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Abstract: The leading term in the normal approximation to the distribution of U -

statistics of degree 2 is derived. This result is applied to establish the exact rate

of convergence in the Central Limit Theorem for U -statistics and to obtain the

one-term Edgeworth expansion for the distribution function. Analogous results for

more general U -type statistics are also considered.
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1. Introduction and Main Results

Let X,X1, . . . , Xn be a sequence of independent and identically distributed

(i.i.d.) random variables. Let h(x, y) be a real-valued Borel measurable function,

symmetric in its arguments with Eh(X1, X2) = 0. For n ≥ 2, a U -statistic of

degree 2 with kernel h(x, y) is defined by

Un =
(n

2

)−1 ∑

1≤i<j≤n

h(Xi, Xj). (1)

Write g(x) = Eh(x,X1) and φ(x, y) = h(x, y)−g(x)−g(y). The statistic Un may

be represented as

Un =
2

n

n
∑

j=1

g(Xj) +
(n

2

)−1 ∑

1≤i<j≤n

φ(Xi, Xj) := U1n + U2n. (2)

See, for example, Lee (1990, p.25).

Throughout we assume that Eg2(X1) = 1. This assumption implies that√
nU1n/2 is a standard sum of non-degenerate iid random variables and its dis-

tribution may be approximated by a standard normal distribution Φ. Indeed,

the classical result (see Hall (1982, p.11), for example) shows that

sup
x

∣

∣

∣
P
(

√
nU1n

2
≤ x

)

− Φ(x)
∣

∣

∣
+ n− 1

2 � δn + n− 1
2 . (3)
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Here and below we define

δn = Eg2(X1)I(|g(X1)|≥√
n) + n− 1

2

∣

∣Eg3(X1)I(|g(X1)|≤√
n)

∣

∣

+n−1Eg4(X1)I(|g(X1)|≤√
n),

and we say that two sequences of positive numbers {an} and {bn} satisfy an � bn

if 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞. Note that (3) yields concise

results about the rate of convergence in the Central Limit Theorem.

In past decades, there has been considerable interest in stating the accuracy

of the normal approximation to the distribution of
√

nUn/2 in a manner that

is similar to (3). In increasing generality, the upper bound for the accuracy of

the normal approximation has been established in a number of papers. We men-

tion only Bickel (1974), Chan and Wierman (1977), Callaert and Janssen (1978),

Borovskikh (1996, 2001), Alberink and Bentkus (2001, 2002) and Wang (2002).

The result given by Borovskikh (2001) (also see Alberink and Bentkus (2001)),

which is closest to the upper bound in (3), states that if E|h(X1, X2)|5/3 < ∞,

then

sup
x

∣

∣

∣
P
(

√
nUn

2
≤ x

)

− Φ(x)
∣

∣

∣

≤ A
[

Eg2(X1)I(|g(X1)|≥√
n) + n− 1

2 E|g(X1)|3I(|g(X1)|≤√
n)

]

+ O(n− 1
2 ), (4)

where A is an absolute positive constant.

In contrast to rich results on the upper bound, there are only a few pa-

pers concerned with the lower bound for the accuracy of the normal approxima-

tion to the distribution of
√

nUn/2. Maesono (1988, 1991) obtained a lower

bound of order O(n−1/2) under the condition Eh4(X1, X2) < ∞. Only as-

suming the existence of Eh2(X1, X2), Wang (1992) derived a result for the

distribution of
√

nUn/2 that is similar to (3). In a slightly different problem

Bentkus, Götze and Zitikis (1994) proved that the best bound of order O(n−1/2)

in (4) cannot be obtained under E|h(X1, X2)|5/3−ε < ∞ for any ε > 0.

In the present paper we give the leading term in a normal approximation

to the distribution of
√

nUn/2. Using the leading term we derive the exact

convergence rate in the Central Limit Theorem for U -statistics, up to terms of

order O(n−1/2), under E|h(X1, X2)|5/3 < ∞. As mentioned above, to get the

terms of order O(n−1/2), the latter moment condition is the best possible. We

also show that, if in addition E|g(X1)|3 < ∞, the leading term transforms into

the conventional first term in an Edgeworth expansion of the distribution of

U -statistics.

