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Abstract: We study locally D-optimal designs for some exponential models that

are frequently used in the biological sciences. The model can be written as an

algebraic sum of two or three exponential terms. We show that approximate locally

D-optimal designs are supported at a minimal number of points and construct these

designs numerically.
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1. Introduction

Nonlinear regression models are widely used to describe the dependencies be-

tween a response and an explanatory variable, see for example, Seber and Wild

(1989) and Ratkowsky (1983, 1990). Our goal is to construct locally D-optimal

designs for a class of exponential regression models that is widely used in the

biological sciences, see for example, Green and Reilly (1975), Bardsley, McGin-

lay and Wright (1986) and Droz, Berode and Jang (1999). These models are

particularly common in pharmacokinetics, and are called compartmental models

(Shargel and Yu (1985)) and Jones and Wang (1999). Typically, the expected

mean response in concentration units is expressed as a linear combination of ex-

ponential terms. Such a model is suitable for modeling an identifiable, open,

non-cyclic, n-compartmental system with bolus input into the sampled pool

(Landaw (1985)). Compartmental models are also used in data analysis in tox-

icokinetic experiments (Becka, Bolt and Urfer (1992)) and in chemical kinetics

(Gibaldi and Perrier (1982)). The simplest forms of such models have their mean

response equal to

a1e
b1t + a2e

b2t, (1)

a1e
b1t + a2e

b2t + a3e
b3t, (2)

where a1, a2, a3, b1, b2 and b3 are parameters and t is usually time after adminis-

tration of the drug.
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Sometimes a constraint is imposed on the parameters ai to reduce the di-

mension of the problem. For instance, if the response is the concentration

of some drug measured for samples from a pool peripheral, the sum of the

a′is is zero. At other times, constraints on the parameters arise naturally, as

in Alvarez, Virto, Raso and Condon (2003), where a compartmental model was

used to describe Escherichia coli inactivation by pulsed electric fields.

Our aim is to construct efficient designs for estimating parameters in com-

partmental models. A popular design criterion for estimating model parameters

is D-optimality. The criterion is expressed as a logarithmic function of the ex-

pected Fisher’s information matrix and it is a concave function (Silvey (1980)).

For fixed nominal values of the parameters, the locally D-optimal design is ob-

tained by maximizing the criterion function over the set of all designs on the

design interval. Such an optimal design minimizes the generalized variance and

consequently, locally D-optimal design provides the smallest confidence ellipsoid

for the parameters. Frequently, an equivalence theorem is used to check the op-

timality of the design. Equivalence theorems are derived from convex analysis

and are basically conditions required of the directional derivative of the con-

cave functional at its optimum point. Details can be found in standard design

monographs, see Fedorov (1972) or Silvey (1980) for example.

Recently Ermakov and Melas (1995) studied properties of locally D-optimal

designs for an extension of models (1) and (2) within the class of all minimally

supported designs. This means that, instead of optimizing the criterion over all

designs on the design space, the optimization is now restricted to the class of

designs where the number of design points is equal to the number of parameters

in the model. They called these designs saturated optimal designs and they

showed that a saturated locally D-optimal design is always unique and has equal

weights at its support points. In addition, the support points are decreasing

functions of any of the parameters in the exponentials terms. However, the

question of whether these saturated optimal designs are optimal within the class

of all designs was left open.

We give a partial answer to this problem. In the general model considered

by Ermakov and Melas (1995) we show that, in certain regions for the unknown

parameters, the locally D-optimal designs are supported at a minimal number of

points. We also derive an upper bound for the number of support points of the

locally D-optimal design. For the special cases of model (1) and (2) this upper

bound is 4 and 7, respectively. We carry out an extensive numerical study and

confirm that locally D-optimal designs for model (2) are always supported at six

points. Thus our theoretical and numerical results give a complete solution of

the locally D-optimal design problem in models (1) and (2). Hitherto designs

in pharmacokinetic studies have been largely based on past experience, and the
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number of sampling times usually decided without statistical considerations. The

practical implication of our results is that locally D-optimal designs for exponen-

tial regression models are optimal over all designs on the design interval, and

the design remains optimal no matter how many sampling times are used for the

study.

