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Abstract: In studying the relationship between a binary variable and a covariate,

it is very common that the value of the binary variable is missing for some obser-

vations, and subsequently those observations are uncategorised. In this paper we

show that the uncategorised data can be treated as auxiliary information, as in

survey sampling literature. We establish a framework of parametric and nonpara-

metric estimation by the empirical likelihood. The proposed empirical likelihood

estimators improve the efficiency of estimators based on the categorised samples in

the leading order. In a comparative study with the ratio estimator, we show the

reveal robust performance of the empirical likelihood estimators. Applications to

tax-auditing and to genetic studies are discussed.
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1. Introduction

Mixture models have been widely used in medical and psycho-social research

and, more recently, in genetic studies, see for example, Ott (1999). Studies of

finite mixture models date back to at least the late 1800s (Pearson (1893, 1895)).

There is now a vast literature on mixture model inference, among them we re-

fer readers to the books by Titterington, Smith and Makov (1985) and Lindsay

(1995). Statistical analysis of mixture data is not trivial. In general, the max-

imum likelihood estimators do not admit closed forms and numerical methods,

or an EM algorithm, are needed. Theoretical results are more difficult to attain

as the mixture parameter may lie on the boundary of the parameter space. In

addition, some nuisance parameters may be present under the null hypothesis,

hence the null distribution of the likelihood ratio test statistic may be unknown

even when the sample size is large.

Missing or incomplete data are a common phenomenon, see Little and Rubin

(2002) for a comprehensive review. A missing data problem may be treated

as a mixture problem. Consider the following situation: we are interested in

studying the relationship between a binary variable (for example, disease status

or gene mutation status) and an explanatory variable (for example, age or blood
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pressure); for economic or ethical reasons, the binary variable is difficult to record.

If none of the binary variables are known, then we have the standard mixture

problem. On the other hand, if the binary variable is available only for part

of the observations, then we have a type II mixture problem (Hosmer (1973)).

Hosmer (1973) reported a study whose goal was to find the proportion of male

halibut in each age class. The sex of halibut can be determined only by dissection

of the fish. The International Halibut Commission has two sources of data: its

own research cruises and commercial catches. Sex, age and length are available

from fish taken on research cruises; only age and length can be obtained from

commercial catches. Hosmer assumed normality of length distributions in each

sex group in his estimation of the male proportion.

Suppose a population is composed of a mixture of two continuous sub-

populations Π1 and Π2, with distribution functions F1 and F2, and in proportions

π and 1 − π, respectively. A sample of n observations is taken from the mixture

and, for some 0 < ρ < 1, m = [nρ] of these are selected at random and cate-

gorised correctly by further examination. Let x1, . . . , xm1
be data from F1 and

y1, . . . , ym2
be from F2, respectively. Furthermore, denote the unclassified data

as z1, . . . , zl, where l = n − m. If we are interested in some characteristics of Π1

and Π2, for example underlying densities f1 and f2 or means µ1 and µ2, then

the type II mixture problem can be treated as a problem with auxiliary infor-

mation, where the explanatory variables with missing binary status contains the

auxiliary information. Specifically, our interest in this type II mixture problem

is motivated by the following two examples.

Example 1. A tax-auditing application.

Let wi be the size of the ith transaction, with δi = 1 if the transaction is

taxable and 0 otherwise. The money amount wi is known for n transactions

of a company. The quantity T =
∑n

i=1 δiwi, the total taxable amount, is of

interest. In practice, we can only monitor a portion of δi’s by randomly se-

lecting m = [nρ] transactions without replacement from the finite population

{(δ1, w1), . . . , (δn, wn)}. If we assume the finite population comes from a super-

population, then θ =: E(T/n) = E(δw) = πE(w|δ = 1). Under a generalized

linear model, Firth and Bennett (1998) considered robust model-based estima-

tion of θ. Without postulating a parametric model on P (δ = 1|w), we construct

more efficient estimators of the subpopulation mean E(w|δ = 1) and the mixture

proportion π that lead to a more efficient estimator of θ, by using the auxiliary

information.

Example 2. Genetic Applications.

Genetic studies explore the association between gene expression and adverse

clinical outcomes. Although the use of genetic profiling holds great promise for
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the future, currently this technology can only be applied to a small portion of

cancer patients due to high cost and limited access to the tumor cells. Take
prostate cancer as an example. It is known that there is an association between

Her-2 over-expression and high Prostate Specific Antigen(PSA) values. Patients

with the pathologically organ-confined disease were tested for specific genetic

markers, including Her-2 status, along with their PSA values. Due to the high
cost of genetic confirmation, Her-2 status is mostly unknown. However, PSA

values are easily attainable. Clinically, it would be of much interest to find the

mean PSA levels for Her-2 over-expressed and not over-expressed patients.