Our main result is the following.
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Theorem 1.1. If E|h(X1, X2)|5/3 < ∞, then

sup
x

∣

∣

∣
P
(

√
nUn

2
≤ x

)

− Φ(x) −L1n(x) + L2n(x)
∣

∣

∣
= o(δn) + O(n− 1

2 ), (5)

where δn is defined as in (3),

L1n(x) = n

[

EΦ
{

x − g(X1)√
n

}

− Φ(x)

]

− 1

2
Φ(2)(x),

L2n(x) =
Φ(3)(x)

2
√

n
E
{

g(X1)g(X2)φ(X1, X2)I
(|φ(X1 ,X2)|≤n

3
2 )

}

.

If in addition g(X1) is nonlattice, then the right-hand side of (5) may be replaced

by o(δn + n−1/2).

As is well-known, δn → 0, as n → ∞, and

sup
x

|L1n(x)| � δn, (6)

(see, for example, Chapter 2 of Hall (1982)). We show in Section 3 that

sup
x

|L2n(x)| = o(δn) + O(n− 1
2 ). (7)

Together, (5)−(7) give concise results about the rate of convergence in the Central

Limit Theorem for U -statistics. Indeed, if E|h(X1, X2)|5/3 < ∞, then

sup
x

∣

∣

∣
P
(

√
nUn

2
≤ x

)

− Φ(x)
∣

∣

∣
+ n− 1

2 � δn + n− 1
2 . (8)

Note that (8) refines (4) even for the upper bound. One application of (8) is

to characterise the rate of convergence. The following theorem gives examples.

Generalizations of the examples are readily derived, refer to Theorems 2.9 and

2.10 of Hall (1982) for more details.

Theorem 1.2. Assume E|h(X1, X2)|5/3 < ∞. If 0 ≤ r < 1/2, then

∞
∑

n=1

nr−1 sup
x

∣

∣

∣
P
(

√
nUn

2
≤ x

)

− Φ(x)
∣

∣

∣
< ∞ (9)

if and only if E|g(X1)|2(r+1) < ∞. If 0 < r < 1/2, then

sup
x

∣

∣

∣
P
(

√
nUn

2
≤ x

)

− Φ(x)
∣

∣

∣
= O(n−r) (10)

if and only if Eg2(X1)I(|g(X1)|≥x) = o(x−2r).
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It is also interesting to note that the effect of L2n(x) in (5) on the rate of

convergence appears only when δn = O(n−1/2). This can be easily seen from

(7) and the following corollary, which provides the main result of Jing and Wang

(2003), about an Edgeworth expansion of the distribution of U -statistics under

optimal conditions. Corollary 1.1 below also is an alternative to Theorem 5

of Borovskikh (1998) with m = 2, where the Edgeworth expansion is obtained

under lim sup|t|→∞ |Eeitg(X1)| < 1 instead of the condition that the distribution

of g(X1) is nonlattice. Borovskikh (1998) also uses a weaker moment condition

on the kernel h(x, y).

Corollary 1.1. Assume that E|h(X1, X2)|5/3 < ∞, E|g(X1)|3 < ∞, and the

distribution of g(X1) is nonlattice. Then, as n → ∞,

sup
x

∣

∣

∣

∣

P
(

√
nUn

2
≤ x

)

− Fn(x)

∣

∣

∣

∣

= o(n− 1
2 ), (11)

where Fn(x) = Φ(x) − (Φ(3)(x)/(6
√

n))
{

Eg3(X1) + 3Eg(X1)g(X2)h(X1, X2)
}

.

The proof of all results will be given in Section 3. To conclude this section

we mention that the rate of convergence in the Central Limit Theorem for U -

statistics depends on the moment conditions for both h(X1, X2) and g(X1). If

only E|h(X1, X2)|p < ∞, where 4/3 < p < 5/3, the term of order O(n−1/2) in

(8) has to be replaced by a term of lower order. This follows from Theorem 2.1

in the next section, which gives an extension of Theorem 1.1 to U -type statis-

tics. Throughout the paper we denote constants by A,A1, A2, . . ., which may be

different at each occurrence.