The paper is organized as follows. Section 2 introduces the statistical setup,

model specification and notation. The main theoretical and numerical results are

contained in Section 3. Section 4 contains a summary and a description of some

outstanding design problems for these types of models. All technical details are

deferred to the Appendix.

2. Preliminaries

We assume that a predetermined number N of observations are to be taken

from the study. The choice of N is determined by the resources available. Follow-

ing Kiefer (1974), we view all designs as probability measures on a user-selected

design interval χ, and denote such a design with n distinct points by

ξ =

(
x1 · · · xn

µ1 · · · µn

)
.

Here, x1, . . . , xn ∈ χ are the design points where observations are to be taken,

and µ1, . . . , µn denote the proportions of total observations taken at these points.

In practice, a rounding procedure is applied to obtain the samples sizes Ni ≈ µiN

at the experimental conditions xi, i = 1, . . . , n, subject to N1 + · · · + Nn = N .

Consider the standard nonlinear regression model given by

yj = η(xj , θ) + εj , j = 1, . . . , N,

where ε1, . . . , εN are independent identically distributed observations such that

E[εj ] = 0, E[ε2
j ] = σ2 > 0, (j = 1, . . . , N) and

η(x, a, λ) =
k∑

i=1

aie
−λix. (3)

Here a = (a1, . . . , ak)
T , λ = (λ1, . . . , λk)

T and θT = (aT , λT ) is the vector of

unknown parameters to be estimated. Without loss of generality we assume

ai 6= 0, i = 1, . . . , k, and 0 < λ1 < · · · < λk. The design points x1, . . . , xN are

experimental conditions, which can be chosen from a given set χ. In our case,

this set is χ = [0,∞), though in reality the extreme right end point is a large

user-selected positive number. If n ≥ 2k and µi > 0, i = 1, . . . , n, it is well known
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that the least squares estimator θ̂ for the parameter θ in (3) is asymptotically

unbiased with covariance matrix satisfying

lim
N→∞

Cov(
√

Nθ̂) = σ2M−1(ξ, a, λ),

where

M(ξ, a, λ) =

(
n∑

s=1

∂η(xs, θ)

∂θi

∂η(xs, θ)

∂θj
µs

)2k

i,j=1

is the information matrix of the design ξ.

An optimal design maximizes a concave real valued function of the informa-

tion matrix and there are several optimality criteria proposed in the literature

to discriminate between competing designs, see for example, Silvey (1980) or

Pukelsheim (1993). We focus on the well known D-optimality criterion and,

following Chernoff (1953), we call a design ξ locally D-optimal for (3) if the de-

sign maximizes detM(ξ, a, λ) over all designs on the interval χ for given nominal

values of a and λ. Locally D-optimal designs in various non-linear regression

models have been discussed by Melas (1978), He, Studden and Sun (1996), and

Dette, Haines and Imhof (1999), among others. In the present context we have

∂η(xs, θ)

∂θ
= (e−λ1x, . . . , e−λix,−a1xe−λ1x, . . . ,−akxe−λkx)T ,

and it is easy to see that for any design ξ on χ, the determinant of the information

matrix M(ξ, a, λ) for (3) satisfies

detM(ξ, a, λ) = a2
1, . . . , a

2
k det M(ξ, e, λ),

where e = (1, . . . , 1)T ∈ R
k. This implies a locally D-optimal design for (3)

does not depend on the ”linear” parameters a1, . . . , ak, and so we can restrict

ourselves to the maximization of the determinant of the matrix

M(ξ, λ) = M(ξ, e, λ). (4)

Locally D-optimal designs exist because by assumption, the induced design space

{
∂η(x, θ)

∂θ

∣∣∣ x ∈ χ

}

is compact (Pukelsheim (1993)). Moreover a locally D-optimal design has nec-

essarily at least n ≥ 2k support points because, otherwise, the corresponding

information matrix is singular. Throughout this paper, designs with a minimal

number of support points n = 2k are called saturated or minimally supported
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designs. It is well known that a D-optimal saturated design has equal masses,

that is µ1 = µ2 = · · · = µ2k = 1/2k (Fedorov (1972)).