Motivated by ratio estimation in survey sampling (Cochran (1977)),
Hall and Titterington (1985) gave a ratio-type adjustment to the standard kernel

density estimators of fi for the type II mixture problem. They showed that the

ratio type density estimator has a smaller asymptotic variance than the density

estimators based on the categorised samples. In a related study designed to
improve the estimation of the mixture proportion π, Hall and Titterington (1984)

constructed a sequence of multinomial approximations, and maximum likelihood

estimators of the mixture proportions, by data binning. By allowing the number
of bins to go to infinity, their estimator attains the Cramér-Rao lower bound

asymptotically.

In this paper, we employ empirical likelihood (Owen (1988, 1990)) to improve

estimation efficiency by utilising information contained in the uncategorised sam-
ple. Partial maximum empirical likelihood estimators of µi, Fi(x) and fi(x), and

π are proposed. Compared with estimators based on the categorised samples

only, the proposed estimators improve the efficiency of estimation in the leading

order. Our analysis shows that the empirical likelihood estimators of the den-
sities fi(x) are as efficient as the ratio type estimators of Hall and Titterington

(1984). The attraction of the empirical likelihood proposal is that it can be easily

applied to estimation of other parameters, such as µi, Fi(x) and π, within a single

framework. For estimating µi, we show that the ratio estimator can encounter
difficulties in capturing information contained in the uncategorised sample, since

it may not be able to prevent the larger variance in the uncategorised sample

from adversely affecting the quality of estimation. To make the ratio estima-

tor work, a certain relationship between the mixture mean and variance has to
exist. Indeed, due to the nature of kernel density estimation, this relationship

is present for the density estimation considered in Hall and Titterington (1985).

Our empirical likelihood estimator for π, although it may not attain the Cramér-

Rao lower bound asymptotically, is easily obtained as a by-product of estimating
other parameters. Simulations show that it has comparable finite sample perfor-

mance with the Hall-Titterington estimator.

This paper is organised as follows. Section 2 proposes the empirical likeli-

hood estimators for the means and the mixture proportion. Efficiency of these
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estimators is evaluated in Section 3 in a comparative study with the ratio estima-

tor. Section 4 contains extentions to distribution and density function estimation.

Section 5 reports results from simulation studies. All the proofs are given in the

appendix.

2. Empirical Likelihood Based Estimation

Let µ = πµ1 + (1 − π)µ2 be the mean of the mixture. We start with the

estimation of µi. Extentions to estimation of Fi(x) and fi(x) will be treated in

Section 4.

The empirical likelihood for (µ1, µ2, π) based on the categorised data is

L(µ1, µ2, π) = max
pi,qj

πm1(1 − π)m2

m1
∏

i=1

pi

m2
∏

j=1

qj (1)

subject to the constraints
∑m1

i=1 pi = 1,
∑m2

j=1 qj = 1,
∑m1

i=1 pi(xi − µ1) = 0

and
∑m2

j=1 qj(yj − µ2) = 0. Standard derivations in empirical likelihood (Owen

(1990)) show that the optimal pi and qj are pi = m−1
1 {1 + λ1(xi − µ1)}

−1 and

qj = m−1
2 {1 + λ2(yj − µ2)}, where λi’s are Lagrange multipliers satisfying

m1
∑

i=1

xi − µ1

1 + λ1(xi − µ1)
= 0 and

m2
∑

j=1

yj − µ2

1 + λ2(yj − µ2)
= 0. (2)

The log empirical likelihood ratio is then

`(µ1, µ2, π) = m1 log π + m2 log(1 − π) −
∑

log{1 + λ1(xi − µ1)}

−
∑

log{1 + λ2(yj − µ2)}. (3)

To use the information contained in the uncategorised sample, we maximise

`(µ1, µ2, π) subject to

πµ1 + (1 − π)µ2 = W̄ , (4)

where W̄ is the grand mean based on all data. Substituting µ∗

2 = µ2(µ1, π) =

(W̄ − πµ1)/(1 − π) in (3),

`(µ1, µ
∗

2π) = m1 log π + m2 log(1 − π) −
∑

log{1 + λ1(xi − µ1)}

−
∑

log{1 + λ2{yj − µ2(µ1, π)}}.

