
Statistica Sinica 16(2006), 1335-1365

STRONG LIMIT THEOREMS ON MODEL SELECTION IN

GENERALIZED LINEAR REGRESSION WITH

BINOMIAL RESPONSES

Guoqi Qian and Yuehua Wu

University of Melbourne and York University

Abstract: We prove a law of iterated logarithm for the maximum likelihood es-

timator of the parameters in a generalized linear regression model with binomial

response. This result is then used to derive an asymptotic bound for the difference

between the maximum log-likelihood function and the true log-likelihood. It is

further used to establish the strong consistency of some penalized likelihood based

model selection criteria. We have shown that, under some general conditions, a

model selection criterion will select the simplest correct model almost surely if the

penalty term is an increasing function of the model dimension and has an order

between O(log log n) and O(n). Cases involving the commonly used link functions

are discussed for illustration of the results.
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1. Introduction

An important task in linear regression is to identify an optimal subset of

available explanatory variables to form a model for best predicting the response

variable. We refer to George (2002) and Rao and Wu (2001) for a detailed survey

in this area of research. Among the many model selection methods, the classical

ones like AIC and BIC are still widely used in practice. It is therefore of interest

to investigate the asymptotic properties of model selection criteria which have

not yet been established for many problems.

In this paper, we focus on variable selection in generalized linear models

with binomial responses. We consider a set of model selection criteria, such

as AIC, BIC, Cp and the stochastic complexity criterion, that follow the form

of a penalized log-likelihood. We assume that all the explanatory variables af-

fecting the response variable are available in observations, so that selecting the

simplest correct model is possible. We establish a strong representation for the

maximum log-likelihood function relative to the true log-likelihood under some

general conditions. Based on this representation we show that, when the sample

size n is sufficiently large, the simplest correct model is selected almost surely if
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the penalty term in the selection criterion is an increasing function of the model

dimension and is of an order higher than O(log log n) but lower than O(n). Dur-

ing this asymptotic study we also obtain the law of iterated logarithm for the

maximum likelihood estimator β̂n of the regression coefficient vector β, with its

unknown true value denoted as β0, in the binomial regression model. Namely,

lim supn→∞(n−1 log log n)−1/2||β̂n − β0|| = c almost surely for some constant c,

where || · || is the Euclidean norm.

An earlier study related to this paper is Qian and Field (2002a), where the

focus is limited to the logistic regression models. Here we consider the more

general and applicable binomial regression models where any meaningful link

function is allowed. The method developed in Qian and Field (2002a) cannot

be carried forward automatically to this seemingly simple generalization, and it

entails a substantial new proof technique. This can be seen from the following.

First, the log-likelihood function under this generalization loses simplicity and

some good properties, for example global convexity, that it possesses under the

logistic link. Consequently, it becomes substantially more difficult to derive var-

ious almost sure uniform bounds for establishing a strong representation for the

log-likelihood function. That the response variable follows a binomial distribu-

tion does not help much in easing this difficulty. Second, the lack of specificity

about the link function presents another complication. Some general conditions

need be sorted out to properly regulate the link function for desired performance

of model selection. In this paper we carry out a detailed study of the asymptotic

properties of the log-likelihood function with regard to its use in model selection,

and how they depend on the link function. Our asymptotic results also provide

a justification to the empirical findings that some link functions, such as the lo-

gistic and the probit, behave quite well in practice, while some others, such as

the complementary log-log and the log-log, do so only in some specific situations

(McCullagh and Nelder (1989, Section 4.3.1)).

The paper is organized as follows. Section 2 provides an overview of binomial

regression models and a model selection framework. Section 3 presents the main

results. Proofs are given in Section 4. In Section 5 we discuss binomial regression

model selection. The Appendix contains proofs of the lemmas in Section 4, and

verification of the conditions imposed for the link function.

2. Binomial Regression Models and Model Selection

Suppose the response variable Y measures the proportion of “successes” in

m independent and identical trials. Thus we can write Y = Z/m where Z

follows a binomial(m,π) distribution. Suppose the “success” probability for Y is

dependent on a set of explanatory variables x = (x1, . . . , xp)
t. The dependence

may be formulated by a binomial regression model g(π) = xtβ, where β =
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(β1, . . . , βp)
t is the unknown coefficient parameter vector to be estimated and

g(·) is the link function relating the linear predictor η = xtβ to the probability

π. A wide range of link functions are available, four commonly used in practice

are the following.

1. The logit or logistic link g1(π) = log(π/(1 − π)).

2. The probit or inverse normal link g2(π) = Φ−1(π), where Φ(·) is the standard

normal distribution function.

3. The complementary log-log link g3(π) = log{− log(1 − π)}.
4. The log-log link g4(π) = − log{− log(π)}.

We denote π = h(η) as the inverse link function corresponding to g(π). As π is a

probability, it is reasonable to regard h(·) as a cumulative distribution function

defined on (−∞,+∞).

Now let Yn = (y1, . . . , yn)t be n independent observations of Y , with the cor-

responding binomial “success” probabilities being π1, . . . , πn. The corresponding

observations of the explanatory variables are Xn = (x1, . . . ,xn)t. Under the bi-

nomial regression model we have πi = h(xt
iβ) (i = 1, . . . , n). The log-likelihood

function for the parameter β is then

`(β|Yn, Xn) =

n
∑

i=1

log

(

mi

miyi

)

−
n

∑

i=1

ρ(πi; yi,mi), (1)

where

ρ(π; y,m) = −my log π − m(1 − y) log(1 − π). (2)

Note that ρ(0; 0,m) = ρ(1; 1,m) = 0 by convention. When the likelihood func-

tion is smooth enough, the maximum likelihood estimator (MLE) of β may be

obtained by solving the likelihood equation

∂`

∂β
=

n
∑

i=1

mih
′(xt

iβ)

πi(1 − πi)
(yi − πi)xi = 0. (3)

Actually, if (3) has a finite solution and the log-likelihood function `(β|Yn, Xn)

is strictly concave, the solution is the unique estimator maximizing the likeli-

hood function. This is the case when the link function is the logistic, probit,

complementary log-log or log-log; see Wedderburn (1976). But (3) may have

multiple solutions in general and not all of them maximize the likelihood func-

tion. An example involving multiple stationary points and local maximizers

can be constructed if the inverse of the link function is taken to be h0(η) =

$−1 arctan η + 0.5 + 0.1η−2 sin2 η where $ = 3.14159 · · · . We provide details in

the Appendix. Now if we can find a solution β̂n of (3) which is a local maximizer

of `(β|Yn, Xn) and satisfies limn→∞ ||β̂n − β0|| = 0 a.s. with β0 = (β01, . . . , β0p)
t
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being the finite true value of β, we know β̂n, if different from the global maxi-

mizer of `(β|Yn, Xn), is asymptotically at least as good as the global maximizer

in terms of consistency. In this paper, such a β̂n is taken to be the MLE of

β. (In Lehmann and Casella (1998, p.449), the solution of the likelihood equa-

tion is called an efficient likelihood estimator.) We show in Theorem 1 that

β̂n exists and lim supn→∞(n−1 log log n)−1/2||β̂n − β0|| = c almost surely under

some general conditions. The asymptotic efficiency of β̂n has been established by

Fahrmeir and Kaufmann (1985), who proved that β̂n in generalised linear mod-

els has an asymptotic normal distribution with the inverse Fisher information

matrix as the asymptotic variance, subject to some mild general conditions.

Based on the binomial regression model, the effect of any x variable on Y can

be measured by the corresponding β component. There is no need to include in

the model those x variables whose β components equal 0. Since the true value β0

of β has to be estimated, this induces the problem of model selection or variable

selection: find those x variables that have significant effects on Y . But the best

subset of x variables is better chosen as a whole in terms of a submodel, because

an x variable may have significant effect on Y in the presence of some x variables,

but not in the presence of other x variables.

Many approaches have been proposed for selecting an optimum model in

general parametric settings, see e.g., Rao and Wu (2001) or George (2002) for

a detailed survey. In the context of binomial regression models, some of these

approaches, such as AIC (Akaike (1973)), BIC (Schwarz (1978)), Cp (Mallows

(1973)) and stochastic complexity criterion (SCC, Rissanen (1989, 1996) and

Qian and Künsch (1998)), lead to a model selection criterion function that has

the following general form for each candidate model g(πα) = ηα = xt
αβ(α):

S(ηα) =

n
∑

i=1

ρ(h(xt
iαβ̂n(α)); yi,mi) + C(n, β̂n(α)). (4)

Here α is a pα-component sub-vector of (1, 2, . . . , p) for indexing; xα and xiα are

the corresponding sub-vectors of x and xi indexed by α; β̂n(α) is the MLE of β(α)

— the sub-vector of β indexed by α. The first term in (4) is basically the negative

maximum log-likelihood, while the second term C(n, β̂n(α)) is a penalty term

measuring the complexity of the underlying candidate model indexed by α. For

AIC and Cp, C(n, β̂n(α)) = pα; for BIC, C(n, β̂n(α)) = (pα log n)/2; and for SCC,

C(n, β̂n(α)) = log |In(β̂n(α)|/2 +
∑pα

i=2 log(|β̂n(α)i| + εn−1/4) where In(β(α)) is

the Fisher information for β(α), β̂n(α)i is the ith component of β̂n(α), and ε is

a specified quantity to ensure the invariance of the SCC (see Qian and Künsch

(1998) for details).

The candidate model that minimizes (4) is regarded as the optimum model.

To see how this optimum model is related to the true model η0 = xtβ0 is one
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of the major objectives of this paper. Suppose all the candidate models under
consideration have an intercept term that corresponds to the first component of
x, and the model η = xtβ that includes all the p explanatory variables is the full

model. Of the 2p − 1 candidate models for selection, we see that each candidate
model can be uniquely represented by α. Thus all the candidate models can
be classified into Ac = {α : β0i = 0 for any i 6∈ α} or Aw = {α : β0i 6=
0 for some i 6∈ α}. Each model in Aw is wrong because it misses at least
one x variable that has non-zero effect on Y ; each model in Ac is correct. Still,

many models in Ac may contain some redundant x variables that have no effects
on Y . The model in Ac that contains no redundant x variables is the most
desirable. Here we assume the simplest correct model is unique for simplicity
of the presentation, which would be the case if all components of x are linearly

independent of each other. In this paper we show that the simplest correct model
is almost surely selected by the criterion (4) under some general conditions. If
there are multiple simplest correct models among the candidates, the results in
the next section suggest that the criterion (4) selects one of the simplest correct
models almost surely. In practice, if we find multiple models have criterion values

close to the smallest and fit the data well, we take it that there are multiple
simplest correct models.

