the

following hyper-parameters are considered. Type I: the hyper-parameters for

Λ0Ak = (AT
0k,Λ

T
0k)

T ,Λ0ωk = (BT
0k,Γ

T
0k)

T , ϕ0y and ϕ0x are taken to be their

corresponding true values, α0Ak = α0ζk = 10, β0Ak = β0ζk = 4 and H0Ak and
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H0ωk are diagonal matrices with diagonal elements 0.25, ρ0 = 8 and R0 = 5Φ0,

where Φ0 is the true value of Φ. This can be regarded as a situation with good

prior information. Type II: non-informative priors. The results of all of the sim-

ulation studies are based on 100 replications. In Tables 1 to 3, ‘Bias’ denotes

the difference between the true value and the mean of the estimates, and ‘RMS’

is the root mean square between the estimates and its true value. The results

obtained from this simulation are reported in Table 1. It can be seen that the

Bayesian estimates obtained are reasonably accurate under different prior inputs,

and not sensitive to prior inputs.

Table 1. Performance of the Bayesian estimates in the simulation study.

Type I Type II Type I Type II

Par. Bias RMS Bias RMS Par. Bias RMS Bias RMS

u5 0.003 0.030 -0.004 0.032 α12 -0.020 0.056 -0.006 0.057
u6 -0.001 0.035 -0.003 0.031 α13 -0.017 0.050 -0.010 0.055

u7 -0.018 0.056 -0.013 0.058 α22 0.003 0.047 -0.001 0.044

u8 -0.003 0.035 -0.004 0.033 α23 -0.007 0.036 -0.003 0.041

u9 -0.007 0.035 -0.008 0.036 ϕy0 -0.097 0.173 -0.112 0.273

λ21 -0.004 0.039 0.004 0.055 ϕy1 0.022 0.060 0.022 0.074
λ31 0.019 0.072 0.007 0.093 ϕy2 0.003 0.070 0.024 0.091

λ52 0.037 0.072 0.012 0.077 ϕy3 -0.036 0.058 -0.030 0.052

λ62 0.059 0.093 0.013 0.078 ϕy4 -0.023 0.054 -0.029 0.069

λ83 0.015 0.046 -0.010 0.060 ϕy5 0.044 0.150 0.027 0.152
λ93 0.016 0.052 -0.010 0.062 ϕy6 0.039 0.116 0.046 0.184

ψ1 -0.004 0.051 -0.003 0.140 ϕy7 0.032 0.140 0.029 0.366

ψ2 -0.002 0.030 -0.001 0.035 ϕy8 0.025 0.116 0.019 0.153

ψ5 0.002 0.030 -0.002 0.036 ϕy9 0.012 0.111 0.035 0.160

ψ6 -0.012 0.032 -0.003 0.031 ϕy10 0.010 0.109 -0.002 0.124
ψ7 0.035 0.066 -0.056 0.171 ϕy11 -0.023 0.074 -0.018 0.070

ψ8 0.000 0.028 0.007 0.033 ϕy12 -0.021 0.202 -0.024 0.288

ψ9 -0.005 0.029 0.001 0.032 ϕy13 -0.035 0.207 -0.069 0.497

b1 0.020 0.070 0.034 0.088 ϕx0 -0.009 0.122 -0.026 0.151
b2 -0.084 0.095 -0.089 0.100 ϕx1 0.008 0.216 0.031 0.301

γ1 0.027 0.079 0.007 0.091 ϕx2 -0.095 0.212 -0.111 0.269

γ2 0.009 0.062 -0.014 0.075

γ3 0.056 0.105 0.024 0.108

ψζ 0.040 0.068 0.046 0.142
φ11 -0.063 0.215 0.059 0.350

φ12 0.000 0.077 -0.005 0.090

φ22 -0.038 0.122 -0.084 0.204

τ1 0.002 0.024 0.000 0.027
τ2 -0.027 0.071 -0.028 0.084

ΣRMS 1.819 2.452 ΣRMS 2.379 3.471
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The following simulation study is used to illustrate the sensitivity of Bayesian

estimates to the missingness mechanism. Complete data sets are simulated on

the basis of the NSEM with the above settings. Missing data are created as

follows.

Type A. Nonignorable missingness mechanisms that are different from (10)

and (11):

logit{pr(rij = 1|y(2)i,xi, zoi, ci,ωi,ϕ)}

= ϕy0 + ϕy1zi1 + · · · + ϕy4zi4 + ϕy5yi5 + · · · + ϕy9yi9

+ϕy10xi1 + ϕy11xi2 + ϕy12ξi1 + ϕy13ξi2 + ϕy14x
2
i1 + ϕy15x

2
i2 + ϕy16xi1xi2,

logit{pr(ri,9+j = 1|xi,ϕ)}

= ϕx0 + ϕx1xi1 + ϕx2xi2 + ϕx3x
2
i1 + ϕx4x

2
i2 + ϕx5xi1xi2,

with ϕy0 = ϕx0 = −2.0, ϕy1 = · · · = ϕy16 = ϕx1 = · · · = ϕx5 = 0.1.