2. Extensions to U -type Statistics and L-statistics

Let α(x) and β(x, y) be some real-valued Borel measurable functions of

x and y. Furthermore, let Vn ≡ Vn(X1, . . . , Xn) be real-valued functions of

{X1, . . . , Xn}. Define a U -type statistic by

Tn = n− 1
2

n
∑

j=1

α(Xj) + n− 3
2

∑

i6=j

β(Xi, Xj) + Vn. (12)

In this section we derive the leading term in a normal approximation to the

distribution of Tn under mild conditions, which gives an extension of Theorem

1.1.

Theorem 2.1. Assume that

(a) Eα(X1) = 0 and Eα2(X1) = 1;

(b) E[β(X1, X2)|Xi] = 0, i = 1, 2, and E|β(X1, X2)|p < ∞ for 4/3 < p ≤ 5/3;
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(c) P (|Vn| ≥ C0n
−1/2) ≤ C1n

−1/2 for some constants C0 > 0 and C1 > 0.

Then, as n → ∞,

sup
x

∣

∣

∣
P
(

Tn ≤ x
)

− Φ(x) − L̃1n(x) + L̃2n(x)
∣

∣

∣

= o(δ1n + n
4−3p

2 ) + O(n− 1
2 ), (13)

where

δ1n = Eα2(X1)I(|α(X1)|≥√
n) + n− 1

2

∣

∣Eα3(X1)I(|α(X1)|≤√
n)

∣

∣

+n−1Eα4(X1)I(|α(X1)|≤√
n),

L̃1n(x) = n

[

EΦ
{

x − α(X1)√
n

}

− Φ(x)

]

− 1

2
Φ(2)(x),

L̃2n(x) =
Φ(3)(x)

2
√

n
E
{

α(X1)α(X2)
[

β(X1, X2)I
(|β|≤n

3
2 )

+ β(X2, X1)I
(|β|≤n

3
2 )

]}

.

If the condition (c) is replaced by (c′) P
{

|Vn| ≥ o(n−1/2)
}

≤ o(n−1/2), and in

addition α(X1) is nonlattice, then the right-hand side of (13) may be replaced by
o(δn + n(4−3p)/2).

Note that the U -type statistic Tn defined by (12) is quite general. We next
consider an application to L-statistics. Let X1, . . . , Xn be i.i.d. real random
variables with distribution function F . Define Fn to be the empirical distribution,

i.e., Fn(x) = n−1
∑n

j=1 I{Xi ≤ x}, where I{·} is the indicator function. Let J(t)
be a real-valued function on [0, 1] and T (G) =

∫

xJ(G(x)) dG(x). The statistic

T (Fn) is called an L-statistic (see Chapter 8 of Serfling (1980)). Write

σ2 ≡ σ2(J, F ) =

∫ ∫

J (F (s)) J (F (t)) F (min{s, t}) [1 − F (max{s, t})] dsdt,

and define the distribution function of the standardized L-statistic T (Fn) by

Hn(x) = P
(√

nσ−1(T (Fn) − T (F )) ≤ x
)

.

As is well-known, Hn(x) converges to Φ(x) uniformly in x provided E|X1|2 <
∞, σ2 > 0, and some smoothness conditions on J(t) hold, see Serfling (1980) and

Helmers, Janssen and Serfling (1990) for example. The upper bounds for the
rate of convergence to normality were investigated by Helmers (1977) van Zwet
(1984), Helmers, Janssen and Serfling (1990), Wang, Jing and Zhao (2000) and

Wang (2002).
As a consequence of Theorem 2.1, the following theorem derives the exact

convergence rate (two-sided bound) in the Central Limit Theorem for L-statistics,
up to terms of order O(n−1/2), under mild conditions.

Theorem 2.2. Assume that
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(a) |J(s) − J(t)| ≤ K|s − t|, 0 < s < t < 1, for some K > 0;

(b) EX2
1 < ∞ and σ2 > 0.

Then, as n → ∞,

sup
x

|Hn(x) − Φ(x)| + n− 1
2 � δ1n + n− 1

2 , (14)

where α(X1) = −σ−1
∫

J(F (t))(I(X1 ≤ t) − F (t)) dt, and δ1n is defined as in

Theorem 2.1.