3. Conditions and Main Results

In this paper, c is a constant independent of n and may represent different

values in each appearance.
The properties of the MLE β̂n and the model selection criterion S(ηα) depend

on the link function, the design matrix and the Fisher information in binomial
regression models. The Fisher information for β is

In(β) = −E
∂2`

∂β∂βt
=

n
∑

i=1

mih
′(xt

iβ)2

πi(1 − πi)
xix

t
i

= Xt
nMn diag{ h′(xt

1β)2

π1(1 − π1)
, . . . ,

h′(xt
nβ)2

πn(1 − πn)
}Xn,

where Mn = diag(m1, . . . ,mn). In the following we describe conditions be needed
on various occasions for proving our main results.
(C.1) The function h is a strictly increasing cumulative distribution function,

and is second order differentiable with h′ and h′′ uniformly continuous.
(C.2) There exists a constant t0 > 0 such that h′′(t) ≤ 0 if t > t0, and h′′(t) ≥ 0

if t < −t0.

(C.3) sup
t>t0

| d2

dt2
log(1 − h(t))| = sup

t>t0

∣

∣

∣

h′(t)2

(1−h(t))2
+ h′′(t)

1−h(t)

∣

∣

∣
< ∞,

sup
t<−t0

| d2

dt2
log h(t)| = sup

t<−t0

∣

∣

∣

h′(t)2

h(t)2
− h′′(t)

h(t)

∣

∣

∣
< ∞.
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(C.4) inf
t>t0

{

h′(t)2

(1−h(t))2
+ h′′(t)

1−h(t)

}

> 0, inf
t<−t0

{

h′(t)2

h(t)2
− h′′(t)

h(t)

}

> 0.

(C.5) If

u(t, s) =

[

(1 − h(s))2h(s)

(1 − h(t))2
+

(1 − h(s))h(s)2

h(t)2

]

h′(t)2

h′(s)2
,

v(t, s) =

[

(1 − h(s))2h(s)

1 − h(t)
− (1 − h(s))h(s)2

h(t)

]

h′′(t)

h′(s)2
,

there exist constants ∆0 > 0 and s0 > 0 such that inf |t−s|≤∆0,|s|>s0
{u(t, s)

+v(t, s)} > 0.

(C.6) sup
s

∣

∣

∣

h′(s)h′′(s)
h(s)(1−h(s))

∣

∣

∣
< ∞.

(C.7) Let λ1{G} ≤ · · · ≤ λp{G} be the eigenvalues of a p×p symmetric matrix

G. Then limn→∞ λk{In(β0)} = ∞, k = 1, . . . , p. Also, there exists a
constant d0 > 0 such that 0 < λp{In(β0)} ≤ d0λ1{In(β0)}.

(C.8) If δn = {max1≤i≤n m2
i [h

′(xt
iβ0)/(π0i(1 − π0i))]

2xt
iIn(β0)

−1xi}1/2 where

π0i = h(xt
iβ0), then δn(log log λp{In(β0)})1/2 = o(1).

(C.9) d1n ≤ λp{In(β0)} ≤ d2n holds for some positive constants d1 and d2.

(C.10) If ξn ={ max
1≤i≤n

mix
t
i(X

t
nMnXn)−1xi}1/2, then ξn(log log λp{Xt

nMnXn})1/2

= o(1).

(C.11) d3n ≤ λp{Xt
nMnXn} ≤ d4n for some positive constants d3 and d4.

(C.12)
∑n

k=1 mk(xkixkj)
2 = O(n) for all i, j = 1, . . . , p, where xki is the ith

component of xk.

(C.13) If Λn=diag{min{ h′(x1β0)2

π01(1−π01) , π01(1−π01)}, . . . ,min{ h′(xnβ0)2

π0n(1−π0n) , π0n(1−π0n)}},
there exists a positive constant d5 such that λ1{Xt

nMnΛnXn} ≥ d5n.

(C.14) Let b = (1/2)min1≤i≤p0
|β0(α0)i| where α0 is the correct model in Ac that

has the minimum dimension, and suppose β0(α0)i is the ith component

of β0(α). Define A0 = {β : ||β − β0|| ≤ b}. Then there exist a constant

d6 > 0 and a positive integer n0 such that

sup
β∈A0

`(β|Yn, Xn) − sup
β 6∈A0

`(β|Yn, Xn) ≥ d6n a.s. when n ≥ n0.

Note that Conditions (C.1) to (C.6) are about the behaviour of the link function
and its various derivatives. It may be difficult to understand (C.5), but it is not

required for the proof of our results if (C.2) and (C.4) are satisfied. On the other

hand, it can be shown that

u(t, s) + v(t, s) =
d2

dt2
log h(t)

{ d
ds log h(s)}2

(1 − h(s)) −
d2

dt2
log(1 − h(t))

{ d
ds log(1 − h(s))}2

h(s). (5)

Thus (C.5) implies that, when t is in a neighbourhood of s, the coefficient of h

in (5) should not go to zero in the limit as s → +∞, and the coefficient of 1 − h
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in (5) should not go to zero in the limit either as s → −∞. In the Appendix we
show the following.

1. For the logistic link, Conditions (C.1), (C.2), (C.3), (C.5) and (C.6) hold while
(C.4) does not.

2. For the probit link, condtions (C.1) to (C.4) and (C.6) hold while (C.5) does
not.

3. For the complementary log-log link, Conditions (C.1), (C.2) and (C.6) hold
while (C.3) to (C.5) do not, but (C.3) and (C.5) hold if one only considers
h(t) < 1 − δ′ for some constant δ′.

4. For the log-log link, Conditions (C.1), (C.2) and (C.6) hold while (C.3) to
(C.5) do not, but (C.3) and (C.5) hold if one focuses on h(t) > δ ′′ for some
constant δ′′.

These four link functions and their first three derivatives are plotted in Figure 1.
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Figure 1. Plots of the four inverse link functions (logit, probit, complemen-
tary log-log and log-log) and their first three derivatives.
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The conditions (C.7) to (C.13) are essentially about the behaviour of the

explanatory variables x. They suggest that most of the x observations should be

finite and stay away from 0. One can follow Qian and Field (2002a) to provide

some sufficient conditions for (C.7) to (C.13) by assuming the x variables are

random, but we do not pursue that here. Condition (C.14) is about the behaviour

of the log-likelihood function relative to the full model: its maximum value is

attained in a neighbourhood of the true value β0 and is distinctly greater than

any log-likelihood outside this neighbourhood. Condition (C.14) becomes quite

natural by the results of Theorems 1 and 2 plus the assumption that the MLE

can be uniquely solved at (3).

The main results of this paper are listed below.

Theorem 1. Suppose Conditions (C.1) to (C.4) (or alternatively (C.1), (C.3)

and (C.5)) hold. Further suppose Conditions (C.6) to (C.13) hold. Then for any

correct model α ∈ Ac, there exists an estimator β̂n(α) such that β̂n(α) is a local

maximizer of `(β|Yn, Xnα) and

||β̂n(α) − β0(α)|| = O((n−1 log log n)
1
2 ) a.s.. (6)

Further, there exists a constant c > 0 such that for α ∈ Ac

lim sup
n→∞

||β̂n(α) − β0(α)||
(n−1 log log n)

1
2

= c a.s.. (7)

Theorem 2. Under the same conditions as given in Theorem 1 we have, for any

correct model α ∈ Ac,

0 ≤ `(β̂n(α)|Yn, Xnα) − `(β0(α)|Yn, Xnα) = O(log log n) a.s., (8)

where Xnα is the matrix comprising those columns of Xn indexed by α; equiva-

lently,

0 ≤
n

∑

k=1

{ρ(h(xt
kαβ0(α)); yk ,mk) − ρ(h(xt

kαβ̂n(α)); yk,mk)}

= O(log log n) a.s., (9)

where xkα (k = 1, . . . , n) is the subvector of xk indexed by α.

Theorem 3. In addition to the conditions of Theorem 1, suppose Condition

(C.14) holds and `(β̂n|Yn, Xn) = supβ∈A0
`(β|Yn, Xn). Then for any incorrect

model α ∈ Aw,

lim sup
n→∞

n−1{`(β̂n(α)|Yn, Xnα) − `(β0|Yn, Xn)} < 0 a.s.; (10)
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equivalently,

lim inf
n→∞

n
∑

k=1

n−1{ρ(h(xt
kαβ̂n(α)); yk,mk) − ρ(h(xt

kβ0); yk,mk)} > 0 a.s.. (11)

From Theorems 2 and 3 we know that the maximum log-likelihood for any

correct model is almost surely greater than the log-likelihood of the true model,

with the difference bounded by O(log log n) almost surely. On the other hand,

the maximum log-likelihood for any incorrect model is almost surely smaller

than the log-likelihood of the true model by a term of order |O(n)|. Therefore,

if we carry out a model selection by minimizing (4), we almost surely select

the simplest correct model in Ac provided the penalty term C(n, β̂n(α)) is an

increasing function of the model dimension pα and is of an order higher than

O(log log n) but smaller than O(n). We call a model selection criterion strongly

consistent if it selects the simplest correct model almost surely. From the above,

we have the following.

Theorem 4. Consider a binomial regression model. Under the conditions of

Theorem 1 and (C.14), the model selection criterion based on stochastic complex-

ity and the BIC criterion are both strongly consistent, while the AIC criterion is

not strongly consistent.

Proof. It is easy to see that the criterion BIC is strongly consistent because it has

a penalty term C(n, β̂n(α)) = (pα log n)/2, while AIC is not strongly consistent

because C(n, β̂n(α)) = pα. Because the Fisher information |I(β(α))| is typically

of order O(npα), it follows that the stochastic complexity criterion is also strongly

consistent.

4. Proof of the Results

In the proofs we make use of the local convexity properties of the negative

log-likelihood function, and locally approximate it with bounded quadratic errors.

The main difficulties lie on how to properly regulate the link function, and on

establishing uniform bounds for the error term in the almost sure expansion of

the log-likelihood function. The idea of using convexity is widely seen in the

context of M-estimators for linear models, see e.g., Rao and Zhao (1992) and

others.