3. Main Results

Here we study the number of support points of a locally D-optimal design

for the model (3). Throughout, this number is denoted by n∗(λ). Additionally,

for k ≥ 3, we let

λ̃ = (λ̃1, . . . , λ̃k)
T (5)

for any vector λ̃ with components satisfying

0 < λ̃1 < · · · < λ̃k

λ̃i+1 =
λ̃i+λ̃i+2

2 , i = 1, . . . , k − 2.
(6)

Theorem 1. Let λ = (λ1, . . . , λk)
T be the vector of nonlinear parameters in (3).

If n∗(λ) denotes the number of support points of a locally D-optimal design for

(3), then

(i) n∗(λ) = 2k, if k = 1 or 2;

(ii) n∗(λ) ≤ k(k+1)/2+1 for any k ≥ 3. Moreover for any vector λ̃ of parameters

with components satisfying (6) there exists a neighborhood, say U ⊂ R
k, of

λ̃, such that for all vectors λ ∈ U , the number of support points of the locally

D-optimal design (with respect to λ) is given by n∗(λ) = 2k.

Note that in the cases k = 1, 2 the locally D-optimal 2k-point design is in

fact also optimal in the class of all designs. If k ≥ 3, the last part of Theorem 1

indicates that in many cases locally D-optimal designs for the regression model

(3) are in fact saturated designs. Formally this is only true for vectors λ in a

neighborhood of a parameter vector λ̃ with components satisfying the restriction

(6). However, numerical results indicate that the set of parameter vectors λ ∈ R
k

for which the locally D-optimal design is minimally supported is usually very

large. For example, in the case k = 3, we could not find any case where the

locally D-optimal design was supported at seven points. Note that this is the

upper bound for the number of support points according to the second part of

Theorem 1.

Corollary 2. Suppose k = 3 in (3) and n∗(λ) is the number of support points of

a locally D-optimal design.

(i) n∗(λ) ∈ {6, 7} for any vector λ with increasing positive coefficients;

(ii) For any point λ̃ = (λ̃1, λ̃2, λ̃3) satisfying 0 < λ̃1 < λ̃2 < λ̃3, λ̃2 = (λ̃1 + λ̃3)/2,

there exists a neighborhood of λ̃, say U ⊂ R
k, such that n∗(λ) = 6 for any

locally D-optimal design with respect to λ ∈ U .
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The results of Theorem 1 and Corollary 2 can be used to construct numerical

locally D-optimal designs for the exponential regression model (3). We illustrate

this procedure by determining locally D-optimal designs for k = 1, 2, 3, corre-

sponding to the case where there is one, two or three exponential terms in the

model. Before we begin we recall results on the restricted optimization in the

class of all saturated designs with support points x∗
1 < · · · < x∗

2k, for which the

optimal weights are equal to 1/2k. Melas (1978) proved the following properties

for the locally D-optimal saturated designs for a homoscedastic model with an

arbitrary sum of exponential terms (i.e., k ∈ N is arbitrary).

(i) The support points x∗
1 < · · · < x∗

2k of a saturated locally D-optimal design

for (3) are uniquely determined.

(ii) 0 = x∗
1 < · · · < x∗

2k are analytic functions of the nonlinear parameters

λ1, . . . , λk. Therefore we use the notation x∗
i (λ) (i = 1, . . . , 2k). As a conse-

quence each support point can be expanded in Taylor series in a neighborhood

of any point λ.

(iii) If the nonlinear parameters λ1, . . . , λk satisfy λi → λ∗ > 0, i = 1, . . . , k,

then the support points of the locally D-optimal design with respect to the

parameter λ = (λ1, . . . , λk)
T converge, that is limλ→λ∗ x∗

i (λ) = γi−1/2λ
∗,

where γ1, . . . , γ2k−1 are the roots of Laguerre polynomial L
(1)
2k−1(x) of degree

2k−1 orthogonal with respect to the measure x exp(−x)dx (see Szegö (1975)).