Differentiating with respect to µ1, π, we have

∂`

∂µ1
=

m1
∑

i=1

λ1

1 + λ1(xi − µ1)
−

m2
∑

j=1

λ2π
1−π

1 + λ2{yj − µ2(µ1, π)}
= 0 and
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∂`

∂π
=

m2
∑

j=1

λ2(W̄−µ1)
(1−π)2

1 + λ2{yj − µ2(µ1, π)}
+

m1

π
−

m2

1 − π
= 0.

These lead to

λ1m1 −
m2λ2π

1 − π
= 0 and

m1

π
−

m2

1 − π
+ m2λ2

W̄ − µ1

(1−π)2
= 0. (5)

It can be shown that

π̂ = π̃{1 + λ1(W̄ − µ1)}, (6)

where π̃ = m1/(m1 + m2) is the maximum likelihood estimator of π based on

the categorised samples only. We denote the solutions of the above equations as

(µ̂1, µ̂2, π̂), the empirical likelihood estimators of µ1, µ2 and π, respectively.

The empirical likelihood ratio `(µ1, µ2, π) can be written as `1(π)+`2(µ1, µ2)

where `1(π) = m1 log(π) + m2 log(1 − π). Clearly `1 is concave. Let H =

(x(1), x(m1)) × (y(1), y(m2)) where x(1) and x(m1) are the smallest and largest x-

sample values, and y(1) and y(m2) are the smallest and largest y-sample values, re-

spectively. As `2(µ1, µ2) is concave (Hall and La Scala (1990)) on H, `(µ1, µ2, π)

is concave on H×(0, 1). Let D = {w = πµ1+(1−π)µ2 | (µ1, µ2, π) ∈ H×(0, 1)} =

(min{x(1), y(1)},max{x(m1), y(m2)}). The constraint maximising `(µ1, µ2, π) al-

ways admits a unique solution provided W̄ ∈ D. In a finite sample, it may

happen that W̄ is outside D, and then the above maximisation of `(µ1, µ2, π)

does not have a closed form. However, as n gets large, the probability of this

happening goes to zero.

It should be noted that the above formulation is not a full empirical likelihood

as the likelihood is constructed based on the categorized data only. This is based

on considerations of computational and theoretical tractability. More discussion

on this point is provided in Section 6.

3. Efficiency of Empirical Likelihood Estimators

Let σ2
1 = E(X − µ1)

2, σ2
2 = E(Y − µ2)

2, so σ2 = πσ2
1 + (1 − π)σ2

2 + π(µ −

µ1)
2/(1 − π) is the variance of the mixture population. Moreover, let T0 =

m−1(m1X̄ + m2Ȳ )− W̄ , which is Op(n
−1/2). Derivations given in the Appendix

show that

µ̂1 = X̄ − σ−2σ2
1T0 + Op(n

−1), (7)

µ̂2 = Ȳ − σ−2σ2
2T0 + Op(n

−1) and (8)

π̂ = π̃{1 + σ−2T0(µ − µ1)} + Op(n
−1). (9)

Hence, the empirical likelihood utilises the auxiliary information by adding cor-

rection terms of Op(n
−1/2) to the estimators X̄, Ȳ and π̃ based solely on the

categorised samples.
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Derivations given in the appendix show that

Var (µ̂1) = Var (X̄) − n−1(1 − ρ)
σ4

1

σ2ρ
+ O(n−2), (10)

Var (µ̂2) = Var (Ȳ ) − n−1(1 − ρ)
σ4

2

σ2ρ
+ O(n−2). (11)

From (10) and (11), we see a reduction of variance from utilising information

contained in the uncategorised sample. In particular, the smaller the ρ is, the
larger the variance reduction. The relative variance reduction also increases as ρ
decreases.

In survey sampling, a widely used adjustment to a “standard” estimator is
the ratio estimator. It is well known that ratio estimation performs well if the
explanatory variable and the response are highly correlated. We now investigate

its performance in the case of mean estimation.
Let µ̃ = (m1X̄ + m2Ȳ )/(m1 + m2) be the mean of the categorised samples.

A ratio type adjustment to X̄ is µ̂1r = X̄W̄ /µ̃. It can be shown that

µ̂1r = X̄
{

1 − (1 − ρ)(
m

m2
)2

T0

µ

}

+ Op(n
−1). (12)

The same technique that yields (10) and (11) gives, by ignoring terms of
o(n−1),

Var (µ̂1,r) = Var (X̄)
{

1 −
(1 − ρ)µ1π

µ

}2
+ n−1(1 − ρ)2µ2

1

σ2

1−ρ +
(1−π)σ2

2

ρ

µ2
.