First of all we define a sequence of real numbers {νn} such that, for both

a = 1 and 2,

νa
n ↑∞, νa

nξn(log log n)
1
2 →0 and νa

n(n−1log log n)
1
2 ↓0. (12)

Using {νn} we introduce the sequences An ={β : ||β−β0|| ≤ νn(n−1 log log n)1/2},
∂An = {β : ||β − β0|| = νn(n−1 log log n)1/2}, Bn = {β : ||β − β0|| ≤ ν2

n
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(n−1 log log n)1/2}, and ∂Bn = {β : ||β − β0|| = ν2
n(n−1 log log n)1/2}, so A1 ⊃

A2 ⊃ A3 ⊃ · · · , B1 ⊃ B2 ⊃ B3 ⊃ · · · , and Bn ⊃ An. We also define

H(β) =

n
∑

k=1

{ρ(h(xt
kβ); yk,mk) − ρ(h(xt

kβ0); yk,mk)}. (13)

To prove the theorems we need some lemmas.

Lemma 1. Let

D(t; s, y) = ρ(h(t); y,m) − ρ(h(s); y,m) − d

dt
ρ(h(t); y,m)|t=s(t − s)

= −my log
h(t)

h(s)
− m(1 − y) log

1 − h(t)

1 − h(s)
− m

[

1 − y

1 − h(s)
− y

h(s)

]

h′(s)(t − s)

and suppose (C.1) and (C.3) hold.

(R.1) There exists a constant c such that |D(t; s, y)| ≤ cm(t − s)2 for any real

numbers s, t, and y ∈ [0, 1].
(R.2) D(t; s, h(s)) ≥ 0.

Lemma 2. Let K(t, s) = ρ(h(t);h(s),m) − ρ(h(s);h(s),m) and suppose (C.1),
(C.2) and (C.4) (or alternatively (C.1) and (C.5)) hold. Then there exist positive

constants c and ∆ such that

K(t, s) ≥ cmin

{

mh′(s)2

h(s)(1 − h(s))
,mh(s)(1 − h(s))

}

(t − s)2

for any s and t satisfying |t − s| ≤ ∆.

Lemma 3. Let R(t, s) = log(h(t)/(1 − h(t))) − log(h(s)/(1 − h(s))) − (h′(s)/
(h(s)(1 − h(s))))(t − s) and suppose (C.1) and (C.3) hold. Then there exists a

positive constant c such that |R′′
t (t, s)| ≤ c and |R(t, s)| ≤ c(t− s)2 for any t and

s. Further, for any t1 and t2, |R(t1, s) − R(t2, s)| ≤ c(|t1 − s| + |t2 − s|)|t1 − t2|.
Lemma 4. Under (C.7) and (C.8) we have

lim sup
n→∞

±
∑n

i=1 mih
′(xt

iβ0)π
−1
0i (1 − π0i)

−1(yi − π0i)xij

{2In(β0)(j, j) log log In(β0)(j, j)}
1

2

= 1 a.s. for j = 1, . . . , p. (14)

Here xij is the jth component of xi and In(β0)(j, j) is the component of In(β0)
at the jth row and jth column. If, in addition, (C.9) is satisfied, then we have

∂`

∂β

∣

∣

∣

β=β0

=

n
∑

i=1

mih
′(xt

iβ0)

π0i(1 − π0i)
(yi − π0i)xi

= Xt
nMn diag{ h′(xt

1β0)

π01(1−π01)
, . . . ,

h′(xt
nβ0)

π0n(1−π0n)
}(Yn−Πn0)

= O(
√

n log log n) a.s., (15)
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where Πn0 = (π01, . . . , π0n)t is the true value of Πn = (π1, . . . , πn)t.

Lemma 5.(Law of the Iterated Logarithm). Let {Zn, n ≥ 1} be a sequence of

independent random variables with EZn = 0, EZ2
n = σ2

n and Bn =
∑n

k=1 σ2
k →

∞. If |Zn| ≤ o{(Bn/ log log Bn)1/2} a.s., then

lim sup
n→∞

±∑n
k=1 Zk

{2Bn log log Bn}
1
2

= lim sup
n→∞

|∑n
k=1 Zk|

{2Bn log log Bn}
1
2

= 1 a.s..

The proof can be found in Chow and Teicher (1997, pp.373-374) or Petrov
(1995, pp.239-246).

Lemma 6. Under (C.1), (C.3), (C.6), (C.7) and (C.9)−(C.12), the function

H(β) =
∑n

k=1{ρ(h(xt
kβ); yk,mk) − ρ(h(xt

kβ0); yk,mk)} is strictly convex on β ∈
Bn when n is sufficiently large, for all sample sequences {y1, . . . , yn, . . .} except a

subset with probability 0. Further, the eigenvalues of ∂2H(β)/(∂β∂βt) at β = β0

satisfy

cn ≤ λ1

{∂2H(β)

∂β∂βt

∣

∣

∣

β=β0

}

≤ · · · ≤ λp

{∂2H(β)

∂β∂βt
|β=β0

}

≤ Cn a.s.

for some positive constants c and C when n is sufficiently large.

The proofs of Lemmas 1, 2, 3, 4 and 6 are given in the Appendix.

Proof of Theorem 1. It suffices to prove (6) for the full model:

||β̂n − β0|| = O((n−1 log log n)
1
2 ) a.s.. (16)

By the definition of H(β) we have

H(β) =
n

∑

k=1

{ρ(h(xt
kβ);π0k,mk) − ρ(h(xt

kβ0);π0k,mk)}

+
n

∑

k=1

{ρ(h(xt
kβ); yk,mk) − ρ(h(xt

kβ);π0k,mk)}

−
n

∑

k=1

{ρ(h(xt
kβ0); yk,mk) − ρ(h(xt

kβ0);π0k,mk)}

denote
= T1 + T2 − T3.

Here one can show that T1 =
∑n

k=1 K(xt
kβ,xt

kβ0) by the definition of K(t, s) in
Lemma 2, and

T2 − T3 = −
n

∑

k=1

mkh
′(xt

kβ0)

π0k(1 − π0k)
(yk − π0k)x

t
k(β − β0)

−
n

∑

k=1

mkR(xt
kβ,xt

kβ0)(yk − π0k)
denote

= T4 − T5
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by the definition of R(t, s) in Lemma 3.

We first show that T5 satisfies

sup
β∈An

|T5| = o(1)ν2
n log log n a.s.. (17)

For each integer n there exists a unique integer m such that 2m < n ≤ 2m+1.

Define a subset Cm = {β̄mj ∈ A2m : j = 1, . . . , hm} such that for any β ∈ A2m ,

there exists j to satisfy ||β − β̄mj || ≤ ν2m2−m/2
√

log log 2m/m. It is easy to see

that at least one such Cm exists with hm ≤ 4pmp. Also define another subset

Dm = {β̃ml ∈ A2m : l = 1, . . . , rm} such that for any β ∈ A2m , there exists l to

satisfy ||β − β̃ml|| ≤ ν2m2−m/2
√

log log 2m/2m. It is easy to see that at least one

such Dm exists with rm ≤ 4p2mp. For each l = 1, . . . , rm, let

A2m,l =
{

β : ||β − β̃ml|| ≤ ν2m2−
m
2

√
log log 2m

2m

}

be a hyper-ball centered at β̃ml. By the definition of Dm we have
⋃rm

l=1 A2m,l ⊇
A2m . If Zk(β) = mkR(xt

kβ,xt
kβ0)(yk − π0k), it has a mean of 0, and we see that

for each β ∈ A2m , there exist l with ||β − β̃ml|| ≤ ν2m2−m/2
√

log log 2m/2m and

j with ||β̃ml − β̄mj || ≤ ν2m2−m/2
√

log log 2m/m, such that β ∈ A2m,l and

|Zk(β)| ≤ |Zk(β) − Zk(β̃ml)| + |Zk(β̃ml) − Zk(β̄mj)| + |Zk(β̄mj)|. (18)

From (18) it follows that for any ε > 0

{

max
2m<n≤2m+1

sup
β∈A2m

∣

∣

∣

n
∑

k=1

Zk(β)
∣

∣

∣
≥ εν2

2m log log 2m

}

=

2m+1
⋃

n=2m+1

{

sup
β∈A2m

∣

∣

∣

n
∑

k=1

Zk(β)
∣

∣

∣
≥ εν2

2m log log 2m

}

⊆
[

2m+1
⋃

n=2m+1

rm
⋃

l=1

{

sup
β∈A2m,l

∣

∣

∣

n
∑

k=1

[Zk(β) − Zk(β̃ml)]
∣

∣

∣
≥ 1

3
εν2

2m log log 2m

}]

⋃

[

2m+1
⋃

n=2m+1

rm
⋃

l=1

⋃

j∈Sl

{

∣

∣

∣

n
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)]
∣

∣

∣
≥ 1

3
εν2

2m log log 2m

}]

⋃

[

2m+1
⋃

n=2m+1

hm
⋃

j=1

{

∣

∣

∣

n
∑

k=1

Zk(β̄mj)
∣

∣

∣
≥ 1

3
εν2

2m log log 2m

}]
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=

[

rm
⋃

l=1

2m+1
⋃

n=2m+1

{

sup
β∈A2m,l

∣

∣

∣

n
∑

k=1

[Zk(β) − Zk(β̃ml)]
∣

∣

∣
≥ 1

3
εν2

2m log log 2m

}]

⋃

[

rm
⋃

l=1

⋃

j∈Sl

{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)]
∣

∣

∣
≥ 1

3
εν2

2m log log 2m

}]

⋃

[

hm
⋃

j=1

{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

Zk(β̄mj)
∣

∣

∣
≥ 1

3
εν2

2m log log 2m

}]

, (19)

where Sl = {j : ||β̃ml − β̄mj || ≤ ν2m2−m/2
√

log log 2m/m.} for each l given.