In the case k = 1, it follows from Theorem 1(i) that the locally D-optimal

design is a uniform distribution on two points, and we obtain from (iii) that

x∗
1 = 0, x∗

2 = 1/λ1. In the case k = 2, Melas (1978) determined locally D-

optimal saturated designs restricting the optimization to the class of all four

point designs. Theorem 1(i) now shows that these saturated designs are in fact

locally D-optimal within the class of all designs. A table of these designs can

be found in Melas (1978)).In the case k = 3, we obtain n∗(λ) = 7 as an upper

bound for the number of support points of any locally D-optimal designs.

We now consider locally D-optimal designs for a three-compartmental model

whose mean response is given by

a1e
−λ1x + a2e

−λ2x + a3e
−λ3x. (7)

Here a1, a2, a3 are the nonzero linear parameters and it is assumed that the

nonlinear parameters satisfy 0 < λ1 < λ2 < λ3. The design space is given by

the interval [0,∞). If the interval [c,∞) with c > 0 is the design space, we

need only add the constant c to all design points. From the justification of our

procedure given in the appendix, it follows that if the design space is [0, c] and

c is user-selected, the optimal design will remain the same if c is larger than

the largest support point in the locally D-optimal design; if c is smaller than
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the largest support point of the locally D-optimal design on the interval [0,∞),

then the extreme support points of the optimal design on [0, c] are 0 and c.

The remaining support points are found numerically in the same way as for the

unbounded design interval [0,∞).

Table 1. Support points of the locally D-optimal designs for the exponential

regression model (7) for various values of δ1 = 1 − λ1, δ2 = 1 − λ2.

δ1 = 0.95

δ2 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x2 0.312 0.312 0.313 0.314 0.315 0.316 0.317 0.318 0.320 0.322 0.324

x3 1.101 1.106 1.113 1.123 1.135 1.151 1.172 1.198 1.231 1.275 1.336

x4 2.572 2.597 2.636 2.691 2.764 2.862 2.993 3.170 3.419 3.788 4.381

x5 6.148 6.251 6.405 6.619 6.906 7.284 7.781 8.444 9,353 10.657 12.674

x6 26.440 926.573 26.761 27.024 27.378 27.852 28.488 29.359 30.598 32.474 35.587

δ1 = 0.9

δ2 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x2 0.312 0.312 0.312 0.313 0.314 0.315 0.316 0.318 0.319 0.321 0.323