This indicates that the ratio adjustment does not necessarily lead to a variance
reduction, and a variance inflation is possible when µ is close to zero. Indeed, the

larger variance in the uncategorised sample can penetrate into the estimator and
make things worse. A key component of the ratio adjustment is T0/µ, as revealed
at (12). Equation (A.7) in the Appendix shows that Var (T0) = n−1(1 − ρ)σ2/ρ+

O(n−2), which means Var (T0/µ) ∼ n−1σ2/µ2. To control the variance of this
correction term, we either need a relationship between µ and σ2 in order to cancel
out the µ appeared in the denominator or µ has to be away from zero, and this

may not be satisfied in general. However, the relationship does exists in the
case of the nonparametric density estimation considered in Hall and Titterington
(1985), due to the nature of kernel density estimation. A underlying cause for

the problem with the ratio estimator, suggested by a referee, is that it is not
invariant under the location shift transformation.

In contrast, the correction term in the empirical likelihood adjustment is

T0/σ
2 in (7) and (8). Now Var (T0/σ

2) ∼ n−1σ−2, which indicates a more com-
fortable situation than the ratio adjustment, as σ2 is automatically away from

zero.
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The empirical likelihood estimation of the mixture proportion π is more

efficient too. Indeed, based on derivations shown in the appendix,

Var (π̂) = Var (π̃)

[

1 −
(µ − µ1)

2π(1 − ρ)

(1 − π)σ2

]

+ O(n−2). (13)

As (µ−µ1)
2π(1−ρ)/{(1−π)σ2} ∈ [0, 1), a variance reduction is registered for π̂.

The empirical likelihood estimator for π is “parametric” in the sense that

it is a by-product of the inference for the means. This is shown in (13) where

the variance reduction depends on (µ − µ1)
2/σ2. Hall and Titterington (1984)

proposed an nonparametric estimator, denoted as π̂HT , by binning the domain

of the distribution and maximizing a multinomial likelihood. The asymptotic

variance of their estimator is

Var (π̃){1 − π(1 − ρ)(1 − π)−1}
{

∫

f2
1

f
− 1

}

,

which converges to the Cramér-Rao lower bound as the number of bins goes to

infinity. A simulation study reported in Section 5 reveals that our estimator π̂

has similar performance.

4. Extensions

The theory developed in the previous section can be readily extended to

other parameters of Πi. In this section, we consider the tax-auditing problem

and the nonparametric estimation of the distribution and density functions of Πi

respectively.

4.1. Application to the tax-auditing example

As outlined in the introduction, the parameter of interest is θ = πµ1, where

µ1 = E(w|δ = 1). An empirical likelihood estimator of θ is θ̂ = π̂µ̂1 by plugging-

in π̂ and µ̂1. An estimator that only uses the categorised sample is θ̃ = π̃X̄ .

Since θ̂ = πµ1 + µ1(π̂ − π) + π(µ̂1 − µ1) + (π̂ − π)(µ̂1 − µ1), it is easy to see

that E(π̂µ̂1) = πµ1 + O(n−1), implying that the bias is negligible. The variance

of θ̂ is

Var (θ̂) = µ2
1Var (π̂) + π2Var (µ̂1) + 2µ1π Cov (π̂, µ̂1) + o(n−1). (14)

From (7) and (9),

Cov (π̂, µ̂1) = (µ − µ1)πσ−2 Cov (T0, X̄) − (µ − µ1)πσ2
1σ

−4Var (T0) + o(n−1)

= (µ−µ1)π(1−ρ)σ2
1σ−2−(µ−µ1)π(1−ρ)σ2

1σ−2+o(n−1) = o(n−1),
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which mirrors the fact that Cov (π̃, X̄) = 0. This together with (10) and (13)

leads to

Var (θ̂) = µ2
1Var (π̂) + π2Var (µ̂1) + o(n−1).

Thus θ̂ has a smaller variance than θ̃, as both π̂ and µ̂ have smaller variances

than those of π̃ and X̄ , respectively.

4.2. Distribution function estimation

Let Fi be the distribution functions of Πi, i = 1, 2, and F = πF1 +(1−π)F2

be the mixture distribution function. Conventional estimators of Fi and F at a

fixed x are the empirical distribution functions:

F1,m1
(x) = m−1

1

m1
∑

i=1

I(Xi ≤ x), F2,m2
(x) = m−1

2

m2
∑

j=1

I(Yj ≤ x) and

Fn(x) = n−1
{

m1
∑

i=1

I(Xi ≤ x) +

m2
∑

j=1

I(Yj ≤ x) +

l
∑

k=1

I(Zk ≤ x)
}

,

where I(·) is the indicator function.