Type B. Logistic regression models that are different from (10) and (11):

logit{pr(rij = 1|y(2)i,xi, zoi, ci,ωi,ϕ)}

= ϕy0 + ϕy1zi1 + · · · + ϕy4zi4 + ϕy5yi5 + · · · + ϕy9yi9 + ϕy10xi1 + ϕy11xi2

+ϕy12ξi1ξi2

logit{pr(ri,9+j = 1|xi,ϕ)}

= ϕx0 + ϕx1xi1 + ϕx2xi2 + ϕx3yi6 + ϕx4yi7yi8 + ϕx5ξi1 + ϕx6ξi2

with ϕy0 = ϕx0 = −2.0, ϕy1 = · · · = ϕy12 = ϕx1 = · · · = ϕx6 = 0.1.

Type C. MAR missingness mechanism.

Type D. Logistic regression models given in (10) and (11).

All estimates are obtained with Type I prior inputs. For the first three miss-

ingness mechanisms, estimates are computed via the incorrect models (10) and

(11). For Type D, estimates are obtained under the incorrect MAR assumption.

Results are reported in Table 2. From the columns under Types A, B and C,

we observe that even when the true missingness mechanism models are more

complicated or the true missing data are MAR, the estimates obtained using the

models defined by (10) and (11) are quite accurate. In contrast, it can be seen

from the column under Type D that the estimates obtained under the incorrect

MAR assumption are inaccurate. Hence, it seems that the results obtained by

the proposed logistic regression model are robust to the different choices of the

missingness mechanism, but it is important to take the nonignorable missingness

mechanism into account.
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Table 2. Bayesian estimates under different missingness mechanisms.

Type A Type B Type C Type D
Par. true Bias RMS Bias RMS Bias RMS Bias RMS

u5 0.36 -0.003 0.035 -0.006 0.036 0.001 0.026 -0.245 0.264

u6 0.36 -0.006 0.034 -0.002 0.036 0.002 0.029 -0.263 0.279

u7 0.36 -0.016 0.061 -0.017 0.057 0.009 0.050 -0.660 0.669

u8 0.36 -0.010 0.036 -0.007 0.040 0.005 0.037 -0.288 0.294

u9 0.36 -0.005 0.039 -0.002 0.033 0.002 0.047 -0.292 0.303
λ21 0.36 0.007 0.040 0.003 0.044 0.002 0.039 -0.044 0.055

λ31 0.36 0.008 0.070 0.010 0.076 0.002 0.074 -0.034 0.075

λ52 0.36 0.017 0.067 -0.007 0.060 0.039 0.072 -0.036 0.182

λ62 0.36 0.018 0.067 -0.004 0.068 0.035 0.067 -0.040 0.155
λ83 0.36 0.007 0.040 0.006 0.044 0.008 0.044 -0.029 0.111

λ93 0.36 0.003 0.039 0.011 0.049 0.010 0.049 -0.013 0.107

ψ1 0.36 0.009 0.054 0.003 0.053 0.067 0.094 -0.097 0.106

ψ2 0.36 -0.002 0.027 0.003 0.032 0.003 0.033 0.007 0.037

ψ5 0.36 -0.006 0.033 0.000 0.027 -0.006 0.030 -0.018 0.058
ψ6 0.36 -0.003 0.034 -0.004 0.032 -0.001 0.029 -0.009 0.049

ψ7 0.36 0.015 0.057 0.023 0.060 0.018 0.070 -0.037 0.078

ψ8 0.36 -0.001 0.026 -0.004 0.032 -0.004 0.030 -0.009 0.047

ψ9 0.36 -0.008 0.026 0.002 0.028 -0.002 0.033 -0.017 0.046
b1 0.36 0.069 0.102 0.054 0.089 -0.042 0.075 -0.137 0.143

b2 0.36 -0.119 0.127 -0.088 0.099 0.084 0.095 0.454 0.457

γ1 0.36 -0.009 0.079 -0.008 0.085 0.066 0.106 0.047 0.113

γ2 0.36 -0.005 0.059 0.005 0.064 0.021 0.084 -0.088 0.138

γ3 0.36 0.014 0.081 0.014 0.088 0.070 0.119 0.271 0.288
ψζ 0.36 0.056 0.078 0.053 0.075 -0.054 0.158 -0.256 0.256

φ11 1.00 0.026 0.218 0.069 0.291 -0.120 0.219 -0.170 0.259

φ12 0.36 0.006 0.088 -0.007 0.072 -0.031 0.082 -0.016 0.136

φ22 1.00 0.007 0.105 -0.035 0.113 -0.021 0.113 -0.188 0.246
α12 -0.50 -0.014 0.063 -0.011 0.056 0.010 0.061 -0.062 0.084