By Lemma 3, (21), the Cauchy-Schwarz inequality and (C.11), we have

n
∑

k=1

|Zk(β) − Zk(β̃ml)| ≤ 2

n
∑

k=1

mk|R(xt
kβ,xt

kβ0) − R(xt
kβ̃ml,x

t
kβ0)|

≤ 2c3

n
∑

k=1

mk||xk||2(||β − β0|| + ||β̃ml − β0||)||β − β̃ml||

≤ c2−mν2
2m log log 2m = o(1)ν2

2m log log 2m for every β ∈ A2m,l,

which implies that for large m,

P
{

rm
⋃

l=1

2m+1
⋃

n=2m+1

[

sup
β∈A2m,l

∣

∣

∣

n
∑

k=1

(Zk(β) − Zk(β̃ml)
∣

∣

∣
≥ 1

3
εν2

2m log log 2m
]}

= 0. (20)

By the definition of ξn, and (C.11),

ξ2
2m+1 ≥ mkx

t
k(X

t
2m+1M2m+1X2m+1)−1xk

≥ mkx
t
kxk(λp{Xt

2m+1M2m+1X2m+1})−1 ≥ d−1
4 2−(m+1)mk||xk||2 (21)

for any k = 1, . . . , 2m+1. For any β̃ml and β̄mj with j ∈ Sl, it follows from

Lemma 3, (21), the Cauchy-Schwarz inequality and (C.11), that

|Zk(β̃ml) − Zk(β̄mj)| ≤ 4c3d4m
−1ξ2

2m+1ν
2
2m log log 2m, k = 1, . . . , 2m+1, (22)

2m+1
∑

k=1

E[Zk(β̃ml) − Zk(β̄mj)]
2

≤
2m+1
∑

k=1

m2
kc

2
3[|xt

k(β̃ml − β0)| + |xt
k(β̄mj − β0)|]2|xt

k(β̃ml − β̄mj)|2
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≤ c2
3 max
1≤k≤2m+1

mk||xk||2[||β̃ml − β0||

+||β̄mj − β0||]2(β̃ml − β̄mj)
t(

2m+1
∑

k=1

mkxkx
t
k)(β̃ml − β̄mj)

≤ 16c2
3d

2
4ξ

2
2m+1ν

4
2mm−2(log log 2m)2. (23)

By (23) and the well-known relationship among the median, mean and variance,

|med(X)−E(X)| ≤
√

Var(X) (Chow and Teicher (1997, p.109)), it follows that

∣

∣

∣
med

(

2m+1
∑

k=n+1

[Zk(β̃ml) − Zk(β̄mj)]
)
∣

∣

∣
≤ 4c3d4ξ2m+1ν2

2mm−1 log log 2m

= o(1)ν2
2m log log 2m. (24)

By (24) and Lévy’s inequality,

P
{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)]
∣

∣

∣
≥ 1

3
εν2

2m log log 2m
}

≤ P
{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)] − med
(

2m+1
∑

k=n+1

[Zk(β̃ml)

−Zk(β̄mj)]
)
∣

∣

∣
≥ cν2

2m log log 2m
}

≤ 2P
{∣

∣

∣

2m+1
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)]
∣

∣

∣
≥ cν2

2m log log 2m
}

. (25)

Before we proceed, we give Bernstein’s inequality, it can be found in Chow

and Teicher (1997, p.111).

Bernstein’s Inequality. If Sn =
∑n

j=1 Zj where Zj ’s are independent random

variables with EZj = 0 and |Zj | ≤ a for each j, then for any x > 0,

P{|Sn| > x} ≤ 2 exp{ −x2

2(ax +
∑n

j=1 EZ2
j )

}.

By (25), (22), (23), Bernstein’s inequality, (C.10) and (C.11), it follows that

P
{

rm
⋃

l=1

⋃

j∈Sl

{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)]
∣

∣

∣
≥ 1

3
εν2

2m log log 2m
}}

≤ 2
rm
∑

l=1

∑

j∈Sl

P
{
∣

∣

∣

2m+1
∑

k=1

[Zk(β̃ml) − Zk(β̄mj)]
∣

∣

∣
≥ cν2

2m log log 2m
}
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≤ 42p+1mp2mp exp
{ −cν4

2m(log log 2m)2

m−1ξ2
2m+1ν

4
2m(loglog 2m)2+m−2ξ2

2m+1ν
4
2m(loglog 2m)2

}

≤ 42p+1mp2mp exp{−cmξ−2
2m+1} ≤ exp{−cm log log 2m+1}, (26)

when m is sufficiently large.
For any β̄mj , it follows from Lemma 3, (21), the Cauchy-Schwarz inequality

and (C.11) that

|Zk(β̄mj)| ≤ 2c3d4ξ
2
2m+1ν

2
2m log log 2m, k = 1, . . . , 2m+1, (27)

2m+1
∑

k=1

EZk(β̄mj)
2 ≤

2m+1
∑

k=1

m2
kc

2
3[x

t
k(β̄mj − β0)]

4

≤c2
3 max
1≤k≤2m+1

mk||xk||2||β̄mj−β0||2(β̄mj − β0)
t
(

2m+1
∑

k=1

mkxkx
t
k

)

(β̄mj − β0)

≤ c2
3d42

m+1ξ2
2m+1 ||β̄mj−β0||4λp{Xt

2m+1M2m+1X2m+1}
≤ 4c2

3d
2
4ξ

2
2m+1ν

4
2m(log log 2m)2. (28)

Similar to (24), following (C.10) and (28), we have

∣

∣

∣
med

(

2m+1
∑

k=n+1

Zk(β̄mj)
)∣

∣

∣
≤ 2c3d4ξ2m+1ν2

2m log log 2m = o(1)ν2
2m log log 2m. (29)

Therefore, using the Lévy and Beinstein’s inequalities, (12), (27), (28), (29),
(C.10) and (C.11), we find that, when m is sufficiently large,

P
{

hm
⋃

j=1

{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

Zk(β̄mj)
∣

∣

∣
≥ 1

3
εν2

2m log log 2m
}}

≤
hm
∑

j=1

P
{

max
2m<n≤2m+1

∣

∣

∣

n
∑

k=1

Zk(β̄mj) − med
(

2m+1
∑

k=n+1

Zk(β̄mj)
)
∣

∣

∣
≥ cν2

2m log log 2m
}

≤ 2

hm
∑

j=1

P
{
∣

∣

∣

2m+1
∑

k=1

Zk(β̄mj)
∣

∣

∣
≥ cν2

2m log log 2m
}

≤ exp
{

− cν2
2m log log 2m+1

}

. (30)

Combining (19), (20), (26) and (30), we see for any ε > 0 and for large m,
∞
∑

m=1

P
{

max
2m<n≤2m+1

sup
β∈A2m

|
n

∑

k=1

Zk(β)| ≥ εν2
2m log log 2m

}

≤ c +

∞
∑

m=1

{e−cm log log 2m+1

+ e−cν2
2m log log 2m+1} < ∞. (31)
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It follows from the Borel-Cantelli Lemma that

max
2m<n≤2m+1

sup
β∈A2m

|
n

∑

k=1

Zk(β)| = o(1)ν2
2m log log 2m a.s.. (32)

Hence, supβ∈A2m |∑n
k=1 Zk(β)| = o(1)ν2

2m log log 2m = o(1)ν2
n log log n a.s.. Ac-

cordingly supβ∈An
|∑n

k=1 Zk(β)| = o(1)ν2
n log log n a.s. and supβ∈∂An

|∑n
k=1

Zk(β)| = o(1)ν2
n log log n a.s., which proves that (17) is true.

Concerning the uniform bound of T4, by Lemma 4 and the Cauchy-Schwarz

inequality, we see that

sup
β∈∂An

|T4| ≤ O(
√

n log log n) sup
β∈∂An

||β − β0|| = O(1)νn log log n a.s.. (33)

Concerning T1, by Lemma 2 and (C.13),

inf
β∈∂An

T1 ≥ inf
β∈∂An

c2

n
∑

k=1

min

{

mkh
′(xt

kβ0)
2

π0k(1 − π0k)
,mkπ0k(1 − π0k)

}

[xt
k(β − β0)]

2

= inf
β∈∂An

c2(β − β0)
tXt

nΛnXn(β − β0)

≥ inf
β∈∂An

c2||β − β0||2λ1{Xt
nΛXn} ≥ c2d5ν

2
n log log n. (34)

From (17), (33) and (34) it follows that there exists a positive constant c4

such that, when n is sufficiently large,

inf
β∈∂An

H(β) = inf
β∈∂An

(T1 + T4 − T5) ≥ c4ν
2
n log log n a.s.. (35)

Note that H(β0) = 0, and, from Lemma 6, H(β) is strictly convex on β∈Bn ⊃
An for almost surely every sample sequence {y1, . . . , yn} when n is sufficiently

large. This and (35) imply that the minimizer β̂n of H(β) over Bn must be

a stationary point of H(β), i.e, a solution of the likelihood equation (3), and

an interior point of An. By our assumptions, this minimizer is the MLE and

||β̂n − β0|| ≤ νn(n−1 log log n)1/2 a.s.. Since νn can be chosen to be divergent as

slowly as possible, it follows that (16) holds.

Now we proceed to show that there exists a constant c > 0 such that

lim sup
n→∞

||β̂n − β0||
√

n−1 log log n
= c a.s.. (36)

Suppose (36) is not true. By (16), this implies that ||β̂n−β0|| = o(
√

n−1 log log n)

a.s.. Now let H(β) = H(β, n) and Ti = Ti(β, n) (i = 1, . . . , 5) to indicate their

dependence on n. Following the same line for proving (17) and (33) one can
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show that T4(β̂n, n) = o(1) log log n a.s. and T5(β̂n, n) = o(1) log log n a.s..