Since F1(x), F2(x) and F (x) are the means of I(Xi ≤ x), I(Yj ≤ x) and

I(Zk ≤ x), respectively, the scheme established in Section 2 is applicable for set-

ting up `{F1(x), F2(x), π}, the empirical likelihood for (F1(x), F2(x), π). Let

F̂i(x) be the estimators of Fi(x) that minimize `{F1(x), F2(x), π} subject to

πF1(x) + (1 − π)F2(x) = Fn(x). Then from the results developed in Section

3, we have, after ignoring terms of O(n−2), for i = 1 and 2,

Var {F̂i(x)} = Var {Fi,mi
(x)} − n−1(1 − ρ)F 2

i (x)
{1 − Fi(x)}2

ρσ2(x)
,

where σ2(x) = πF1(x){1−F1(x)}+ (1−π)F2(x){1−F2(x)}+π(1−π){F1(x)−

F2(x)}2. This provides a variance reduction of order n−1 from the conventional

estimators Fi,mi
(x).

4.3. Density estimation

Let fi be the probability density functions of Πi i = 1, 2, and f = π1f1 +

(1− π1)f2 be the density of the mixture. Let K(·) be a kernel function and take

Kh(u) = h−1K(u/h) where h is a smoothing bandwidth such that h → 0 as

n → ∞. Standard kernel density estimator of fi and f based on the categorised

samples and the entire sample are, respectively,

f̃1(x) = m−1
1

m1
∑

i=1

Kh(x − Xi) and f̃2(x) = m−1
2

m2
∑

j=1

Kh(x − Yj),
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f̂?(x) = n−1{

m1
∑

i=1

Kh(x − Xi) +

m2
∑

j=1

Kh(x − Yj) +

l
∑

k=1

Kh(Zk − x)}.

The same bandwidth h is used in the above formulation of density estimators,

which is designed to reduce the variation of f̃1(x) or f̃2(x) one at a time. For

instance, if the aim is to reduce the variance of f̃1(x), h should be chosen based

on the first categorised sample with the aim of minimising the error of estimation

of f1(x). Methods for choosing h are discussed in Silverman (1986) and Wand

and Jones (1995).

Let µ1(x) = E{Kh(x−Xi)} and µ2(x) = E{Kh(x−Yj)}. Standard results in

kernel density estimation show that µi(x) = fi(x)+O(h2) for i = 1 and 2. So, up

to an error of O(h2), f1(x) and f2(x) can be regarded as the mean of Kh(x−Xi)

and Kh(x − Yj), respectively. Hence `{f1(x), f2(x), π), the empirical likelihood

for (f1(x), f2(x), π) based on the categorised samples, can be constructed as for

µi in (3). Let (f̂1(x), f̂2(x), π̂) be the maxima of `{f1(x), f2(x), π) subject to

πf1(x) + (1 − π)f2(x) = f̂?(x). (15)

Then, the results given in Section 3 are valid. In particular, let R(K) =
∫

K2(u)

du. From results on kernel density estimation we have σ2
i = h−1R(K)fi(x){1 +

O(h)} for i = 1 and 2, and

σ2 = πσ2
1+(1−π)σ2

2+π(1−π)−1{f(x)−f1(x)}2 = h−1R(K)f(x){1+o(1)}, (16)

which indicates that σ2 is proportional to the mixture mean µ = f(x). Moreover,

we have the following analogies of (10) and (11):

Var {f̂i(x)} = Var {f̃i(x)} − (nh)−1 (1 − ρ)f 2
i (x)

ρf(x)
+ o{(nh)−1}, i = 1, 2.

The amount of variance reduction is (nh)−1(ρ−1 − 1)R(K)f 2
i (x)/f(x), which is

the same as that achieved by the Hall and Titterington (1985) ratio estimator.

The reason for the success of the ratio adjustment here is the relationship be-

tween σ2 and µ as revealed in (16). Although the proposed empirical likelihood

estimators for fi(x) does not improve the Hall-Titterington estimator, it is a

bona fide density, which is not the case for the ratio estimator.

5. Simulation Results

In this section, we present simulation results designed to evaluate the per-

formance of the empirical likelihood estimators. First we consider estimation of

the mixture proportion π. The empirical likelihood estimator π̂ was compared

with the naive estimator π̃ = m1/(m1 + m2) and π̂HT . We used both eight and
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four bins when calculating π̂HT . Since four and eight bins gave similar results,

only the results for eight bins are reported.

For estimation of the means µi, the empirical likelihood estimators µ̂i were
compared with X̄ or Ȳ , the sample means based on the categorised data, and

the ratio estimators µ̂1r or µ̂2r.