x3 1.096 1.100 1.106 1.115 1.126 1.145 1.159 1.182 1.212 1.250 1.302

x4 2.535 2.557 2.590 2.637 2.700 2.784 2.895 3.044 3.248 3.542 3.992

x5 5.550 5.623 5.737 5.898 6.116 6.405 6.786 7.293 7.985 8.966 10.447

x6 6.069 16.175 16.341 16.58 16.906 17.348 17.947 18.77 19.931 21.644 24.347

δ1 = 0.8

δ2 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

x2 0.311 0.311 0.312 0.312 0.313 0.314 0.315 0.316 0.317 0.319

x3 1.087 1.089 1.094 1.101 1.111 1.123 1.138 1.157 1.180 1.211

x4 2.475 2.489 2.513 2.548 2.596 2.661 2.744 2.855 3.003 3.205

x5 5.000 5.047 5.122 5.234 5.386 5.591 5.860 6.218 6.699 7.367

x6 10.898 10.979 11.12 11.328 11.615 12.001 12.516 13.206 14.151 15.495

δ1 = 0.7

δ2 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

x2 0.310 0.311 0.311 0.311 0.312 0.313 0.314 0.315 0.316 0.317

x3 1.079 1.081 1.085 1.090 1.098 1.108 1.120 1.136 1.155 1.180

x4 2.428 2.437 2.454 2.481 2.518 2.568 2.634 2.720 2.832 2.983

x5 4.720 4.746 4.798 4.880 4.995 5.151 5.358 5.631 5.997 6.499

x6 9.208 9.261 9.368 9.536 9.773 10.095 10.526 11.101 11.884 12.991

Since x∗
1 = 0 only the points x∗

2, . . . , x
∗
6 have to be calculated. Note that

under a multiplication of all parameters λ1, λ2, λ3 by the same positive con-

stant the support points of the locally D-optimal design have to be divided

by the same constant. Therefore, without loss of generality, we assume the

normalization (λ1 + λ2 + λ3)/3 = 1 and introduce the notation δ1 = 1 − λ1,
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δ2 = 1 − λ2 (note that the condition λ1 < λ2 implies δ1 > δ2). The point

λ̃(ε) = (1, 1 + ε, 1 + 2ε) with ε > 0 is obviously of the form (5) and arbitrarily

close to the point λ∗ = (1, 1, 1). Consequently, by Theorem 1, the support points

x2(λ), . . . , x∗
2k(λ) of the locally D-optimal design can be expanded in a convergent

Taylor series at the point λ∗ (which corresponds to the case δ∗1 = 0, δ∗2 = 0). The

coefficients in this expansion can be determined recursively (see Melas (2000) or

Dette, Melas and Pepelyshev (2004)). With the help of equivalence theorems,

we have that for the D-optimality criterion, these designs are locally D-optimal

in the class of all approximate designs. In all examples considered in our study

we obtain n∗(λ) = 6. Table 1 and Table 2 show the support points of the locally

D-optimal design for various values of δ1 and δ2.

Table 2. Support points of the locally D-optimal designs for the exponential

regression model (7) for various values of δ1 = 1 − λ1, δ2 = 1 − λ2.

δ1 = 0.6

δ2 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x2 0.310 0.310 0.311 0.311 0.312 0.313 0.314

x3 1.074 1.076 1.081 1.087 1.095 1.106 1.119

x4 2.396 2.408 2.428 2.458 2.498 2.551 2.619

x5 4.554 4.589 4.650 4.740 4.863 5.028 5.246

x6 8.396 8.473 8.605 8.800 9.070 9.435 9.927

δ1 = 0.5

δ2 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x2 0.310 0.310 0.310 0.310 0.311 0.312 0.312

x3 1.068 1.070 1.073 1.078 1.085 1.094 1.105

x4 2.365 2.373 2.388 2.411 2.443 2.486 2.542

x5 4.423 4.445 4.490 4.560 4.659 4.794 4.973

x6 7.884 7.934 8.035 8.195 8.424 8.739 9.167

δ1 = 0.4

δ2 -0.1 0 0.1 0.2 0.3

x2 0.309 0.309 0.310 0.310 0.311

x3 1.065 1.067 1.071 1.076 1.084

x4 2.346 2.356 2.374 2.400 2.436

x5 4.344 4.375 4.430 4.511 4.622

x6 7.586 7.661 7.792 7.986 8.261

δ1 = 0.3

δ2 -0.1 0 0.1 0.2

x2 0.309 0.309 0.309 0.310

x3 1.061 1.062 1.065 1.070

x4 2.327 2.334 2.347 2.368

x5 4.274 4.295 4.336 4.402

x6 7.361 7.411 7.515 7.681
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4. Discussion

Melas (1978) considered compartmental models with one and two exponen-

tial terms and found locally D-optimal designs within the class of designs with

minimal support points. This means that optimality of the design was restricted

to the class of designs with two points when there is one exponential term and

to four points when the model has two exponential terms. We showed here that

these saturated locally D-optimal designs are actually locally D-optimal, mean-

ing that they are also optimal within the class of all designs. Additionally, we

extended this result to models with three exponential terms, and found that

this result also applies to models with an arbitrary number of exponential terms

provided the parameters in the exponential terms belong to a certain region.

We stress that locally D-optimal designs for the exponential model (1) and

(2) are influenced by the preliminary “guess” for the parameter values. This may

seem undesirable, but such designs usually represent a first step in the construc-

tion of an optimal design for a model under a more robust optimality criterion,

including the Bayesian- and minimax criterion, see Pronzato and Walter (1985),

Chaloner and Larntz (1989) or Haines (1995), among others. Our results suggest

that other types of optimal designs for the general exponential regression model

will be difficult to describe analytically or otherwise.