3. Proofs

Proof of Theorem 1.1. The result is an immediate consequence of Theorem

2.1.

Proof of Theorem 2.1. Without loss of generality we assume that β(x, y) is

symmetric. Otherwise it is enough to replace β(Xi, Yj) by β(Xi, Yj) + β(Xj , Yi).

The proof is along the lines of Jing and Wang (2003). Write

β̃(Xi, Xj) = β(Xi, Xj)I
(|β(Xi,Xj)|≤n

3
2 )

,

α∗(Xj) = E
(

β̃(Xi, Xj) | Xj

)

, α∗∗(Xj) =
2(n − 1)

n
α∗(Xj)I(|α∗(Xj)|≤

√
n),

T ∗
n = n− 1

2

n
∑

j=1

(α(Xj) + α∗∗(Xj)) + 2n− 3
2

∑

i<j

(

β̃(Xi, Xj) − α∗(Xi) − α∗(Xj)
)

+Vn.

Noting Eβ(X1, X2) = 0, it is easily seen that

|α∗(Xj)| =
∣

∣

∣
E
(

β(Xi, Xj)I(|β(Xi,Xj)|≤n3/2)|Xj

)∣

∣

∣

≤ E
(

|β(Xi, Xj)| I(|β(Xi,Xj)|≥n3/2)|Xj

)

, (15)

and, as in (2.24)−(2.25) of Jing and Wang (2003),

sup
x

|P (Tn ≤ x) − P (T ∗
n ≤ x)|

≤ nP (|α∗(X1)| ≥
√

n) + n2P
(

|β(X1, X2)| ≥ n
3
2

)

≤ 2n
4−3p

2 E|β(X1, X2)|pI
(|β(X1,X2)|≥n

3
2 )

= o
(

n
4−3p

2

)

. (16)

We further let, m0 = ([10 log n]+1)/b, where b > 0 is a constant to be chosen
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later,

ηj = α(Xj) + α∗∗(Xj) − Eα∗∗(Xj),

γij = 2
[

β̃(Xi, Xj) − α∗(Xi) − α∗(Xj) + Eβ̃(Xi, Xj)
]

,

Sn = n− 1
2

n
∑

j=1

ηj,

∆m = n− 3
2

n
∑

j=m+1

γmj for 1 ≤ m ≤ n − 1,

∆n,m =

n−1
∑

k=m

∆k if 0 < m < n, and ∆n,m = 0 if m ≥ n.

It follows immediately that T ∗
n = Sn + ∆n,m0 + Ṽn +

√
nEα∗∗(X1) − (n −

1)n−1/2Eβ̃(X1, X2), where Ṽn = Vn +
∑m0−1

m=1 ∆m. Note that for any fixed

1 ≤ m < k ≤ n and 1 ≤ q ≤ 2,

E|∆n,m − ∆n,k|q ≤ 8n− 3q
2

+1(k − m)E|γ12|q; (17)

see Theorem 2.1.3 in Koroljuk and Borovskich (1994). It follows from (17) with

q = p and E|γ12|p < ∞ (see (21) below) that for 4/3 ≤ p ≤ 5/3,

P
(
∣

∣

∣

m0−1
∑

m=1

∆m

∣

∣

∣
≥ n− 1

2

log n

)

≤ An1−p log1+p nE|γ12|p = o
(

n
4−3p

2

)

. (18)

In terms of the condition (c) (or (c′)), (18) and the fact that |√nEα∗∗(X1) −
(n − 1)n−1/2Eβ̃(X1, X2)| ≤ 3

√
nE|β(X1, X2)|I(|β|≥n3/2) = o(n(4−3p)/2), routine

calculations show that, to prove (13), it suffices to prove

In := sup
x

∣

∣

∣
P
(

Sn + ∆n,m0 ≤ x
)

− Φ(x) − L̃1n(x) + L̃2n(x)
∣

∣

∣

= o(δ1n + n
4−3p

2 ) + O(n− 1
2 ) (19)

and, if in addition α(X1) is nonlattice, then the right-hand side of (19) may be

replaced by o(δn + n(4−3p)/2).