For n = 400 and m = 50 or 100, two simulation models were examined: a

normal mixture πN(0, 1)+(1−π)N(µ, 1), and an exponential mixture π exp(1)+

(1 − π) exp(1/µ) for different combination of π and µ. As the simulation results

for m = 50 and m = 100 share the same pattern, we report only those for m = 50.

Tables 1 to 4 summarise the means and variances of the estimators considered
in this paper based on 1,000 replications.

Table 1. Mean (variance) of different estimators discussed in Section 5 based
on 1,000 simulations, n = 400, m = 50.

Normal mixture model πN(0, 1) + (1 − π)N(µ, 1).

Estimators π = 0.2, µ = 1.0 π = 0.5, mu = 1.0 π = 0.8, µ = 1.0

π̃ 0.20070 (0.00338) 0.50434 (0.00477) 0.80148 (0.00334)

π̂HT 0.20090 (0.00345) 0.50370 (0.00474) 0.80012 (0.00337)
π̂ 0.20057 (0.00301) 0.50373 (0.00399) 0.79983 (0.00304)

X̄ 0.00466 (0.10225) -0.00265 (0.03856) -0.01141 (0.02333)

Ȳ 0.99822 (0.025013) 1.00155 (0.03747) 0.97646 (0.11510)

µ̂1r -0.01864 (0.11414) -0.05398 (0.08377) -0.16230 (23.68682)

µ̂2r 1.01105 (0.01506) 1.08614 (0.13990) 1.93026 (882.06761)
µ̂1 -0.00139 (0.09234) -0.00554 (0.02622) 0.00096 (0.01024)

µ̂2 1.00190 (0.01020) 1.01017 (0.02526) 0.99409 (0.10116)

Table 2. Mean (variance) of different estimators discussed in Section 5 based
on 1,000 simulations, n = 400, m = 50.

Normal mixture model πN(0, 1) + (1 − π)N(µ, 1).

Estimators π = 0.2, µ = 2.0 π = 0.5, µ = 2.0 π = 0.8, µ = 2.0

π̃ 0.19890 (0.00315) 0.50278 (0.00511) 0.79790 (0.00303)

π̂HT 0.20020 (0.00207) 0.50251 (0.00300) 0.79946 (0.00219)
π̂ 0.20018 (0.00200) 0.50286 (0.00282) 0.80005 (0.00203)

X̄ -0.00330 (0.09825) 0.00827 (0.04334) 0.00506 (0.02719)

Ȳ 2.00354 (0.02704) 2.00489 (0.04111) 1.99994 (0.10673)

µ̂1r -0.01386 (0.09848) -0.01379 (0.05090) -0.05068 (0.69871)
µ̂2r 2.00954 (0.02739) 2.06969 (0.16605) 2.28770 (27.04612)

µ̂1 -0.01949 (0.09220) -0.00150 (0.03350) -0.00412 (0.01484)

µ̂2 2.00538 (0.01483) 2.01388 (0.03320) 2.00598 (0.09576)
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Table 3. Mean (variance) of different estimators discussed in Section 5 based

on 1,000 simulations, n = 400, m = 50.

Exponential mixture π exp(1) + (1 − π) exp(1/µ).

Estimators π = 0.2, µ = 1.5 π = 0.5, µ = 1.5 π = 0.8, µ = 1.5

π̃ 0.20072 (0.00316) 0.50018 (0.00504) 0.80112 (0.00326)

π̂HT 0.20097 (0.00369) 0.49948 (0.00578) 0.80079 (0.00396)

π̂ 0.20086 (0.00320) 0.49988 (0.00489) 0.80092 (0.00336)
X̄ 0.99747 (0.10553) 1.00160 (0.04090) 0.99704 (0.02759)

Ȳ 1.49971 (0.06159) 1.48541 (0.09091) 1.51225 (0.25036)

µ̂1r 1.00731 (0.10081) 1.00960 (0.03207) 0.99951 (0.01152)

µ̂2r 1.50181 (0.01344) 1.48689 (0.04110) 1.50477 (0.17712)
µ̂1 1.00254 (0.10598) 1.00975 (0.03441) 0.99880 (0.01271)

µ̂2 1.50316 (0.01414) 1.48722 (0.04416) 1.50258 (0.19169)

Table 4. Mean (variance) of different estimators discussed in Section 5 based
on 1,000 simulations, n = 400, m = 50.

Exponential mixture π exp(1) + (1 − π) exp(1/µ).