α13 0.50 -0.006 0.044 -0.011 0.052 0.001 0.048 -0.048 0.071

α22 -0.50 -0.010 0.048 -0.007 0.046 0.001 0.044 -0.023 0.049

α23 0.50 -0.003 0.041 -0.005 0.038 -0.000 0.038 -0.024 0.046

τ1 0.50 0.003 0.029 -0.002 0.024 -0.005 0.027 -0.146 0.156
τ2 0.50 -0.060 0.086 -0.029 0.070 0.003 0.074 -0.302 0.314

ΣRMS 2.069 1.966 2.196 5.701

The following simulation study investigates the sensitivity of the results with

respect to the choice of the missing covariate distributions. The true distri-

butions of the covariates are given as follows. Type E: xi1 ∼ Bi(1, 0.5) and

xi2|xi1 ∼ N(0.5 + xi1, 1). Type F: xi2 ∼ N(0.5, 1) and xi1|xi2 ∼ Bi(1, px), where
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log(px/(1 − px)) = 0.5 − xi2. Missing data are generated via (10) and (11).

Bayesian estimates are obtained via the correct missingness mechanism models

(10) and (11), but under the incorrect distributional assumption of the covariates

as stated at the beginning of this section. The results are reported in Table 3.

It seems that the Bayesian estimates are not sensitive to the mis-specification of

the missing covariate distributions.

Table 3. Bayesian estimates obtained under different missing covariate distributions.

Type E Type F

Par. true Bias RMS Bias RMS

u5 0.36 -0.001 0.037 -0.004 0.034

u6 0.36 -0.005 0.031 0.000 0.030

u7 0.36 -0.005 0.051 -0.020 0.058
u8 0.36 -0.000 0.033 -0.007 0.033

u9 0.36 -0.003 0.033 -0.006 0.033

λ21 0.36 0.004 0.037 0.006 0.040

λ31 0.36 0.009 0.056 0.011 0.071

λ52 0.36 0.026 0.071 0.043 0.073
λ62 0.36 0.029 0.075 0.036 0.074

λ83 0.36 0.014 0.045 0.022 0.051

λ93 0.36 0.011 0.048 0.007 0.045

ψ1 0.36 -0.011 0.048 0.009 0.049
ψ2 0.36 -0.003 0.033 -0.003 0.030

ψ5 0.36 0.003 0.029 -0.002 0.029

ψ6 0.36 -0.005 0.031 -0.002 0.032

ψ7 0.36 0.028 0.066 0.035 0.072

ψ8 0.36 -0.011 0.031 -0.004 0.031
ψ9 0.36 -0.002 0.027 -0.007 0.024

b1 0.36 0.102 0.131 -0.031 0.068

b2 0.36 -0.073 0.082 -0.087 0.096

γ1 0.36 0.020 0.094 0.037 0.089
γ2 0.36 -0.001 0.076 0.003 0.064

γ3 0.36 0.028 0.090 0.064 0.110

ψζ 0.36 0.042 0.063 0.037 0.060

φ11 1.00 -0.042 0.241 -0.131 0.264

φ12 0.36 -0.011 0.075 -0.022 0.081
φ22 1.00 -0.029 0.115 -0.037 0.114

α12 -0.50 -0.012 0.062 -0.023 0.062

α13 0.50 -0.011 0.049 -0.017 0.052

α22 -0.50 -0.002 0.051 -0.001 0.045
α23 0.50 -0.005 0.039 -0.005 0.038

ΣRMS 1.950 1.952
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To illustrate the path sampling procedure for comparing various logistic re-

gression models in relation to missing data yij , we consider the following different

forms of logistic models:

My0 : my0(y(2)i,xi, zoi, ci,ωi,ϕy) = ϕy0 + ϕy1zi1 + · · · + ϕy4zi4 + ϕy5yi5 + · · ·

+ϕy9yi9,

My1 : my1(y(2)i,xi, zoi, ci,ωi,ϕy) = ϕy0 + ϕy1zi1 + · · · + ϕy4zi4 + ϕy5yi5 + · · ·

+ϕy9yi9 + ϕy10xi1 + ϕy11xi2,

My2 : my2(y(2)i,xi, zoi, ci,ωi,ϕy) = ϕy0 + ϕy1zi1 + · · · + ϕy4zi4 + ϕy5yi5 + · · ·

+ϕy9yi9 + ϕy10xi1 + ϕy11xi2 + ϕy12ξi1

+ϕy13ξi2.

We simulate the complete data sets on the basis of the same NSEM with the

specifications stated previously, and take My0 and (11) as the true missingness

mechanism model for creating nonignorable missing data. Defining a path t ∈

[0, 1] to link any two of the above models (see Appendix II) is straightforward.