We first establish five lemmas before the proof of (19). The proofs of these

lemmas will be omitted. The details can be found in Wang and Weber (2004),

on which the present paper is based.
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Lemma 3.1. Write α̂(X1) = α∗∗(X1) − Eα∗∗(X1). We have

E|α̂(X1)|λ ≤ 2E|α∗∗(X1)|λ = o
(

n
λ+2−3p

2

)

, for 1 ≤ λ ≤ 2, (20)

E|γ12|p ≤ 16|β̃(X1, X2)|p < ∞, (21)

E|γ12|q ≤ 16|β̃(X1, X2)|q = o
(

n
3(q−p)

2

)

, for p < q ≤ 2, (22)

|Eη2
1 − 1| = o

(

δ1n + n
4−3p

2

)

. (23)

Lemma 3.2. We have

Eγ12e
it(η1+η2)

√
n = −2t2

n
E
{

α(X1)α(X2)β̃(X1, X2)
}

+ o
(

δ1n + n
4−3p

2

)

n− 1
2 (t2 + |t|3), (24)

∣

∣Eγ12e
it(η1+η2)

√
n

∣

∣ ≤ Amin

{

(
t√
n

)
4(p−1)

p , n−1(Eγ2
12)

1
2 (t2 + |t|3)

}

. (25)

Next define, f(t) = Eeitη1/
√

n, g(t) = Eeitα(X1)/
√

n, and gn(t) = e−t2/2(1 +

n(g(t) − 1) + t2/2).

Lemma 3.3. There exists a constant c0 > 0 such that for all |t| ≤ c0n
1/2 and

all sufficiently large n,

|f(t)| ≤ e−
t2

8n , |g(t)| ≤ e−
t2

4n , (26)
∣

∣

∣
fn(t) − e−

t2

2

∣

∣

∣
≤ A

(

δ1n + o(n
4−3p

2 )
)

(t2 + t4)e−
t2

16 , (27)
∣

∣

∣
fn(t) − gn(t)

∣

∣

∣
= o

(

δ1n + n
4−3p

2

)

(t2 + t8)e−
t2

16 . (28)

If in addition α(X1) is nonlattice, then there exist constants b > 0 and εn → ∞
such that for c0 ≤ |t|/√n ≤ εn,

|f(t)| ≤ e−
b
2 and |g(t)| ≤ e−b. (29)

Lemma 3.4. For any |t| ≤ c0
√

n, where c0 is defined as in Lemma 3.3,

∣

∣

∣
E∆n,m0e

itSn +
t2e−

t2

2

2
√

n
E
{

α(X1)α(X2)
[

β̃(X1, X2) + β̃(X2, X1)
]

}
∣

∣

∣

= o
(

δ1n + n
4−3p

2

)

(t2 + t6)e−
t2

16 . (30)

To introduce the next lemma we first define some notation. As in (2.13) and
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(2.16) of Jing and Wang (2003), we have

Zn(t) := Eeit(Sn+∆n,m0 ) − EeitSn − itE∆n,m0e
itSn

= Zn1(t) + it
[

Z
(1)
n2 (t) + Z

(2)
n2 (t)

]

,

where, lm,k = n−3/2
∑n

j=k+1 γmj , j(m) is the largest integer such that mj(m) < n

and

Zn1(t) =
n−1
∑

m=m0

Eeit(Sn+∆n,m+1)
(

eit∆m − 1 − it∆m

)

,

Z
(1)
n2 (t) =

n−1
∑

m=m0

j(m)
∑

j=1

Elm,jmeitSn
(

eit∆n,jm+1 − eit∆n,(j+1)m+1
)

,

Z
(2)
n2 (t) =

n−1
∑

m=m0

j(m)
∑

j=1

E
(

lm,jm − lm,(j+1)m

)

eitSn
(

eit∆n,(j+1)m+1 − 1
)

.