Estimators π = 0.2, µ = 4.0 π = 0.5, µ = 4.0 π = 0.8, µ = 4.0

π̃ 0.20050 (0.00316) 0.49846 (0.00492) 0.80014 (0.00313)
π̂HT 0.20133 (0.00327) 0.49836 (0.00411) 0.79868 (0.00274)

π̂ 0.20000 (0.00293) 0.49860 (0.00399) 0.79540 (0.00255)

X̄ 1.00452 (0.11028) 1.00917 (0.04449) 1.00243 (0.025179)

Ȳ 4.02575 (0.41346) 4.06645 (0.69684) 3.95981 (1.68587)

µ̂1r 1.01754 (0.12342) 1.02014 (0.06266) 1.03437 (0.04107)
µ̂2r 4.01697 (0.09403) 4.01916 (0.23856) 3.95310 (0.93674)

µ̂1 1.00184 (0.10617) 1.00688 (0.04349) 1.01770 (0.02569)

µ̂2 4.02037 (0.09295) 4.04098 (0.24162) 3.99416 (0.97172)

For estimation of π, π̂ and π̂HT had overall similar performance and both

had smaller variance than the naive estimator π̃, as predicted by the theory.

When the two populations were well separated from each other, π̂HT was slightly

better than π̂. On the other hand, if the two populations were close, the proposed

empirical likelihood estimator was slightly better.

For the estimation of means, the empirical likelihood estimator was the clear

winner among the three estimators. Most evidently, the ratio estimators per-

formed worse than X̄ or Ȳ in some cases. It is significant that the variance of

µ̂2r is out of control in the normal mixture model when π = 0.8. The situation

is a little better when m is increased to 100 and n is still 400.
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6. Discussions

In this paper, empirical likelihood has been used to improve estimation effi-

ciency in a type II mixture model. The proposed empirical likelihood formulation

is effectively a partial likelihood based on the categorised sample. The informa-

tion in the uncategorized sample is utilised via a constraint involving the grand

mean of the entire sample. Two referees have pointed out an alternative full

likelihood formulation which adds an extra component Πn−m
l=1 {πpi + (1 − π)qi}

to (1) after indexing pi from 1 to m1 + l and qj from 1 to m2 + l, respectively.

This would lead to more efficient estimators. Considerations behind our choice

are easier computations and tractable theoretical analyses.

There is a potential bias for the sampling methods discussed in this paper if

an unequal weight sampling strategy is used. This would likely be the case for the

tax-auditing problem, since large transactions are more likely to be monitored.

We are exploring empirical likelihood methods to adjust for this sampling bias.
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Appendix. Technical Details

Derivations of (7), (8) and (9). Let η = m−1
1

∑m1

i=1(Xi − µ1)
2 and ξ =

m−1
2

∑m2

i=1(Yi − µ2)
2. A standard proof in empirical likelihood, for instance that

given in Owen (1990), leads to λi = Op(n
−1/2) for i = 1 and 2. Inverting (2),

λ1 = (X̄ − µ̂1)η
−1 + Op(n

−1) and λ2 = (Ȳ − µ̂2)ξ
−1 + Op(n

−1). (A.1)

From (6), (1 − π̂)/π̂ = m−1
1 m2{1 − λ1(W̄ − µ̂1)(m1 + m2)/m2} + Op(n

−1). This

and (5) imply

λ2 = λ1 + Op(n
−1). (A.2)

Let T = Ȳ + m1m
−1
2 X̄ − (m1m

−1
2 + 1)W̄ . Clearly, T0 = m2m

−1T . From (A.1)

and the fact that µ̂2 = (W̄ − π̂µ̂1)/(1 − π̂),

Ȳ −µ̂2 = {Ȳ + m1m
−1
2 µ̂1 − (m1m

−1
2 + 1)W̄ + m1m

−1
2 λ1(W̄ − µ̂1)(µ̂1 − Ȳ )}

×{1 − m1m
−1
2 λ1(W̄ − µ̂1)}

−1

= T − m1m
−1
2 {1 + (m1m

−1
2 + 1)(W̄ −X̄)2η−1}(X̄−µ̂1)+Op(n

−
3

2 ). (A.3)

From (A.1), (A.2) and (A.3), by ignoring terms of Op(n
−1),

(X̄−µ̂1)η
−1 =

[

T−m1m
−1
2 {1+(m1m

−1
2 + 1)(W̄−µ̂1)

2η−1}(X̄−µ̂1)
]

ξ−1. (A.4)
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Let α̂ = ξ + m1m
−1
2 η + m1m

−1
2 (m1m

−1
2 + 1)(W̄ − X̄)2. Then (A.4) implies

X̄ − µ̂1 = α̂−1ηT + Op(n
−1) = σ−1σ2

1T0 + Op(n
−1),

where α = σ2
2 + πσ2

1/(1 − π) + π(µ− µ1)
2/(1 − π)2 produces is the leading order

term of E(α̂). This, and the fact that α = σ2/(1 − π), produces (7). A similar

exercise leads to (8). From (A.1), λ1 = α−1T + OP (n−1). This and (6) imply

(9).