Further, by Lemma 1, T1(β̂n, n) =
∑n

k=1 K(xt
kβ̂n,xt

kβ0) =
∑n

k=1 D(xt
kβ̂n;xt

kβ0,

h(xt
kβ0)) and accordingly

|T1(β̂n, n)| ≤
n

∑

k=1

c1mk[x
t
k(β̂n − β0)]

2

= c1(β̂n − β0)
tXt

nMnXn(β̂n − β0) = o(1) log log n a.s.

by (C.11) and the assumption that ||β̂n−β0|| = o(
√

n−1 log log n) a.s.. Therefore,

|H(β̂n, n)| = |T1(β̂n, n) + T4(β̂n, n) − T5(β̂n, n)| = o(1) log log n a.s.. (37)

On the other hand, from Lemma 4 there exists a sequence ni ↑ ∞ such that

lim
i→∞

∑ni

k=1 mkh
′(xt

kβ0)π
−1
0k (1 − π0k)

−1(yk − π0k)xk1

{2Ini
(β0)(1, 1) log log Ini

(β0)(1, 1)}
1
2

= 1 a.s.. (38)

Now define a p × 1 vector β̃ni
with the first component being

β̃ni
(1) = [d1/(4d0d4c1)]

√

2 log log Ini
(β0)(1, 1)

Ini
(β0)(1, 1)

+ β01,

and β̃ni
(j)=β0j (j =2, . . . , p). By (38), (C.7) and (C.9), there exists an i′>0 such

that T4(β̃ni
, ni) ≤−[d1/(4d0d4c1)]log log ni a.s. for i > i′. Following the same line

of proving (17), one can show that |T5(β̃ni
, ni)| ≤ [d1/(28d0d4c1)] log log ni a.s.

when i > i′′ for some i′′ > 0. Further, by Lemma 1, (C.7), (C.9) and (C.11),

0 ≤ T1(β̃ni
, ni) =

ni
∑

k=1

K(xt
kβ̃ni

,xt
kβ0) =

ni
∑

k=1

D(xt
kβ̃ni

;xt
kβ0, h(xt

kβ0))

≤
ni

∑

k=1

c1mk[x
t
k(β̃ni

− β0)]
2 = c1(β̃ni

− β0)
tXt

ni
Mni

Xni
(β̃ni

− β0)

≤ c1λp(X
t
ni

Mni
Xni

)||β̃ni
− β0||2 ≤ c1d4ni

d2
1

8d2
0d

2
4c

2
1

d0

d1ni
log log Ini

(β0)(1, 1)

=
d1

8d0d4c1
log log Ini

(β0)(1, 1) ≤
d1

7d0d4c1
log log ni,

when i is sufficiently large. Combining the above results for T4, T5 and T1, we

have

H(β̃ni
, n) = T1(β̃ni

, n) + T4(β̃ni
, n) − T5(β̃ni

, n) ≤ − d1

14d0d4c1
log log ni a.s.,
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when i is sufficiently large. It follows that H(β̃ni
, n) < H(β̂n, n) a.s. by (37),

which contradicts the fact that β̂n is the MLE minimizing H(β, n) over Bn. This

suffices to prove (7).

Proof of Theorem 2. It is sufficient to prove (9) only for the full model.

Namely, we only need to prove

0 ≤
n

∑

k=1

{ρ(h(xt
kβ0); yk,mk) − ρ(h(xt

kβ̂n); yk,mk)} = O(log log n) a.s.. (39)

The inequality part of (39) is obvious because β̂n is the MLE. The equality part

of (39) is equivalent to H(β̂n, n) = O(log log n) a.s.. From the proof of Theorem 1

we know H(β̂n, n) = T1(β̂n, n) + T4(β̂n, n) − T5(β̂n, n). Following the same line

for proving (37) and noting ||β̂n − β0|| = O(
√

n−1 log log n) a.s., one can show

that H(β̂n, n) = O(log log n) a.s.. Therefore, (39) holds.

Proof of Theorem 3. By Theorem 1 we have ||β̂n − β0|| = O(
√

n−1 log log n)

a.s.. Thus β̂n ∈ A0 a.s., where A0 is defined in (C.14). Now we introduce a

p × 1 vector β̂∗
n(α) which is obtained by augmenting β̂n(α) with p − p0 zeros

in such a way that the sub-vector of β̂∗
n(α) indexed by α equals β̂n(α). Clearly,

β̂∗
n(α) 6∈ A0 for any incorrect model α ∈ Aw. Hence by (C.14) and the assumption

`(β̂n|Yn, Xn) = supβ∈A0
`(β|Yn, Xn) we have, for any α ∈ Aw,

`(β̂n|Yn, Xn) − `(β̂∗
n(α)|Yn, Xn) ≥ d6n a.s. when n ≥ n0.

By Theorem 2 we know `(β̂n|Yn, Xn)− `(β0|Yn, Xn) = O(log log n) a.s.. There-

fore,

lim inf
n→∞

n−1{`(β0|Yn, Xn) − `(β̂∗
n(α)|Yn, Xn)} > 0 a.s..

Noting that `(β̂∗
n(α)|Yn, Xn) = `(β̂n(α)|Yn, Xnα), we see that (10) and hence

(11) hold.

5. Discussion

In this paper we study a set of penalized likelihood based model selection

criteria for generalized linear models with binary or proportional responses. We

assume that all explanatory variables that affect the response variable Y are

available for selection. In this situation, a binomial distribution is appropriate

for modeling Y . In practice, some variables affecting Y may not be observed

thus a binomial distribution modeling Y may not be valid. Consequently, one

may introduce an over-dispersion parameter to the regression model and use a

beta-binomial distribution to model Y to account for the effects of those lurking

variables. It should not be very difficult to extend the asymptotic results derived

in this paper to this situation.
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When the focus is only on the four link functions listed in the paper, the

results of Lemma 6 can be strengthened in that the negative Hessian matrix

−[c∂2`/(∂β∂βt)] is positive definite for any β, and accordingly H(β) is strictly

convex at every β. This can be proved by following Wedderburn (1976) and some

intricate calculus.

It is worth mentioning that executing a model selection criterion by a compu-

tationally feasible procedure is as important as finding a desirable model selection

criterion, especially when there are large number of candidate models for selec-

tion. However, this is beyond the scope of this paper. We refer to Qian (1999)

and Qian and Field (2002b) for a Markov chain Monte Carlo selection procedure

which is both feasible and consistent.

Appendix

Proof of Lemma 1. It is easy to see that D ′
t(t; s, y) = m[(1 − y)/(1 − h(t)) −

y/h(t)]h′(t) − m[(1 − y)/(1 − h(s)) − y/h(s)]h′(s), and D′′
t (t; s, y) = m(1 − y)

[h′(t)2/(1 − h(t))2 + h′′(t)/(1 − h(t))] + my[h′(t)2/h(t)2 − h′′(t)/h(t)]. Condition

(C.1) implies that limt→−∞ h(t) = 0, limt→∞ h(t) = 1. It also implies that

h(s)−h(t) =
∫ s
t h′(x)dx and h′(s)−h′(t) =

∫ s
t h′′(x)dx. Thus, by the uniform con-

tinuity of h′(t) and h′′(t), it follows that limt→±∞ h′(t) = 0 and limt→±∞ h′′(t) =

0. Now it is easy to see that limt→−∞[h′(t)2/(1 − h(t))2 +h′′(t)/(1 − h(t))] =

0 and limt→+∞[h′(t)2/h(t)2 − h′′(t)/h(t)] = 0. By this and (C.3), if c1 =

max{supt |h′(t)2/(1 − h(t))2 + h′′(t)/(1 − h(t))|, supt |h′(t)2/h(t)2 − h′′(t)/h(t)|},
one has c1 < ∞. Therefore, |D′′

t (t; s, y)| ≤ c1m for any t, s and y. Now define

F1(t) = D(t; s, y) − c1m(t − s)2 and F2(t) = D(t; s, y) + c1m(t − s)2. Clearly,

F1(s) = F ′
1(s) = F2(s) = F ′

2(s) = 0 and F ′′
1 (t) = D′′

t (t; s, y) − 2c1m < 0,

F ′′
2 (t) = D′′

t (t; s, y)+2c1m > 0. Therefore F1(t) ≤ 0 and F2(t) ≥ 0 and (R.1) fol-

lows. Statement (R.2) follows from the fact that D(s; s, h(s)) = D ′
t(s; s, h(s)) = 0

and D′′
t (s; s, h(s)) = mh′(s)2/(h(s)(1 − h(s))) ≥ 0.

Proof of Lemma 2. First suppose that (C.1), (C.2) and (C.4) hold. It is easy to

see that K(t, s) = −mh(s) log(h(t)/h(s))−m(1−h(s)) log[(1 − h(t))/(1 − h(s))]

and K ′
t(t, s) = m[(1 − h(s))/(1 − h(t)) − h(s)/h(t)]h′(t). Further,

K ′′
t (t, s) = m

[

1 − h(s)

(1 − h(t))2
+

h(s)

h(t)2

]

h′(t)2 + m

[

1 − h(s)

1 − h(t)
− h(s)

h(t)

]

h′′(t)

=
mh′(s)2

h(s)(1 − h(s))

{[

h(s)(1 − h(s))2

(1 − h(t))2
+

(1 − h(s))h(s)2

h(t)2

]

h′(t)2

h′(s)2

+

[

h(s)(1 − h(s))2

1 − h(t)
− h(s)2(1 − h(s))

h(t)

]

h′′(t)

h′(s)2

}

(40)

= m(1−h(s))

[

h′(t)2

(1−h(t))2
+

h′′(t)

1−h(t)

]

+ mh(s)

[

h′(t)2

h(t)2
− h′′(t)

h(t)

]

. (41)



1354 GUOQI QIAN AND YUEHUA WU

We now consider three cases according to the position of s in relation to t0 in (C.2)

and (C.4): (i) |s| ≤ 1.1t0, (ii) s > 1.1t0 and (iii) s < −1.1t0. In case (i), K ′′
t (t, s) =

mh′(s)2/(h(s)(1 − h(s))){u(t, s) + v(t, s)} = mh′(s)2/(h(s)(1 − h(s))){[u(t, s) −
u(s, s)] + [v(t, s) − v(s, s)] + 1} by (40), the definitions of u(t, s) and v(t, s),

and the fact that u(s, s) = 1 and v(s, s) = 0. By (C.1), h(t), h′(t) and h′′(t) are

uniformly continuous on [−1.2t0, 1.2t0]. This implies uniform continuity of u(t, s)

and v(t, s) with respect to t ∈ [−1.2t0, 1.2t0] when s ∈ [−1.1t0, 1.1t0]. Thus, there

exists a positive constant ∆1 such that |u(t, s) − u(s, s)| < 1/4 and |v(t, s) −
v(s, s)| < 1/4 when |t − s| < ∆1 and s ∈ [−1.1t0, 1.1t0]. Therefore K ′′

t (t, s) >

(1/2)mh′(s)2/(h(s)(1 − h(s))) when |t − s| < ∆1 and s ∈ [−1.1t0, 1.1t0]. In

case (ii) where s > 1.1t0, there exists ∆2 > 0 such that t > t0 when |t −
s| < ∆2. Assuming this, by (C.2), the second term of (41) is non-negative,

and by Condition (C.4) the first term of (41) is not smaller than c′2m(1 − h(s)),

where c′2 = inft>t0{h′(t)2/(1 − h(t))2 + h′′(t)/(1 − h(t))}. Therefore, K ′′
t (t, s) ≥

c′2mh(s)(1 − h(s)) when |t − s| < ∆2 and s > 1.1t0. Similarly, it can be shown

that in case (iii) there exist ∆3 > 0 and c′′2 > 0 such that K ′′
t (t, s) ≥ c′′2mh(s)(1−

h(s)) when |t − s| < ∆3 and s < −1.1t0. Define ∆ = min{∆1,∆2,∆3} and

c2 = (1/2)min{1/2, c′2, c′′2}. From the three cases discussed above and the fact

K(s, s) = K ′
t(s, s) = 0, Lemma 2 follows under (C.1), (C.2) and (C.4).