Lemma 3.5. For 4/3 < p ≤ 5/3, we have

∫

|t|≤c0
√

n

1

|t| |Zn1(t)| dt = o
(

δ1n + n
4−3p

2

)

, (31)

∫

|t|≤c0
√

n

(

|Z(1)
n2 (t)| + |Z(2)

n2 (t)|
)

dt = o
(

δ1n + n
4−3p

2

)

, (32)

where c0 is defined as in Lemma 3.3.

We are now ready to prove (19). We continue to use the notation defined in

Lemmas 3.1−3.5. Furthermore write ϕn(t) = −t2Bne−t2/2, where

Bn =
1

2
√

n
E
{

α(X1)α(X2)
[

β(X1, X2)I
(|β|≤n

3
2 )

+ β(X2, X1)I
(|β|≤n

3
2 )

]}

.

Using Lemmas 3.3−3.5 we have

J1(n) :=

∫

|t|≤c0
√

n

1

|t|
∣

∣

∣
Eeit(Sn+∆n,m0 ) − gn(t) − itϕn(t)

∣

∣

∣
dt

≤
∫

|t|≤c0
√

n

1

|t| |Zn(t)| dt +

∫

|t|≤c0
√

n

1

|t| |f
n(t) − gn(t)| dt

+

∫

|t|≤c0
√

n

∣

∣E∆n,m0e
itSn − ϕn(t)

∣

∣ dt

= o(δ1n + n
4−3p

2 ). (33)
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Note that
∫∞
−∞ eitxd

(

Φ(x) + L̃1n(x) − L̃2n(x)
)

= gn(t) + itϕn(t). It follows from

Esseen’s smoothing lemma and (33) that

In ≤
∫

|t|≤c0
√

n

1

|t|
∣

∣

∣
Eeit(Sn+∆n,m0 ) − gn(t) − itϕn(t)

∣

∣

∣
dt +

A√
n

= o(δ1n + n
4−3p

2 ) + O(n− 1
2 ). (34)

This proves the first part of (19).

If α(X1) is nonlatice, it follows from the fact that ∆n,m0 only depends on

Xm0+1, . . . , Xn, and (29), that for any εn → ∞,

J2(n) :=

∫

c0
√

n≤|t|≤εn
√

n

1

|t|
∣

∣

∣
Eeit(Sn+∆n,m0 ) − gn(t) − itϕn(t)

∣

∣

∣
dt

≤
∫

c0
√

n≤|t|≤εn
√

n

1

|t| |f(t)|m0 dt +

∫

c0
√

n≤|t|≤εn
√

n

1

|t| |gn(t) + itϕn(t)| dt

= o(δ1n + n
4−3p

2 ). (35)

Using (33), (35) and Esséen’s smoothing lemma again, we obtain for 4/3 ≤ p ≤
5/3,

In ≤
∫

|t|≤εn
√

n

1

|t|
∣

∣

∣
Eeit(Sn+∆n,m0 ) − gn(t) − itϕn(t)

∣

∣

∣
dt +

A

εn
√

n

≤ J1(n) + J2(n) + o(n− 1
2 )

= o(δ1n + n
4−3p

2 ).

This implies the second part of (19) and hence the proof of (19).

The proof of Theorem 2.1 is now complete.

Proof of Theorem 2.2. Write ηj(t) = I{Xj ≤ t} − F (t),

α(Xj) = −σ−1

∫

J(F (t))ηj(t)dt, β(Xi, Xj) = Kσ−1

∫

ηi(t)ηj(t)dt.

As in (29) of Wang (2002), we have

n− 1
2

n
∑

j=1

α(Xj) − n− 3
2

∑

i6=j

β(Xi, Xj) − Vn

≤
√

n (T (Fn) − T (F ))

σ

≤ n− 1
2

n
∑

j=1

α(Xj) + n− 3
2

∑

i6=j

β(Xi, Xj) + Vn, (36)
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where Vn = n−3/2
∑n

j=1 Z(Xj) with Z(Xj) = Kσ−1
∫

η2
j (t)dt. It is readily seen

that Eα(X1) = 0, Eα2(X1) = 1, E(β(Xi, Xj)
∣

∣

∣
Xi) = 0, i 6= j, and similar to the

proof of Lemma A in Serfling (1980, p.288),

|α(Xj)| + |β(Xi, Xj)| + Z(Xj) ≤ Aσ−1(|Xj | + E|X1|). (37)

In terms of these facts, (14) follows easily from Theorem 2.1. We omit the details.