There are other interesting design issues for compartmental models not dis-

cussed in the paper. First, models with more than three exponential terms are

also used in practice, although less often because of the added complexity. For

instance, a seven-compartment physiologically based pharmacokinetic model was

developed to predict biological levels of tetrahydrofuran under different exposure

scenarios (Droz, Berode and Jang (1999)). We anticipate extending similar re-

sults for models with four or more exponential terms will require more theory,

and likely will require a different approach.

Second, there are biological models closely related to those studied here.

For example, if we add an intercept to the our models, the resulting models are

useful for studying viral dynamics and related problems (Ding and Wu (2000)).

Han and Chaloner (2003) constructed optimal designs for such models with one

or two exponential terms for estimating parameters in viral dynamics in an AIDS

trial. More complex modeling systems will have to involve additional exponential

terms.

Third, our models assume that errors are homoscedastic. Landaw and

DiStefano (1999) postulated that the error variance of the ith observation in

certain compartmental models is more appropriately modeled as α + β(y(ti))
γ ,

where α represents constant background variance. The three parameters α, β
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and γ may be known constants from previous studies. Some extensions of our
results to these models would also be useful.

Appendix. Proof of Theorem 1

We begin the proof by considerating the D-optimal design problem for the
model

2k∑

i=1

βie
−λ̆ix, (8)

where 0 < λ̆1 < · · · < λ̆2k are fixed known values and β1, . . . , β2k are unknown
parameters to be estimated. It is easy to see that for a design with masses
µ1, . . . , µn at the points x1. . . . , xn (n ≥ 2k), the information matrix for this
model has the form

A(ξ, λ̆) =
( n∑

s=1

e−λ̆ixse−λ̆jxsµs

)2k

i,j=1
. (9)

Given λ = (λ1, . . . , λk) and 0 < λ1 < · · · < λk, we next investigate the maximum
of detA(ξ, λ̆), where the components of the vector λ̆ = (λ̆1, . . . , λ̆2k)

T are defined
by

λ̆2i−1 = λi, λ̆2i = λi + ∆, 0 < ∆ < min
i=1,...,k−1

(λi+1 − λi), i = 1, . . . , k. (10)

If k = 1, the value ∆ > 0 can be chosen arbitrarily. Let ξ∗ = argmax detA(ξ, λ̆)
denote a design maximizing the determinant, where maximum is taken over the
set of all approximate designs on χ. Note that designs maximizing this deter-
minant exist, because the induced design space {(e−λ̆1x, . . . , e−λ̆2kx)T | x ∈ χ} is
compact (Pukelsheim (1993)). By the Kiefer-Wolfowitz equivalence theorem, we
have

max
x∈χ

fT (x)A−1(ξ∗, λ̆)f(x) = 2k,

where fT (x) = (e−λ̆1x, . . . , e−λ̆2kx) denotes the vector of regression functions
in (8). It follows from Gantmacher (1959, Chap. XIII), that any minor of the

matrix (e−λ̆ixj )2k
i,j=1 with x1 > · · · > x2k, λ̆1 < · · · < λ̆2k is positive. Therefore

the Cauchy–Binet formula implies that

sign(A−1)ij = (−1)i+j , (11)

where we have used the notation A = A(ξ∗, λ̆) for short. We next need the
following lemma whose proof is deferred to the end of this section.

Lemma A.1. Consider the s functions given by ϕi(x) =
∑ti

j=1 αi,je
−µi,jx, where

ti are arbitrary integers and {αij , µi,j} are real numbers, i = 0, . . . , s. Suppose

the following conditions hold.
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(i) min1≤j≤ti+1
µi,j > max1≤i≤ti µi,j, i = 0, . . . , s − 1;

(ii) αi,j > 0, j = 1, . . . , ti, i = 0, . . . , s.
Then for arbitrary real numbers b0, . . . , bs the function

∑s
i=0 biϕi(x) has at most

s roots counting multiplicity.