Now suppose that (C.1) and (C.5) hold. If |s| ≤ max(s0, 1.1t0), Lemma 2 can

be proved following the same lines as in case (i) above. If |s| > max(s0, 1.1t0),

Lemma 2 is obvious when (C.5) holds.

Proof of Lemma 3. It is easy to find that R′
t(t, s) = h′(t)/h(t)+h′(t)/(1 − h(t))

−h′(s)/(h(s)(1 − h(s)) and R′′
t (t, s) = h′(t)2/(1 − h(t))2 + h′′(t)/(1 − h(t)) −

[h′(t)2/h(t)2 − h′′(t)/h(t)]. As shown in Lemma 1, (C.1) implies that limt→−∞

h(t) = 0, limt→+∞ h(t) = 1, limt→±∞ h′(t) = 0, and limt→±∞ h′′(t) = 0. These

results ensure that supt≤t0 |h′(t)2/(1 − h(t))2 + h′′(t)/(1 − h(t))| < ∞ and

supt≥−t0 |h′(t)2/h(t)2−h′′(t)/h(t)| < ∞. This and (C.3) imply that |R′′
t (t, s)| ≤ c3

and, accordingly, |R(t, s)| ≤ c3(t − s)2 for some constant c3 not depending on t

and s.

Now by (C.1) and the Mean Value Theorem,

R(t1, s) − R(t2, s) = log
h(t1)

1 − h(t1)
− log

h(t2)

1 − h(t2)
− h′(s)

h(s)(1 − h(s))
(t1 − t2)

=

[

h′(t∗)

h(t∗)(1 − h(t∗))
− h′(s)

h(s)(1 − h(s))

]

(t1 − t2)

= [R′
t(t

∗, s) − R′
t(s, s)](t1 − t2) = R′′

t (t∗∗, s)(t∗ − s)(t1 − t2),

where t∗ is some value in between t1 and t2, and t∗∗ is in between t∗ and s. It is

easy to see that |R(t1, s) − R(t2, s)| ≤ c3(|t1 − s| + |t2 − s|)|t1 − t2|.
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Proof of Lemma 4. The proof of (14) is an application of Lemma 5. Knowing

that miyi follows a Bin(mi, π0i) distribution and writing Zij = mih
′(xt

iβ0)π
−1
0i (1−

π0i)
−1(yi−π0i)xij , it can be verified that EZij = 0, EZ2

ij = [mih
′(xt

iβ0)
2/(π0i(1−

π0i))]x
2
ij , and

∑n
i=1 EZ2

ij = In(β0)(j, j) → ∞ by (C.7). Further, by (C.7) and

(C.8) and the inequality λ1{In(β0)} ≤ In(β0)(j,j) ≤ λp{In(β0)}, it can be shown

that

Z2
nj ≤

m2
nh′(xt

nβ0)
2

π2
0n(1 − π0n)2

x2
nj ≤ λp{In(β0)}

m2
nh′(xt

nβ0)
2

π2
0n(1 − π0n)2

xt
nxnλp{In(β0)}−1

≤ λp{In(β0)}
m2

nh′(xt
nβ0)

2

π2
0n(1 − π0n)2

xt
nIn(β0)

−1xn ≤ λp{In(β0)}δ2
n

≤ λp{In(β0)}
λ1{In(β0)}

In(β0)(j, j)

log log In(β0)(j, j)
δ2
n log log λp{In(β0)}

= o

(

In(β0)(j, j)

log log In(β0)(j, j)

)

.

Therefore, {Zij} satisfies all conditions in Lemma 5 and (14) follows. Then result

(15) follows from (14) and (C.9).

Proof of Lemma 6. By the definitions of H(β) and the Fisher information

In(β), it is easy to see that

∂2H(β)

∂β∂βt
= − ∂2`

∂β∂βt
= T6 + In(β) = T6 + (In(β) − In(β0)) + In(β0), (42)

where

T6 =

n
∑

k=1

mk

[

(1 − 2πk)h
′(xt

kβ)2

π2
k(1 − πk)2

− h′′(xt
kβ)

πk(1 − πk)

]

(yk − πk)xkx
t
k.

Let χ(s) = (1 − 2h(s))h′(s)2/(h(s)2(1 − h(s))2) − h′′(s)/(h(s)(1 − h(s))) and re-

write T6 as

T6 =

n
∑

k=1

mkχ(xt
kβ)(yk − π0k)xkx

t
k −

n
∑

k=1

mkχ(xt
kβ)[h(xt

kβ) − h(xt
kβ0)]xkx

t
k

denoted
= T7 − T8. (43)

Note that

χ(s) =

{

− h′(s)2

(1 − h(s))2
− h′′(s)

(1 − h(s))

}

+
h′(s)2

h(s)2
− h′′(s)

h(s)
.

In the proof of Lemma 1 we have seen that lims→±∞ h′(s) = 0 implies |h′(s)| ≤ c5

for some constant c5, and that |χ(s)| ≤ 2c1 under (C.1) and (C.3). From this,
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(21), and the definition of {νn}, it follows that for any k ≤ n,

|χ(xt
kβ)(h(xt

kβ)−h(xt
kβ0))|I(β∈Bn) ≤ c|xt

k(β − β0)|I(β∈Bn)

≤ c||xk||||β − β0||I(β∈Bn) ≤ cm
−1/2
k n1/2ξn||β − β0||I(β∈Bn)

≤ cn1/2ξnν2
n(n−1 log log n)1/2 = cξnν2

n(log log n)1/2 = o(1). (44)

By (44) and (C.11), it is easy to see that |T8|I(β∈Bn) = o(n).

Now let

T7(i, j) =

n
∑

k=1

mkχ(xt
kβ)(yk−π0k)xkixkj

denoted
=

n
∑

k=1

Wkij, i, j = 1, . . . , p.

It is easy to see that EWkij = 0 and EW 2
kij = mkπ0k(1−π0k)χ(xt

kβ)2(xkixkj)
2 ≤

cmk(xkixkj)
2. Thus according to Condition (C.12) Dnij =

∑n
k=1 EW 2

kij ≤ O(n).

If limn→∞ Dnij < ∞, we have T7(i, j) = o(an) a.s. for any sequence an ↑ ∞,

according to a strong law of large numbers given by Theorem 6.6 of Petrov(1995,

p.209), implying T7(i, j) = O(1) a.s.. If limn→∞ Dnij = +∞, by Theorem 6.17

of Petrov(1995, p.222), we have T7(i, j) = o(D
2/3
nij ) = o(n2/3) a.s..

The preceding results about T7 and T8 show that T6I(β ∈ Bn) = o(n)

a.s.. Knowing that In(β) =
∑n

i=1[mih
′(xt

iβ)2/πi(1 − πi)]xix
t
i, one can show that

|In(β)− In(β0)| = o(n) for β ∈ Bn. This is due to (C.11) and the following facts.

First, h′(s)2/h(s)(1 − h(s)) has bounded first order derivative by (C.1), (C.3)

and (C.6). Second, max1≤k≤n |xt
kβ − xt

kβ0|I(β∈Bn) = o(1) by (44).

From the results for T6 and In(β)− In(β0), (C.7), (C.9), and (42), it follows

that ∂2H(β)/∂β∂βt is positive definite and of order O(n) on β ∈ Bn, and for

almost surely all sample sequences {y1, . . . , yn} when n is sufficiently large. The

lemma is proved.

Testing Conditions (C.1) to (C.6) for the logistic link. Here g1(π) =

log(π/(1 − π)) and the inverse link is h1(t) = et(1 + et)−1. Obviously, limt→−∞

h1(t) = 0, limt→+∞ h1(t) = 1, h′
1(t) = et(1 + et)−2, h′′

1(t) = et(1 − et)(1 + et)−3,

and h′′′
1 (t) = (et − 4e2t + e3t)(1 + et)−4. It is easy to see that |h′′

1(t)| ≤ 1 and

|h′′′
1 (t)| ≤ 6. Hence (C.1) is satisfied. It is also easy to see that (C.2) is satisfied

for any t0 > 0. Now it can be shown that

h′
1(t)

2

(1 − h1(t))2
+

h′′
1(t)

1 − h1(t)
=

h′
1(t)

2

h1(t)2
− h′′

1(t)

h1(t)
=

et

(1 + et)2
= h′

1(t). (45)

From this, supt>t0>0 |h′
1(t)

2/(1 − h1(t))
2+h′′

1(t)/(1 − h1(t))| = supt>t0>0 |h′
1(t)

2/

h1(t)
2 − h′′

1(t)/h1(t)| = supt>t0>0 h′
1(t) = h′

1(t0) < ∞. So (C.3) is satisfied. But
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(C.4) is not satisfied because inf t>t0>0 h′
1(t) = inf t<t0<0 h′

1(t) = 0. Concerning

(C.5), it can be verified that

u(t, s) + v(t, s) = et−s

(

1 + es

1 + et

)2

≥
{

es−t, if t ≥ s,

et−s, if t < s.
(46)

So u(t, s) + v(t, s) ≥ e−∆0 if |t − s| ≤ ∆0. Therefore (C.5) is satisfied. Finally,

since h′
1(s)h

′′
1(s)/h1(s)(1 − h1(s)) = h′′

1(s), (C.6) is satisfied.

Testing Conditions (C.1) to (C.6) for the probit link. Here g2(π) =

Φ−1(π) and the inverse probit link is h2(t) = Φ(t) =
∫ t
−∞(2π)−1/2e−s2/2ds. It

is easy to see that h′
2(t) = (2π)−1/2e−t22, h′′

2(t) = −(t/
√

2π)e−t22 and h′′′
2 (t) =

((t2 − 1)/
√

2π)e−t2/2. Since |h′′
2(t)| ≤ (2π)−1/2e−1/2 and −(2π)−1/2 ≤ h′′′

2 (t) ≤
(2/

√
2π)e−3/2, it follows that both h′

2(t) and h′′
2(t) are uniformly continuous,

so (C.1) is satisfied. Condition (C.2) is clearly satisfied for any t0 > 0. By

repeatedly applying l’Hospital’s rule, it can be shown that

lim
t→+∞

h′
2(t)

2

(1 − h2(t))2
+

h′′
2(t)

1 − h2(t)
= lim

t→+∞

e−t2 − te−
1
2
t2

∫ +∞
t e−

1
2
s2

ds

[
∫ +∞
t e−

1
2
s2

ds]2
= 1,

lim
t→−∞

h′
2(t)

2

h2(t)2
− h′′

2(t)

h2(t)
= lim

t→−∞

e−t2 + te−
1
2
t2

∫ t
−∞ e−

1
2
s2

ds

[
∫ t
−∞ e−

1
2
s2

ds]2
= 1.