For example, My0 and My1 can be linked by

Mty01 : my01(y(2)i,xi, zoi, ci,ωi,ϕy) = ϕy0 + ϕy1zi1 + · · · + ϕy4zi4+ϕy5yi5+· · ·

+ϕy9yi9 + tϕy10xi1 + tϕy11xi2.

Clearly, Mty01 is equal to My0 or My1 when t = 0 or 1. The logarithm Bayes fac-

tors computed by the path sampling procedure via different hyperparameters as

in Type I and Type II, are ̂logBy10 = −1.998 and −5.975, and ̂logBy20 = −4.371

and −12.01, respectively. Based on the criterion given by Kass and Raftery

(1995), the true model My0 is selected.

To illustrate the model comparison of various SEMs, we compare models that

have the same measurement equation but have the following different structural

equations:

Mη0 : ηi = b1xi1 + b2xi2 + γ1ξi1 + γ2ξi2 + γ3ξi1ξi2 + ζi,

Mη1 : ηi = γ1ξi1 + γ2ξi2 + γ3ξi1ξi2 + ζi.

Complete data sets are simulated on the basis of Mη0, and missing data are

created via (10) and (11). The ̂logBη10 obtained with Type I and Type II priors

are −146.62 and −41.5881, respectively. This gives strong evidence that we

should select the true model Mη0. The above results illustrate the reliability of

the path sampling procedure.
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4.2. An example

We analyze a portion of the data set that was obtained from a study of

the relationship between acquired immune deficiency syndrome (AIDS) and the

use of condoms (Morisky, Tiglao, Sneed, Tempongko, Baltazar, Detels and Stein

(1998)). The data were obtained from female sex workers in Philippine cities, on

items about knowledge of AIDS and attitude towards AIDS, belief, self efficiency

of condom use, etc. Items 33, 32, 31, 43, 72, 74, 27h, 27e and 27i in the question-

naire (see Appendix IV) are taken as manifest variables in y = (y1, . . . , y9). The

first and last three items are ordered categorical variables with 5-point scales,

and the remaining items are continuous. Moreover, a continuous item x1 (item

37, see Appendix IV) and an ordered categorical item x2 (item 21) are taken as

covariates. Similarly, we consider x2 as the observed ordered categorical value of

an underlying continuous variable v, and assume that the joint bivariate distri-

bution of (x1, v)
′ is N [0,Φx]. There are 1116 random observations with missing

data; a rough picture of the missing patterns is displayed in Table 4. To unify

the scales of the continuous variables, the raw continuous data are standardized.

Based on the meanings of the questions that correspond to the selected mani-

fest variables, we propose an NSEM with the following specifications. In the mea-

surement equation, we consider A=diag(0.0∗, 0.0∗, 0.0∗, µ4, µ5, µ6, 0.0
∗, 0.0∗, 0.0∗)

with fixed 0.0∗ values for identification, and ci = (1.0, . . . , 1.0)T . From the mean-

ing of the items (see Appendix IV), the first three items (y1, y2, y3) are related

to a latent variable, η, which can be roughly interpreted as ‘threat of AIDS’,

while the next three items (y4, y5, y6) and the last three items (y7, y8, y9) are

respectively related to latent variables ξ1 and ξ2, which can be interpreted as

‘aggressiveness of the sex worker’, and ‘worry of contracting AIDS’. Hence, we

consider the following common non-overlapping structure of Λ with some fixed

zeros entries at the appropriate positions:

ΛT =







1.0∗ λ21 λ31 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 1.0∗ λ52 λ62 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 1.0∗ λ83 λ93






.

Following a common practice in factor analysis and SEM, the 1.0∗ is fixed to

identify the scale of the latent factor. The following nonlinear structural equation

is considered: η = b1x1+b2x2+γ1ξ1+γ2ξ2+γ3ξ1ξ2+ζ. To identify the parameters

that are related to the ordered categorical variables in y, we follow the suggestion

of Shi and Lee (2000) to set αjh = Φ∗−1(fjh) for h = 1, 4, and j = 1, 2, 3, 7, 8, 9,

where fjh are the observed cumulative marginal proportions of the categories

with zj < h, and Φ∗ is the distributional function of N(0, 1).
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Table 4. Missing patterns and their sample sizes: AIDS data, “x” and “o”
indicate missing and observed entries, respectively.