Let Ai,j = (A−1)ij and define

ϕ0(x) ≡ m,

ϕl−1(x) = (−1)l
l−1∑

i=1

Al−i,ie
−(λ̆i+λ̆l−i)x, l = 2, . . . , 2k,

ϕl−1(x) = (−1)l
4k−l+1∑

j=1

A2k+1−j,l−2k+j−1e
−(λ̆2k+1−j+λ̆l−2k+j−1)x, l=2k + 1, . . . , 4k.

We first consider the cases k = 1 and 2. Note that the coefficients in the
functions are positive because sign Ai,j = (−1)i+j , that is, condition (ii) holds.
Additionally, it follows from the definition of λ̆ in (10) that condition (i) can be
verified directly for k = 1, 2. If ξ∗ is D-optimal, it follows that for all x,

g(x) = m − fT (x)A−1(ξ∗, λ̆)f(x) = ϕ0(x) +
4k−1∑

i=1

(−1)iϕi(x) ≤ 0.

This implies that the support points, say x∗
1, . . . , x

∗
n, of ξ∗ satisfy g(x∗

i ) = 0,
i = 1, . . . , n, g

′

(x∗
i ) = 0, i = 2, . . . , n − 1. A careful counting of the multiplicities

and an application of Lemma 1 now show 2n− 2 ≤ 4k − 1, which implies n = 2k
when k = 1 or 2.

When k ≥ 3 the same arguments are applicable for any vector λ̆ satisfying
(6), because in this case it can be easily verified that the functions ϕi, i =
0, . . . , 4k, defined above satisfy both conditions of Lemma A.1. An argument of
continuity therefore shows n∗(λ) = 2k for the number of supports of a D-optimal
design for the model (8) with respect to any λ in a neighborhood of the point λ̆.

For a proof of the second bound when k ≥ 3, we consider an arbitrary point of
the form (10), say λ̆ = (λ̆1, . . . , λ̆2k), and let s ≤ k(k+1)/2 be the number of dis-
tinct values in the set {2λ1, . . . , 2λk, λ1+λ2, . . . , λ1+λk, λ2+λ3, . . . , λk−1+λk} .
Further, we denote by u1 < · · · < us the distinct values from this set and intro-
duce the functions

ϕ̆0(x) ≡ m,

ϕ̆1(x) = A1,1e
−u1x = A1,1e

−2λ1x,

ϕ̆2(x) = −2A1,2e
−(u1+∆)x,

ϕ̆2l−1(x) = ale
−(ul+2∆)x + cle

−ul+1x, l = 2, . . . , s,

ϕ̆2l(x) = −ble
−(ul+∆)x, l = 2, . . . , s,

ϕ̆2s+1(x) = as+1e
−(us+2∆)x.
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Observing that sign Ai,j = (−1)i+j it can be easily checked that the coefficients

al, bl, cl can be chosen such that

fT (x)A−1(ξ∗, λ̆)f(x) =
2s+1∑

i=1

ϕ̆i(x) (12)

is satisfied and al, bl, cl > 0, l = 1, . . . , s. By the above arguments, we have

J̆(τ) = det (ϕ̆i(xj))
2s+1
i,j=0 > 0 for any τ = (x0, . . . , x2s+1) with x0 > · · · > x2s+1.

Moreover, for any vector τ̄ = (x̄0, . . . , x̄2s+1)
T with components satisfying x̄0 ≥

x̄1 ≥ · · · ≥ x̄2s+1, it follows

limτ→τ̄ J̆(τ)∏
j>i(xi − xj)

> 0.

From (12) and the Equivalence Theorem for D-optimality, we obtain the in-

equality g(x) ≤ 0 for any x ≥ 0, where g is the generalized polynomial g(x) =

ϕ̆0(x) − ∑2s+1
i=1 ϕ̆i(x). This implies that the support points of the locally D-

optimal design satisfy g(x∗
i ) = 0, i = 1, . . . , n, g

′

(x∗
i ) = 0, i = 2, . . . , n − 1, and

a similar argument shows that the function g has at most 2s + 1 roots count-

ing multiplicity. Consequently, 2n − 2 ≤ 2s + 1 ≤ k(k + 1) + 1, which yields

n ≤ (k(k + 1)/2) + 1 + 1/2. This proves the assertion of the theorem for (8).