This suggests that (C.3) and (C.4) hold if t0 is taken to be sufficiently large. By

applying l’Hospital’s rule, one can show that

lim
t→±∞

h′
2(t)h

′′
2(t)

h2(t)(1 − h2(t))
= lim

t→±∞

te−t2

∫ t
−∞ e−

1
2
s2

ds
∫ +∞
t e−

1
2
s2

ds
= 0.

Hence (C.6) holds. Now we proceed to prove that (C.5) does not hold for h2(t).

Let t = s + ∆. By repeatedly applying l’Hospital’s rule, one can show that

lim
s→+∞

1 − h2(s)

1 − h2(s + ∆)
· h′

2(s + ∆)

h′
2(s)

= 1 for any ∆, (47)

lim
s→+∞

(1 − h2(s)) ·
h′

2(s + ∆)2

h′
2(s)

2
= 0 for any ∆, (48)

lim
s→+∞

(1 − h2(s))
2

1 − h2(s + ∆)
· h′′

2(s + ∆)

h′
2(s)

2
= −1 for any ∆, (49)

lim
s→+∞

(1 − h2(s)) ·
h′′

2(s + ∆)

h′
2(s)

2
=







−∞, if ∆ < 0

−1, if ∆ = 0

0, if ∆ > 0.

(50)
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From (47) and (48) we see lims→+∞ u(s + ∆, s) = 1 for any ∆. From (49) and

(50) we have

lim
s→+∞

v(s + ∆, s) =







+∞, if ∆ < 0

0, if ∆ = 0

−1, if ∆ > 0.

Therefore, lims→+∞ u(s +∆, s) + v(s +∆, s) = 0 if ∆ > 0. Hence (C.5) does not

hold.

Testing Conditions (C.1) to (C.6) for the complementary log-log link.

Here g3(π) = log{− log(1 − π)} and the inverse complementary log-log link is

h3(t) = 1 − e−et

. Also h′
3(t) = et−et

, h′′
3(t) = (1 − et)et−et

and h′′′
3 (t) =

(1 − 3et + e2t)et−et

. It is easy to see that limt→±∞ h′
3(t) = limt→±∞ h′′

3(t) =

limt→±∞ h′′′
3 (t) = 0, implying that (C.1) is satisfied. Condition (C.2) apparently

holds for any t0 > 0. Applying l’Hospital’s rule, one can show that

lim
t→±∞

h′
3(t)h

′′
3(t)

h3(t)(1 − h3(t))
= lim

t→±∞

(1 − et)e2t−et

1 − e−et = 0,

which implies (C.6). Note that

h′
3(t)

2

(1 − h3(t))2
+

h′′
3(t)

1 − h3(t)
= et → +∞ as t → +∞ (51)

so (C.3) does not hold. By applying l’Hospital’s rule,

lim
t→−∞

{

h′
3(t)

2

h3(t)2
− h′′

3(t)

h3(t)

}

= lim
t→−∞

{

e2t−2et

(1 − e−et)2
− (1 − et)et−et

1 − e−et

}

= 0.

This suggests (C.4) does not hold. But this and (51) suggest that (C.3) would

be satisfied if one considers only those t values bounded from above by a finite

value. To see whether (C.5) is satisfied, write t = s + ∆. It can be shown that

u(s + ∆, s) = (1 − e−es

)e2∆ +
(1 − e−es

)2

(1 − e−es+∆)2
e2∆+(1−2e∆)es

, (52)

v(s + ∆, s) = (1 − e−es

)(e∆−s − e2∆) − (1 − e−es

)2

1 − e−es+∆
ees(1−e∆)(e∆−s − e2∆) (53)

= (e∆ − e2∆+s)
(1 − e−es

)(1 − ees(1−e∆))

es(1 − e−es+∆)
. (54)

By applying l’Hospital’s rule, one can show from (52) that

lim
s→−∞

u(s + ∆, s) = 1 and lim
s→+∞

u(s + ∆, s) =







+∞, if ∆ < − log 2
1
2 , if ∆ = − log 2

e2∆, if ∆ > − log 2.

(55)
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Similarly, from (53) and (54), respectively, we have

lim
s→−∞

v(s + ∆, s) = e∆ − 1 and lim
s→+∞

v(s + ∆, s) =







+∞ if ∆ < 0

0, if ∆ = 0

−e2∆, if ∆ > 0.

(56)

From(55) and (56) we have lims→−∞{u(s + ∆, s) + v(s + ∆, s)} = e∆ and

lim
s→+∞

{u(s+∆, s)+ v(s+∆, s)} =







+∞, if ∆ < 0

1, if ∆ = 0

0, if ∆ > 0.

(57)

From (57) it is easy to see that (C.5) does not hold for any ∆0 > 0. On the other

hand, by using the inequality eu − 1 − u ≥ 0 one can show that

u(s + ∆, s) + v(s + ∆, s) = (1 − e−es

)e−se∆

+
(1 − e−es

)2

(1 − e−es+∆)2
e∆−s+(1−e∆)es

[e−es+∆

+ es+∆ − 1] ≥ (1 − e−es

)e−se∆.

Using eu − 1 − u ≥ 0 again, one can see that (1 − e−es

)e−s is a decreasing

function. Thus, there exists an s0 > 0 such that u(s + ∆, s) + v(s + ∆, s) ≥
(1− e−e−s0 )es0+∆ when s < −s0. Therefore, inf |t−s|≥∆0,s<−s0

{u(t, s)+ v(t, s)} ≥
(1 − e−e−s0 )es0−∆0 > 0, suggesting that (C.5) would hold if we focus on h3(t) <

1 − δ′ for certain δ′ only.

Testing Conditions (C.1) to (C.6) for the log-log link. Here the link

is g4(π) = − log{− log π} and its inverse is h4(t) = e−e−t

. Therefore, h′
4(t) =

e−t−e−t

, h′′
4(t) = (e−t −1)e−t−e−t

and h′′′
4 (t) = (1−3e−t +e−2t)e−t−e−t

. It is easy

to see that limt→±∞ h′
4(t) = limt→±∞ h′′

4(t) = limt→±∞ h′′′
4 (t) = 0, implying that

(C.1) is satisfied. Condition (C.2) apparently holds for any t0 > 0. Applying

l’Hospital’s rule, one can show that

lim
t→±∞

h′
4(t)h

′′
4(t)

h4(t)(1 − h4(t))
= lim

t→±∞

(e−t − 1)e−2t−e−t

1 − e−e−t = 0,

which implies (C.6). Note that

h′
4(t)

2

h4(t)2
− h′′

4(t)

h4(t)
= e−t → +∞ as t → −∞, (58)

so (C.3) does not hold. By applying l’Hospital’s rule,

lim
t→+∞

{

h′
4(t)

2

(1−h4(t))2
+

h′′
4(t)

1−h4(t)

}

= lim
t→+∞

{

e−2t−2e−t

(1 − e−e−t)2
+

(e−t−1)e−t−e−t

1−e−e−t

}

=0.
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This suggests (C.4) does not hold. But this and (58) suggest that (C.3) would

be satisfied if one considers only those t values bounded from below by a finite

value. To see whether (C.5) is satisfied, write t = s + ∆. It can be shown that

u(s+∆, s)=(1 − e−e−s

)e−2∆ +
(1 − e−e−s

)2

(1 − e−e−s−∆
)2

e−2∆+(1−2e−∆)e−s

, (59)

v(s+∆, s)=(1−e−e−s

)(es−∆−e−2∆)− (1−e−e−s

)2

1−e−e−s−∆
ee−s(1−e−∆)(es−∆−e−2∆)(60)

=(e−∆ − e−2∆−s)
(1 − e−e−s

)(1 − ee−s(1−e−∆))

e−s(1 − e−e−s−∆)
. (61)

By applying l’Hospital’s rule, one can show from (59) that

lim
s→+∞

u(s + ∆, s) = 1 and lim
s→−∞

u(s + ∆, s) =







e−2∆, if ∆ < log 2
1
2 , if ∆ = log 2

+∞, if ∆ > log 2.

(62)

Similarly, from (60) and (61), respectively, we have

lim
s→+∞

v(s+∆, s)=e−∆−1 and lim
s→−∞

v(s+∆, s)=







−e−2∆, if ∆ < 0

0, if ∆ = 0

+∞, if ∆ > 0.

(63)

From(62) and (63) we have lims→+∞{u(s + ∆, s) + v(s + ∆, s)} = e−∆ and

lim
s→−∞

{u(s + ∆, s) + v(s + ∆, s)} =







0, if ∆ < 0

1, if ∆ = 0

+∞, if ∆ > 0.

(64)

From (64) it is easy to see that (C.5) does not hold for any ∆0 > 0. On the other

hand, by using the inequality eu − 1 − u ≥ 0 one can show that

u(s + ∆, s) + v(s + ∆, s)

= (1 − e−e−s

)ese−∆ +
(1 − e−e−s

)2

(1 − e−e−s−∆
)2

es−∆+(1−e−∆)e−s

[e−e−s−∆

+ e−s−∆ − 1]

≥ (1 − e−e−s

)ese−∆.

Using eu−1−u ≥ 0 again, one can see that (1−e−e−s

)es is an increasing function.

Thus, there exists an s0 > 0 such that u(s+∆, s)+v(s+∆, s) ≥ (1−e−e−s0 )es0−∆

when s > s0. Therefore, inf |t−s|≥∆0,s>s0
{u(t, s)+ v(t, s)} ≥ (1− e−e−s0 )es0−∆0 >

0, suggesting that (C.5) would hold if we focus on h4(t) > δ′′ for certain δ′′ only.