Sample Manifest Variables Sample Manifest Variables
Pattern Size 1 2 3 4 5 6 7 8 9 Pattern Size 1 2 3 4 5 6 7 8 9

1 755 o o o o o o o o o 27 1 x o x x o o o o o
2 40 x o o o o o o o o 28 1 x o x o o o x o o

3 77 o x o o o o o o o 29 1 x o x o o o o x o

4 31 o o x o o o o o o 30 3 x o x o o o o o x

5 5 o o o x o o o o o 31 2 o x x x o o o o o
6 12 o o o o o o x o o 32 1 o x x o o o x o o

7 15 o o o o o o o x o 33 2 o x x o o o o x o

8 32 o o o o o o o o x 34 2 o x x o o o o o x

9 9 x x o o o o o o o 35 1 o x o o o o x o x

10 14 x o x o o o o o o 36 3 o x o o o o o x x
11 1 x o o o o o x o o 37 2 o o x o o o x x o

12 6 x o o o o o o x o 38 1 o o x o o o x o x

13 1 x o o o o o o o x 39 19 o o o o o o x x x

14 14 o x x o o o o o o 40 2 x x x o o o o o x
15 2 o x o o o o x o o 41 1 x x o o o o x x o

16 2 o x o o o o o x o 42 1 x o x o o o x x o

17 7 o x o o o o o o x 43 1 x o x o o o x o x

18 5 o o x o o o x o o 44 1 x o x o o o o x x

19 4 o o x o o o o x o 45 2 x o o o o o x x x
20 6 o o x o o o o o x 46 1 o x x o o o x x o

21 1 o o o x o o o o x 47 3 o x x o o o x o x

22 1 o o o o o o x x o 48 1 o x o o o o x x x

23 8 o o o o o o x o x 49 1 o o x o o o x x x
24 6 o o o o o o o x x 50 1 x o x o o o x x x

25 4 x x x o o o o o o 51 1 o o x x o o x x x

26 2 x x o o o o o o x

The path sampling procedure is used to compute the logarithm Bayes factor

for comparing the model under the MAR assumption (M1) with the model with

the following nonignorable missingness mechanism:

M0 : logit{pr(rij = 1|y(2)i, zoi,xi,ωi,ϕ)}

= ϕy0 + ϕy1zi1 +· · ·+ ϕy3zi3 + ϕy4yi4 +· · ·+ ϕy6yi6 + ϕy7zi7 +· · ·+ ϕy9zi9,

logit{pr(ri,9+j = 1|xi,ϕ)} = ϕx0 + ϕx1xi1 + ϕx2xi2. (12)

We have to assign values to the hyperparameters in the conjugate prior distri-

butions. To provide an illustration, we consider a situation in which we have

no external prior information. Among many other alternatives in selecting the
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hyperparameter values, we randomly select 316 observations to conduct an auxil-

iary Bayesian estimation with non-informative prior distributions for getting the

prior inputs. The estimates Λ̃Ak, Λ̃ωk, ϕ̃y, ϕ̃x, and Φ̃ of ΛAk,Λωk,ϕy,ϕx, and

Φ obtained from the auxiliary estimations are respectively used as prior inputs

for Λ0Ak,Λ0ωk,ϕ0y,ϕ0x and R0(= 5Φ̃) with ρ0 = 8, H0Ak and H0ωk are taken

as 0.5I , V y and V x are taken as I, and R0x = 5I with ρ0x = 8. The hyperpa-

rameter values associated with ψεk and ψζk are taken as α0Ak = α0ζk = 10, and

β0Ak = β0ζk = 4 to allow comparatively large variances in the prior distributions

for flexibility. The Bayesian results are then obtained on the basis of the remain-

ing 800 observations. The number of grids is taken to be 10, and for each tl, 4,000

simulated observations are used to compute H̄l after 3,000 burn-in iterations. To

reveal the convergence, plots of the EPSR values for all the unknown parameters

against the iteration numbers are presented in Figure 1. The logarithm Bayes

factor computed via the path sampling procedure is equal to −160.63. According

to the criterion given by Kass and Raftery (1995), M0 is significantly better than

M1. That is, the nonignorable missingness mechanism defined in M0 is better

than MAR. The PPP p-value (see Bayarri and Berger (2000)) corresponding to

the missingness mechanism model M0 is equal to 0.405. This indicates that the

proposed NSEM and the selected missingness mechanism model fit the data.
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Figure 1. EPSR values of all parameters against iteration numbers: AIDS.

The Bayesian estimates and their standard error estimates of the unknown
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parameters in the selected model are presented in Table 5. It can be seen that the

factor loading estimates are quite large, which indicates a strong association of the

latent variables and their corresponding indicators. Before providing interpreta-

tions of the estimated nonlinear structural equation, we note from the scale of the

ordered categorical variables (y1, y2, y3, y7, y8, y9) that comparatively large (posi-

tive) values of η and ξ2 imply that an individual feels a high threat from AIDS and

is more worried about contracting AIDS. With this understanding, the estimated

nonlinear structural equation η = −0.08x1+0.096x2−0.357ξ1+0.308ξ2−0.151ξ1ξ2
has the following interpretations. (i) From b̂1 = −0.08, the longer sex workers

Table 5. Bayesian estimates and their standard errors: AIDS.