To prove the theorem for (3), we consider an arbitrary approximate design

ξ and the polynomial defined by

q(x) = m − fT (x)A−1(ξ, λ̆)f(x)

= m − fT (x)LT (LA(ξ)LT )−1Lf(x).
(13)

Here λ̆ = (λ̆1, . . . , λ̆2k) is defined by (10), the 2k × 2k matrix L is given by




Q 0 0 . . . 0

0 Q 0 . . . 0
...

...
...

0 0 0 . . . Q


 ,

Q =

(
1 0
1
∆ − 1

∆

)
.

We note that det L = (−1/∆)k 6= 0 and

lim
∆→0

fT (x)LT = lim
∆→0

(
e−λ1x,

e−(λ1+∆)x−e−λ1x

∆
, . . . , e−λkx,

e−(λk+∆)x−e−λkx

∆

)

=
(
e−λ1x,−xe−λ1x, . . . , e−λkx,−xe−λkx

)
.
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Consequently we have for any design ξ

lim
∆→0

LA(ξ, λ̆)LT = M(ξ, λ), (14)

where M(ξ, λ) is the information matrix under (3). If ξ∗ denotes a locally D-
optimal design for (3) with support points x∗

1 < · · · < x∗
n∗ , then it follows from

(13) and (14) that

m − f̆T (x)M̆−1(ξ∗, λ)f̆(x) = lim
∆→0

m − fT (x)A−1(ξ∗, λ̆)f(x), (15)

where the vector f̆T (x) corresponds to the gradient in (3) and is defined by

f̆T (x) = (e−λ1x,−xe−λ1x, . . . , e−λkx,−xe−λkx). By the Equivalence Theorem, the
polynomial on the left hand side has roots x∗

1, . . . , x
∗
n∗ , and x∗

2, . . . , x
∗
n∗−1 are all

roots with multiplicity two. Consequently, we obtain 2n∗ − 1 ≤ h, where h
is the number of roots of the polynomial on the right hand side of (15). By

the arguments of the first part of the proof we have h ≤ 4k − 1 for k = 1, 2,

and for k ≥ 3 in a neighborhood of points λ satisfying (6). Moreover, we have
h ≤ k(k + 1)/2 in general and this completes the proof of the theorem.

Proof of Lemma A.1. Let τT = (x0, . . . , xs)
T and let J(τ) = det(ϕi(xj))

s
i,j=0.

If we expand the determinant along a row repeatedly, we arrive at

J(τ) =

t0∑

l0=1

. . .

ts∑

ls=1

[(
s∏

i=0

αi,li

)
det
(
e
−µjljxν

)s

j,ν=0

]
.

Due to the Chebyshev property of exponential functions (see Karlin and Studden

(1966, Chap. 1)) each term on the right hand side is positive whenever x0 > · · · >

xs. This follows because
∏s

i=0 αi,li > 0 by assumption (ii) and det(e
−µjljxν )sj,ν=0 >

0 by assumption (i) of Lemma A.1. Thus J(τ) > 0 for arbitrary x0 > · · · > xs.

Moreover, we have for any τ̄ = (x̄0, . . . , x̄t) with x̄0 ≥ · · · ≥ x̄t,

limτ→τ̄ J(τ)∏
i<j(xi − xj)

> 0, (16)

since limτ→τ̄ det(e−θisxj )ts,j=0/
∏

i<j(xi − xj) > 0 whenever 0 < θi0 < · · · <

θis . This property can be easily verified by considering the number of the same
coordinates in the vector x̄. It is known (see Karlin and Studden (1966, Chap. 1))

that under the conditions that J > 0 and (16), any generalized polynomial of

the form
∑t

i=0 biϕi(t) has at most t roots counting multiplicity.
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