Derivations of (10) and (11). We first need to derive Var (T ). Let Z̄ be the

average of the uncategorised sample and T = n−1{m1m
−1
2 X̄ + Ȳ − mm−1

2 Z̄}.

Then

E(T |m1,m2) = n−1(m1m
−1
2 + 1)(π̃ − π)(µ1 − µ2) + Op(n

−1), (A.5)

Var (T |m1,m2)=
l

nm2
{α−(1−

l

n
)m1m

−1
2 (m1m

−1
2 +1)(µ−µ1)

2}+Op(n
−2). (A.6)

Then E(T ) = O(n−1). Since µ − µ1 = −(1 − π)(µ1 − µ2),

Var (T ) = Var {E(T |m1,m2)} + E{Var (T |m1,m2)}

=
(1 − ρ)2(µ1 − µ2)

2π

(1 − π)ρn
+

(1 − ρ)α

(1 − π)ρn
−

(1 − ρ)2π(µ − µ1)
2

(1 − π)3ρn
+ O(n−2)

= n−1 (1 − ρ)σ2

(1 − π)2ρ
+ O(n−2). (A.7)

A by-product of this is that T = Op(n
−1/2) as claimed.

The variance of µ̂1 is Var (µ̂1) = E{Var (µ̂1|m1,m2)}+ Var {E(µ̂1|m1,m2)}.

From (7) and (A.5)

E(µ̂1|m1,m2) = µ1 − n−1σ2
1α

−1l(m1m
−1
2 + 1)(π̃ − π)(µ1 − µ2) + O(n−2). (A.8)

Thus, by ignoring the terms of O(n−2) and noticing µ1−µ2 = −(µ−µ1)/(1−π),

Var {E(µ̂1|m1,m2)} = σ4
1(µ1 − µ2)

2Var {α−1(
l

n
)(m1m

−1
2 + 1)(π̃ − π)}

= σ4
1(µ − µ1)

2(1 − π)−3(1 − ρ)2α−1
0 πρ−1n−1, (A.9)

where α0 = σ2
2 + π(1 − π)−1σ2

1 + π(1 − π)−2(µ − µ1)
2.

From (A.6) and the fact that Cov (X̄, T |m1,m2) = (l/n)σ2
1/m2,

Var (µ̂1|m1,m2)

=
σ2

1

m1
+σ4

1α
−2{

l

nm2
}{α−(1−

l

n
)m1m

−1
2 (m1m

−1
2 + 1)(µ − µ1)

2} − 2σ4
1

α−1l

nm2

=
σ2

1

m1
−

σ4
1α

−1l

nm2
− σ4

1α
−2(1 −

l

n
)m1m

−1
2 (m1m

−1
2 + 1)(µ − µ1)

2.
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Therefore,

E{Var (µ̂1|m1,m2)} = Var (X̄)−
(1−ρ)σ4

1

α0ρ(1−π)n
−

(1−ρ)2π(µ̂1−µ̂2)
2σ4

1

(1−π)ρα2
0n

+O(n−2).

This together with (A.9) gives (10). A similar analysis leads to (11).

Derivation of (13). Recall from (9) that π̂ = π̃ + π̃α̂−1T (W̄ − X̄) + Op(n
−1).

Then

Var (π̂) = Var (π̃) + 2Cov (π̃, π̃T )
µ − µ1

α0
+ Var (π̃T )

(µ − µ1)
2

α2
0

+ O(n−2).

From (A.5) and (A.6),

Cov (π̃, π̃T ) = Cov {π̃, π̃E(T |m1,m2)}

= Cov {π̃, π̃(
l

n
)(m1m2−1 + 1)(π̃ − π)(µ1 − µ2)}

= n−1π(1 − ρ)(µ1 − µ2)
Var (π̃)

1 − π

= −n−1π2(1 − ρ)(µ − µ1)

(1 − π)ρ
+ O(n−2), (A.10)

Var (π̃T ) = Var {π̃E(T |m1,m2)} + E{Var (T |m1,m2)}

= Var {π̃(
l

n
)(m1m

−1
2 + 1)(π̃ − π)(µ1 − µ2)}

+ E

[

π̃2
{ lα

nm2
− l2m2(π̃ − π)2

(µ1 − µ2)
2

n2m2
2

}

]

=
π2(1 − ρ)α0

(1 − π)ρn
+ O(n−2). (A.11)

Combining (A.11) with (A.10), gives (13).
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