Para. EST SD Para. EST SD

u4 -0.011 0.021 α12 -0.992 0.024
u5 -0.001 0.020 α13 -0.624 0.024

u6 0.004 0.017 α22 0.057 0.019

λ21 0.356 0.076 α23 0.365 0.021

λ31 0.813 0.105 α32 -1.141 0.034
λ52 2.023 0.206 α33 -0.742 0.028

λ62 1.399 0.110 α72 -1.579 0.037

λ83 0.598 0.092 α73 -0.705 0.016

λ93 1.056 0.156 α82 -0.389 0.019

ψε1 0.627 0.051 α83 0.243 0.018
ψε2 0.994 0.053 α92 -1.012 0.025

ψε3 0.739 0.053 α93 -0.113 0.014

ψε4 0.968 0.031 φx11 1.055 0.031

ψε5 0.572 0.046 φx12 0.078 0.021
ψε6 0.520 0.027 φx22 1.001 0.029

ψε7 0.738 0.060 ϕx0 -8.940 0.377

ψε8 0.938 0.049 ϕx1 -6.141 0.438

ψε9 0.726 0.058 ϕx2 -0.063 0.323

b1 -0.080 0.019 ϕy0 0.176 0.085
b2 0.096 0.019 ϕy1 -0.230 0.020

γ1 -0.357 0.089 ϕy2 -0.251 0.023

γ2 0.308 0.069 ϕy3 -0.244 0.019

γ3 -0.151 0.151 ϕy4 -0.162 0.058
ψζ 0.301 0.037 ϕy5 -0.205 0.045

φ11 0.116 0.018 ϕy6 -0.099 0.049

φ12 -0.018 0.008 ϕy7 -0.297 0.021

φ22 0.253 0.044 ϕy8 -0.122 0.020
ϕy9 -0.244 0.019

are in their jobs, the less threat they feel from AIDS; and from b̂2 = 0.096,
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the more that they think they know about AIDS, the more threat they feel

from AIDS. (ii) From γ̂1 = −0.357, more aggressive sex workers seem to feel less

threat from AIDS, and from γ̂2 = 0.308, sex workers who are more worried about

contracting AIDS feel more of a threat from AIDS. (iii) From γ̂3 = −0.151, ξ1
and ξ2 have an interaction effect on ‘threat of AIDS, η’. The basic interpretation

is that the ‘additive’ effect of ‘aggressiveness of the sex worker’ and ‘worry about

contracting AIDS’ is inadequate to account for their relationship with ‘threat of

AIDS’, and an interaction effect has to be added. In different situations, this

interaction term (with a negative sign) has different effects. For example, a less

aggressive sex worker (with a relatively negative ξ1) who is more worried about

contracting AIDS (with a positive ξ2) would feel an increased threat from AIDS

(-0.151 ξ1ξ2 would be positive). From φ̂11, φ̂12, and φ̂22, the estimated correlation

between ξ1 and ξ2 is −0.105. Hence, ‘aggressiveness’ and ‘worry’ are negatively

correlated. From the estimates of ϕx0, ϕx1 and ϕy1, . . . , ϕy9 and their standard

error estimates, we see that a nonignorable missingness mechanism for modelling

the missing data is necessary. This result is consistent with the conclusion that

was obtained by model comparison.
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Appendix I. Implementation of the MH Algorithms

To simulate observations from conditional distribution in relation to (5), let

Π0 = I −Π, ∆H = ∂H(ξi)/∂ξT
i |ξi=0, and

Ω−1
ω = ΛTΨ−1Λ +

(

ΠT
0 Ψ−1

ζ Π0 −ΠT
0 Ψ−1

ζ Γ∆H

−∆T
HΓTΨ−1

ζ Π0 Φ−1 + ∆T
HΓTΨ−1

ζ Γ∆H

)

+ayϕyIIϕ
T
yII + axϕxIIϕ

T
xII ,

where ay = p exp(ϕy0 + ϕT
yImyIi)/(1 + exp(ϕy0 + ϕT

yImyIi))
2, ax = s exp(ϕx0 +

ϕT
xImxIi)/(1 + exp(ϕx0 + ϕT

yImxIi))
2, ϕy = (ϕyI ,ϕyII), where ϕyII is the sub-

vector of ϕy in relation to ωi, ϕx = (ϕxI ,ϕxII), where ϕxII is the subvec-

tor of ϕx in relation to ωi, myIi is the subvector of myij that corresponds to

ϕyI , and mxIi is the subvector of mxij that corresponds to ϕxI . The MH al-

gorithm is implemented as follows. At the (j + 1)st iteration with a ω
(j)
i , a
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new candidate ωi is generated from N(ω
(j)
i , σ2

ωΩω). It is accepted with proba-

bility min{1, p(ωi|yi,xi, zoi, ci, ri,θ,ϕ)/p(ω
(j)
i |yi,xi, zoi, ci, ri,θ,ϕ)}. The vari-

ance σ2
ω is chosen such that the average acceptance rate is about 0.25 or more

(see Gelman, Roberts and Gilks (1995)).