Proof of Corollary 1.1. Equation (11) follows easily from Theorem 1.1, the

classical result

sup
x

∣

∣

∣
L1n(x) +

Φ(3)(x)

6
√

n
Eg3(X1)

∣

∣

∣
= o(n− 1

2 ),

and by Hölder’s inequality, that

sup
x

∣

∣

∣
L2n(x) − Φ(3)(x)

2
√

n
E {g(X1)g(X2)φ(X1, X2)}

∣

∣

∣

≤ An− 1
2 E

{

|g(X1)g(X2)| |φ(X1, X2)|I
(|φ(X1 ,X2)|≥n

3
2 )

}

≤ An− 1
2

(

E|g(X1)|
5
2

)
4
5
(

E|φ(X1, X2)|
5
3 I

(|φ(X1,X2)|≥n
3
2 )

)
3
5

= o(n− 1
2 ).

Proof of (7). It suffices to show that
∣

∣

∣
E
{

g(X1)g(X2)φ(X1, X2)I
(|φ(X1 ,X2)|≤n

3
2 )

}
∣

∣

∣
(
√

n)−1 = o(δn) + O(n− 1
2 ). (38)

Write φ̃(X1, X2) = φ(X1, X2)I(|φ(X1,X2)|≤n3/2). It is readily seen that

E
{

g(X1)g(X2)φ̃(X1, X2)
}

= E
{

g(X1)I(|g(X1)|≥√
n)g(X2)φ̃(X1, X2)

}

+E
{

g(X1)I(|g(X1)|<√
n)g(X2)I(|g(X2)|≥√

n)φ̃(X1, X2)
}

+E
{

g(X1)I(|g(X1)|<√
n)g(X2)I(|g(X2)|<√

n)φ̃(X1, X2)
}

:= I6n + I7n + I8n. (39)

By Hölder’s inequality, and similar to (22), we have

|I6n| + |I7n|√
n

≤ 2
(

Eg(X1)
2I(|g(X1)|≥√

n)

)
1
2

(

E
φ̃(X1, X2)

2

n

)
1
2

≤ 2 δ
1
2
n

[

o(n− 1
2 )
]

1
2

= o
(

δn + n− 1
2

)

. (40)
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Similarly, by noting E|φ̃(X1, X2)|5/3 < ∞,

|I8n|/
√

n ≤ n− 1
2

(

E|g(X1)|
5
2 I(|g(X1)|<√

n)

)
4
5
(

E|φ̃(X1, X2)|
5
3

)
3
5

≤ An− 1
2

(

E|g(X1)|
5
2 I(|g(X1)|<√

n)

)
4
5
. (41)

In terms of (41), if E|g(X1)|5/2I(|g(X1)|<√
n) < ∞, then

|I8n|√
n

= O(n− 1
2 ). (42)

We show that if E|g(X1)|5/2I(|g(X1)|<√
n) = ∞, then

√
nE|g(X1)|

5
2 I(|g(X1)|<√

n) ≤ AE|g(X1)|4I(|g(X1)|<√
n), (43)

and hence it follows from (41), that

|I8n|/
√

n = o(1)n− 1
2 E|g(X1)|

5
2 I(|g(X1)|<√

n)

= o(1)n−1 E|g(X1)|4I(|g(X1)|<√
n) = o(δn). (44)

Combining (39)−(40), (42) and (44), we obtain the proof of (38).

We next prove (43). Write lτ (x) = E|g(X1)|τ I(|g(X1)|<x). Note that l4(x) is

a non-decreasing function and l4(x) ≤ Ax2. It follows from Proposition 2.2.1 of

Bingham, Goldie and Teugels (1987) that lim supx l4(2x)/l4(x) < ∞. Now (43)

follows easily from question 34 on page 289 of Feller (1971) ((also see Feller (1969)

or Theorem 2.6.6 of Bingham, Goldie and Teugels (1987)).

The proof of (7) is now complete.
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