Example. A link function yielding local MLEs. Let h0(t) = $−1 arctan t+

0.5 + qt−2 sin2 t with $ = 3.14159 · · · , q = 0.1, and −∞ < t < +∞. Our link
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function is defined as the inverse of h0(t). The function h0(t) and its first three

derivatives are plotted in Figure 2. Later we show that h0(t) defines a strictly

increasing cumulative distribution function and satisfies (C.1), (C.3), (C.5) and

(C.6), but not (C.2) and (C.4). Therefore, the main results of this paper still

apply for h0(t).
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Figure 2. In row 1 the left plot is for `(β) vs. β while its enlargement near

the local maxima is given by the right plot. In row 2 the left plot is for `′(β)

vs. β while its enlargement near the stationary points is given by the right

plot. The other four plots are for the inverse link function h0(t) and its first

three derivatives.

Now suppose the response variable Y = Z/m is related to a covariate x

through h−1
0 (π) = βx, and that we have two observations (z1,m1, x1) = (6, 10, 1)

and (z2,m2, x2) = (47, 50, 2). Then the log-likelihood function, ignoring an irrel-
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evant constant, is `(β) = 6 log h0(β)+ 4 log(1−h0(β))+ 47 log h0(2β)+ 3 log(1−
h0(2β)); the likelihood equation is d`/dβ = (10h′

0(β)/h0(β)(1 − h0(β)))(0.6 −
h0(β)) + (100h′

0(2β)/h0(2β)(1 − h0(2β)))(0.94 − h0(2β)) = 0. By plotting d`/dβ

and `(β) against β (see Figure 2) and applying the Newton-Raphson algorithm,

we find there are two local maximizers of `(β), namely β̂1 = 0.923 and β̂2 = 1.936,

which are the local MLEs of β; there is one local minimizer β̂3 = 1.243. The

log-likelihoods at these β points are −20.63, −20.49 and −20.67 respectively.

In order to test (C.1) to (C.6) for h0(t), we need the following inequalities

based on Taylor expansions for sin t and cos t.

1. When t > 0, (1a) sin t ≥ −1, (1b) sin t < t, (1c) sin t > t − t3/6, (1d)

sin t < t − t3/6 + t5/120 and (1e) sin t > t − t3/6 + t5/120 − t7/5040.

2. When t < 0, (2a) sin t ≥ −1, (2b) sin t > t, (2c) sin t < t − t3/6, (2d)

sin t > t − t3/6 + t5/120 and (2e) sin t < t − t3/6 + t5/120 − t7/5040.

3. For any t 6= 0, (3a) | cos t| ≤ 1, (3b) cos t > 1−t2/2, (3c) cos t < 1−t2/2+t4/24

and (3d) cos t > 1 − t2/2 + t4/24 − t6/720.

We see that h′
0(t) = $−1(1 + t2)−1 + qt−2 sin 2t + qt−3(cos 2t − 1). We proceed

to prove h′
0(t) > 0. When t < −

√
2.5, using inequalities (2a) and (3a), h′

0(t) ≥
$−1(1 + t2)−1 − qt−2 ≥ 0.44t−2(1 + t2)−1 > 0. When −

√
2.5 ≤ t ≤ 0, using (2d)

and (3c), h′
0(t) ≥ $−1(1 + t2)−1 − (2/3)qt(1 − (2/5)t2) > 0. When 0 < t ≤ 1.32,

using (1c) and (3d), h′
0(t) ≥ $−1(1 + t2)−1 − (2/3)qt − (4/45)qt3 > 0.0076.

When 1.32 < t ≤ 1.62, using (1e) and (3d), h′
0(t) ≥ $−1(1 + t2)−1 − (2/3)qt +

(8/315)qt3(7 − t2) > 0.0053. When t > 1.62, using (1a) and (3a), h′
0(t) ≥

$−1(1+t2)−1−qt−2−2qt−3 ≥ (1+t2)−1t−2[($−1−q)t2−2qt−(1+2/1.62)q] > 0,

because ($−1 − q)t2 − 2qt− (1 + 2/1.62)q has two roots at −0.65 and 1.57. Now

it is easy to see that h′
0(t) is positive.

The second and third derivatives of h0(t) are found to be h′′
0(t) = −2$−1t(1+

t2)−2−qt−4[3 cos 2t−3+4t sin 2t−2t2 cos 2t] and h′′′
0 (t) = $−1(6t2−2)(1+t2)−3+

qt−5[12 cos 2t − 12 + 18t sin 2t − 12t2 cos 2t − 4t3 sin 2t]. By repeatedly applying

l’Hospital’s rule, it can be shown that limt→−∞ h0(t) = 0, limt→+∞ h0(t) = 1 and

limt→0 h0(t) = 1/2 + q; limt→±∞ h′
0(t) = limt→±∞ h′′

0(t) = limt→±∞ h′′′
0 (t) = 0,

limt→0 h′
0(t) = $−1, limt→0 h′′

0(t) = −2/3q and limt→0 h′′′
0 (t) = −2$−1. There-

fore, (C.1) is satisfied for h0(t).

Using l’Hospital’s rule, one can also show that limt→+∞ t2(1/2−$−1 arctan t)

= +∞ and limt→−∞ t2(1/2+$−1 arctan t) = +∞. Using these results, and those

in the previous paragraph, one can show that

lim
t→+∞

h′
0(t)

2

(1−h0(t))2
+

h′′
0(t)

1−h0(t)
=0, lim

t→0

h′
0(t)

2

(1−h0(t))2
+

h′′
0(t)

1−h0(t)
=

4$−2

(1−2q)2
− 4q

3−6q
,

lim
t→−∞

h′
0(t)

2

h0(t)2
−h′′

0(t)

h0(t)
=0 and lim

t→0

h′
0(t)

2

h0(t)2
−h′′

0(t)

h0(t)
=

4$−2

(1+2q)2
+

4q

3+6q
.
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Therefore (C.3) holds and (C.4) does not hold for h0(t). The condition (C.6) can
also be deduced from the above results.

It is easy to see that h′′
0(t) is positive when cos 2t = 1 and t is sufficiently

large. Thus (C.2) does not hold for h0(t).
In order to verify (C.5) for h0(t), write t = s + ∆ and tentatively assume

|∆| ≤ 0.2. It is easy to show that, uniformly on |∆| ≤ 0.2,

lim
s→±∞

1 − h0(s)

1−h0(s+∆)
=

s(1/2 − $−1 arctan s) − qs−1 sin2 s

s(1
2−$−1 arctan(s+∆))−qs(s+∆)−2 sin2(s+∆)

=1, (65)

lim
s→±∞

h0(s)

h0(s + ∆)
=

s(1
2 + $−1 arctan s) + qs−1 sin2 s

s(1
2 +$−1 arctan(s+∆))+qs(s+∆)−2 sin2(s+∆)

=1, (66)

because lims→+∞ s(1/2−$−1 arctan s) = $−1, lims→−∞ s(1
2 +$−1 arctan s) =

$−1 and lims→±∞ $−1s[arctan(s+∆)−arctan s] = 0 uniformly on |∆| ≤ 0.2. It

can also be shown that s2[arctan(s−0.2)−arctan s] ≤ s2[arctan(s+∆)−arctan s] ≤
s2[arctan(s+0.2)−arctan s], lims→±∞ s2[arctan(s±0.2)−arctan s] = ±0.2 and
| sin2(s+∆) − sin2 s| ≤ |∆|. Thus, uniformly on |∆| ≤ 0.2,

lim sup
s→±∞

s2|h0(s+∆) − h0(s)|

≤ lim sup
s→±∞

$−1s2| arctan(s+∆)−arctan s|

+ lim sup
s→±∞

qs2(s+∆)−2| sin2(s+∆)−sin2 s| + lim sup
s→±∞

q|s2(s+∆)−2−1| sin2 s

≤ 0.2$−1 + q|∆| ≤ 0.2($−1 + q). (67)

Now we can write h′
0(s+∆)/h′

0(s) = 1 + (A + B + C)/D, where

A =
−$−1s2(2s∆ + ∆2)

[1+(s+∆)2](1+s2)
≥ −0.4$−1|s|3 − 0.04$−1s2

[1+(|s|−0.2)2](1+s2)
,

B =
qs2[sin 2(s+∆)−sin 2s]−q[2s∆+∆2] sin 2s

(s + ∆)2
≥ −q(0.4s2+0.4|s|+0.04)

(|s| − 0.2)2
,

C = −2qs2(s+∆)−3 sin2(s+∆) + 2qs−1 sin2 s ≥ −2qs2(s−0.2)−3−2q|s|−1,

D = $−1s2(1+s2)−1+q sin 2s−2qs−1 sin2 s and lim inf
|s|→∞

D = $−1−q.

From the above properties of A,B,C and D we have

lim inf
|s|→∞

h′
0(s + ∆)

h′
0(s)

≥ 1− 0.4q($−1 − q)−1 uniformly on |∆| ≤ 0.2. (68)

By (65),(66), (68), lims→+∞ h0(s) = 1, and lims→−∞ 1−h0(s) = 1, it follows that

lim inf
|s|→∞

u(s+∆, s) ≥ (1−0.4q($−1−q)−1)2
.
= 0.667 uniformly on |∆| ≤ 0.2. (69)
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Now consider h′′
0(s+∆). We have |h′′

0(s+∆)| ≤ 2$−1(|s|+0.2)(1+(|s|−0.2)2)−2 +

2q(|s|−0.2)−2[3(|s|−0.2)−2+2(|s|−0.2)−1+1]. Thus lim sup|s|→∞ s2|h′′
0(s+∆)| ≤ 2q

uniformly on |∆| ≤ 0.2. Accordingly, since s2h′
0(s) = D and lim inf |s|→∞ D =

$−1−q,

lim sup
|s|→∞

s2|h′′
0(s+∆)|

[s2h′
0(s)]

2
≤ 2q

($−1−q)2
uniformly on |∆| ≤ 0.2. (70)

From (65), (66), (67) and (70), it can be seen that, uniformly on |∆| ≤ 0.2,

lim sup
|s|→∞

|v(s+∆, s)|

= lim sup
|s|→∞

∣

∣

∣

∣

(1 − h0(s))h0(s)

(1−h0(s+∆))h0(s+∆)

∣

∣

∣

∣

s2|h0(s+∆)−h0(s)|
s2|h′′

0(s+∆)|
|s2h′

0(s)|2

≤ 0.4q($−1+q)

($−1−q)2
.
= 0.351. (71)

By (69) and (71), we have lim inf |s|→∞{u(s+∆, s)+v(s+∆, s)} ≥ 0.316 uniformly

on |∆| ≤ 0.2, hence (C.5) holds.
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