Similarly, the MH algorithm for sampling y(2)mi from p(y(2)mi|xi, zoi, ci,ωi,

ri,θ,ϕ) in (6) is implemented as follows. At the (j+1)st iteration with a current

value y
(j)
(2)mi, a new candidate y(2)mi is generated from the proposal distribution

N(y
(j)
(2)mi, σ

2
yΩym), where Ω−1

ym = Ψ−1
ε(2)mi + cyϕmyϕ

T
my + cxϕmxϕT

mx, with cy =

p exp(ϕy0 +
∑

l∈D̄y
ϕylmyil)/(1 + exp(ϕy0 +

∑

l∈D̄y
ϕylmyil))

2, cx = s exp(ϕx0 +
∑

l∈D̄x
ϕxlmxil)/(1 + exp(ϕy0 +

∑

l∈D̄x
ϕylmyil))

2, ϕmy and ϕmx are subvectors

of ϕy and ϕx corresponding to y(2)mi, respectively, Ψε(2)mi is a submatrix of Ψε

that corresponds to y(2)mi, D̄y is the set of the indexing numbers that corresponds

to the elements in ϕy but not in ϕmy, D̄x is similarly defined, and σ2
y is chosen

as before. The acceptance probability is min{1, p(y(2)mi|xi, zoi, ci,ωi, ri,θ,ϕ)/

p(y
(t)
(2)mi|xi, zoi, ci,ωi, ri,θ,ϕ)}.

To sample ϕy from p(ϕy|Y ,X,C,Z0,F , r) as given in (8), let Ω−1
ϕy =

(p/4)
∑n

i=1 myim
T
yi+V −1

y . The MH algorithm is implemented as follows. At the

(j+1)st iteration with a current value ϕ
(j)
y , a new candidate ϕy is generated from

N [ϕ
(j)
y , σ2

ϕyΩϕy]. It is accepted with the probability min{1, p(ϕy|Y ,X,C,Z0,F ,

r)/p(ϕ
(t)
y |Y ,X,C,Z0,F , r)}.

Sampling ϕx from p(ϕx|Y ,X ,C,Z0,F , r) as given in (9) can be imple-

mented as follows. At the (j+1)st iteration with a current value ϕ
(j)
x , a new candi-

date ϕx is generated from N [ϕ
(j)
x , σ2

ϕxΩϕx], where Ω−1
ϕx = (s/4)

∑n
i=1 mxim

T
xi +

V −1
x , and s is the dimension of x. It is accepted with the probability min{1,

p(ϕx|Y ,X ,C,Z0,F , r)/p(ϕ
(t)
x |Y ,X ,C,Z0,F , r)}. The implementation of the

MH algorithm for sampling from (7) is similar.

Appendix II. Computation of the Bayes Factor

In the development of the path sampling procedure, [Y o,Xo,Zo,C, r] is

augmented with [Y m,Y (1)o,Xm,F ]. Consider the following class of densities,

z(t) =

∫

p(Y ,X ,Zo,C,F , r;θ,ϑ, t)dY mdY (1)odXmdFdθdϑ,

where t is a continuous parameter that belongs to interval [0, 1], and p(Y ,X,Z o,

C,F , r;θ,ϑ, t) is the density of model Mt that links M0 and M1 with the con-

tinuous parameter t, such that Mt = M0 if t = 0, and Mt = M1 if t = 1. By
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reasoning similar to that of Gelman and Meng (1998), it can be shown that

logB10 = log
z(1)

z(0)
=

∫ 1

0
E∗[H(Y ,X ,Zo,C,F , r,θ,ϑ, t)]dt,

where H(Y ,X,Zo,C,F , r,θ,ϑ, t) = d log p(Y ,X ,Zo,C,F , r, t|θ,ϑ)/dt, and

E∗ is the expectation with respect to density p(Y m,Y (1)o,Xm,F ,θ,ϑ|Y o,Xo,
Zo,C, r, t). Let 0 = t0 < t1 < t2 < · · · < tI < tI+1 = 1. Then logB10

can be estimated by ̂logB10 = (1/2)
∑I

l=0(tl+1 − tl)(H̄l+1 + H̄l), where H̄l =

J−1
∑J

j=1H(Y o,Y
(j)
m ,Y

(j)
(1)o,Xo,X

(j)
m ,Zo,C,F

(j), r,θ(j),ϑ(j), tl), and {(Y
(j)
m ,

Y
(j)
(1)o, X

(j)
m ,F (j), θ(j), ϑ(j)) : j = 1, . . . , J} are observations that are simulated

from p(Y m,Y (1)o, Xm, F , θ,ϑ|Y o,Xo,Zo,C, r, tl). In the simulation study,
we take I = 10 and J = 2, 000 after a burn-in of 3, 000 iterations.

Appendix III: Conditional distributions p(Xm|Y ,Xo,Zo,C,F , r,θ, τ ,ϕ)
and p(τ |Xm)

In the simulation study, for independent xi1 and xi2 such that xi1
D
= Bi(1, τ1),

xi2
D
= N [τ2, 1.0], it follows from (7) that

p(xi1|yi, zoi, ci,ωi, ri,θ, τ ,ϕ)

∝ exp
{

−
1

2
(ηi −ΛωG(xi, ξi))

TΨ−1
ζ (ηi −ΛωG(xi, ξi))

+

p
∑

j=1

(rijϕ
T
y myi − log(1 + exp(ϕT

y myi)))

+
s
∑

j=1

(ri,j+pϕ
T
x mxi − log(1 + exp(ϕT

x mxi)))}τ
xi1

1 (1 − τ1)
1−xi1 ,

p(xi2|yi, zoi, ci,ωi, ri,θ, τ ,ϕ)

∝ exp
{

−
1

2
(ηi −ΛωG(xi, ξi))

TΨ−1
ζ (ηi −ΛωG(xi, ξi))

+

p
∑

j=1

(rijϕ
T
y myi − log(1 + exp(ϕT

y myi)))

+

s
∑

j=1

(ri,j+pϕ
T
x mxi − log(1 + exp(ϕT

x mxi))) −
1

2
(xi2 − τ2)

2
}

.

Observation xi1 can be sampled from [xi1|yi, zoi, ci,ωi, ri,θ, τ ,ϕ] as follows:
randomly generate a u from uniform distribution U [0, 1], then xi1 = 0 if u ≤
p̄0/(p̄0 + p̄1) and 1 otherwise, where p̄k = p(xi1 = k|yi, zoi, ci,ωi, ri,θ, τ ,ϕ) for

k = 0, 1.
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The following conjugate prior distributions (Lindley and Smith (1972)) of τ1

and τ2 are used, τ1
D
= Beta(ν1, ν2), τ2

D
= N [τ0

2 , ν3], where ν1, ν2, ν3, and τ0
2 are the

given hyper-parameters. Moreover, it is assumed that τ1 and τ2 are independent.

It can be shown that

[τ1|X]
D
= Beta[ν1 +

n
∑

i=1

xi1, ν2 +n−
n
∑

i=1

xi1], [τ2|X]
D
= N

[

n
∑

i=1
xi2 +

τ0
2

ν3

n+ 1
ν3

,
1.0

n+ 1
ν3

]

.

In our example, αv is the vector of unknown thresholds, and let v = (v1, . . .,

vn), xi = (xi1, xi2)
T , x = (x1, . . . ,xn)T and x+

i = (xi1, vi)
T . Then it follows

from (7) and (12) that

p(xi1|xi2, vi,ωi, ri,θ,Φx,ϕ)

∝ exp
{

−
1

2
(ηi − Bxi − ΓH(ξi))

T Ψ−1
ζ (ηi − Bxi − ΓH(ξi))

+
s
∑

j=1

(ri,j+pϕ
T
x mxi − log(1 + exp(ϕT

x mxi))) −
1

2
x+

i
T
Φ−1

x x+
i

}

,

p(αv,v|x,ωi, ri,θ,Φx,ϕ) ∝

n
∏

i=1

φ(σ1/2
µx [vi − µxi])I(αxi2

,αxi2+1)(vi),

where σµx = b22/ψζ + φ22
x , µxi = [b2(ηi − b1xi1 − ΓH(ξi))/ψζ − φ12

x xi1]/σµx, and

φ11
x , φ

12
x and φ22

x are the elements of Φ−1
x . The prior distribution of Φx is taken

as p(Φx) ∼ IW [R0x, ρ0x, s], where R0x are the given hyperparameters. It can

be shown that p(Φx|X) ∼ IW [
∑n

i=1 xix
T
i + R0x, n+ ρ0x, s].

Appendix IV. Selected Items in the AIDS Data

The number of the variables in the questionnaire is given in parentheses.

y1: How worried are you about getting AIDS? (33)

not at all worried 1/2/3/4/5 extremely worried.

y2: What are the chances that you yourself might get AIDS? (32)

none 1/2/3/4/5 very great.

y3: How much of a threat do you think AIDS is to the health of people? (31)

no threat at all 1/2/3/4/5 very great.

y4: How many times did you have vaginal sex in the last 7 days? (43).

y5: How many ‘hand jobs’ did you give in the last 7 days? (72)

y6: How many ‘blow jobs’ did you give in the last 7 days? (74)

How great is the risk of getting AIDS from the following activities.
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y7: Sexual intercourse with someone you don’t know very well without using a

condom (27h).

y8: Sexual intercourse with someone who has the AIDS virus using a condom?

(27e).

y9: Sexual intercourse with someone who injects drugs? (27i).

The scale for y7, y8 and y9 is: no risk 1/2/3/4/5 great risk.

x1: How long (in months) have you been working at a job where people pay to

have sex with you? (37).

x2: How much do you think you know about the disease called AIDS? (21).

nothing 1/2/3/4/5 a great deal.
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