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Abstract: We consider estimation of the boundary of the support of a density func-

tion when only a contaminated sample from the density is available. This estimation

problem is a necessary step when estimating a density with unknown support, dif-

ferent from the whole real line, since then modifications of the usual kernel type

estimators are needed for consistent estimation of the density at the endpoints of

its support. Boundary estimation is also of interest on its own, since it is the basic

problem in, for example, frontier estimation in efficiency analysis in econometrics.

The method proposed in this paper can also be used for estimating locations of dis-

continuity points of a density in the same deconvolution context. We establish the

limiting distribution of the proposed estimator as well as approximate expressions

for its mean squared error and deduce rates of convergence of the estimator. The

finite sample performance of the procedure is investigated via simulation.
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1. Introduction

We consider kernel estimation of boundary points and discontinuity points

of a density from a contaminated sample of that density, i.e., from a sample that

contains measurement errors. The contamination problem, often referred to as

a deconvolution problem, has applications in such different fields as chemistry

and public health. A so-called deconvolution kernel estimator of the density

has been proposed in the literature. This estimator, however, is not consistent

at a discontinuity point or at a finite left/right endpoint where the density is

discontinuous, and has to be modified by taking these points into account. See

for example Zhang and Karunamuni (2000) for the modifications to apply in

the case of boundary points. It is necessary to provide good estimators of these

boundary points or, more generally, discontinuity points when they are unknown.

Boundary estimation also arises when investigating efficiencies of firms like

banks, or public services. These investigations involve estimation of quantities

such as the maximum level of output that can be produced for a given level of

input, often referred to as an economic frontier estimation problem, but can be
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seen as a problem of estimation of the boundary of a density. Many different

methods have been proposed to estimate a frontier in the case where the obser-

vations do not contain any measurement error, but these methods do generally

not provide consistent estimators in the more realistic setting in which frontiers

(or boundary points) are to be estimated from data that are contaminated by

noise.

Boundary estimation from contaminated data has been studied by

Kneip and Simar (1996), Neumann (1997b) and Hall and Simar (2002), for

example. These papers, however, focus on very specific contexts, or propose

methods that are difficult to implement in practice. Our goal is to provide a

method that works in general contexts, and to provide a way to implement the

method in practice. The idea is to estimate the boundary point by the maximiser

of a certain diagnostic function, and this is related to procedures used in the error-

free case to estimate discontinuity points of a density or a regression function.

As with density estimation in the deconvolution context, the behaviour of the

proposed estimator depends strongly on the type of error that contaminates the

data. See for example Fan (1991c), who considers two classes of error densities

called ordinary smooth and supersmooth. We established the rates of convergence

of the estimator for the two types of error, but for brevity we only present detailed

results for the ordinary smooth case. A detailed treatment of the supersmooth

case can be found in a longer version of the paper that is available on the web

(Delaigle and Gijbels (2003)).

This paper is organized as follows. In Section 2 we present the problem

of boundary point estimation and introduce the estimation procedure. In Sec-

tion 3 we establish the asymptotic distribution for the estimator and deduce

approximate expressions for its bias and variance. In Section 4, the finite sample

performance of the procedure is illustrated on simulated examples. The proofs

of results are given in Section 5.

2. The estimation method

Suppose we are interested in a density fX , but we observe an i.i.d. sample

Y1, . . . , Yn from the density fY , where Yi = Xi + Zi, i = 1, . . . , n, and where

for all i, Zi is a r.v. independent of Xi, of known density fZ , representing the

error in the data, and Xi is a r.v. of density fX . The case where fZ is totally

or partially unknown can also be handled if further information, for example

a sample from fZ itself, is available. See Barry and Diggle (1995), Neumann

(1997a) and Li and Vuong (1998) in this connection.

When fX is continuous, a so-called deconvolving kernel density estimator of

fX has been proposed. Consider a kernel function K and a smoothing parameter
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h = hn > 0, depending on n, called the bandwidth. The deconvolving kernel

estimator of fX is

f̂X(x;h) =
1

nh

n∑

j=1

KZ

(x − Yj

h

)
, (2.1)

where KZ(u) = (2π)−1
∫

e−ituϕK(t)/ϕZ(t/h) dt, with ϕL the Fourier transform

(resp. characteristic function) of a function (resp. random variable) L. See

Carroll and Hall (1988) and Stefanski and Carroll (1990) for an introduction to

this estimator. Throughout this paper, we assume that, for all t ∈ R, ϕZ(t) 6= 0.

In order to guarantee that the integral in (2.1) exists, we choose K to be a

real, continuous and symmetric function, such that ϕK has a compact support

[−BK , BK ], with 0 < BK < ∞. For simplicity, we assume that fZ is symmetric,

which ensures that KZ is real and symmetric. After slight modifications, our

results apply to the non-symmetric case as well. See Remark 1 in Section 3.

Here, we consider the case where fX has one or two finite boundary points

and fX is not continuous in these points. When the data of interest are observed

without error, a simple and consistent approach is to estimate the left endpoint τ1

of the support by the smallest observation X(1), and the right endpoint τ2 by the

largest observation X(n). In the case of measurement error however, the simple

estimators Y(1) and Y(n) are not consistent estimators of the boundary points of

fX but rather those of fY . If fZ is supported on a finite interval [aZ , bZ ], then τ1

and τ2 can simply be estimated by Y(1) − aZ and Y(n) − bZ . In the general case

however, we need a more elaborate procedure.

The method we propose uses the fact that a boundary point is a partic-

ular discontinuity point of the density. The idea is to use methods that ex-

ist in the error-free case to detect a discontinuity point, and adapt them to

boundary point estimation with contaminated data. We focus on kernel meth-

ods. In the error-free case, several methods have been proposed to detect a

discontinuity point. They all estimate a discontinuity point by the maximizer of

an appropriate diagnostic function. Chu and Cheng (1996) choose as diagnos-

tic function the difference of two kernel density estimators; Couallier (1999,

2000) uses the derivative of a kernel density estimator. See Müller (1992),

Wu and Chu (1993), Gijbels, Hall and Kneip (1999), Goderniaux (2001) and

Gijbels and Goderniaux (2004), among others, for similar methods in the re-

gression context.

We propose a diagnostic function based on derivative estimation. For a

density fX with a single boundary point τ , estimate τ by

τ̂ = argmax
x

|Ĵ(x)|, (2.2)
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where the diagnostic function Ĵ(x) is proportional to the derivative of the decon-

volution kernel density estimator of fX : Ĵ(x) = (nh)−1
∑n

i=1 K ′
Z

(
(x − Yi)/h

)
.

Unlike fX , the kernel estimate f̂X is a smooth function, even at τ . In the current

context, it is to be expected that this estimate will be continuous, but with large

derivatives when approaching the endpoints (large positive derivative for a left

endpoint and large negative derivative for a right endpoint).

3. Asymptotic Distribution of the Estimator

Suppose fX has a single boundary or discontinuity point τ . We show that

τ̂ is a consistent estimator of τ and establish its asymptotic law. The proof uses

techniques and conditions somewhat similar to those used for proving the con-

sistency of a discontinuity point estimator in the error-free case. See for example

Müller (1992), Chu and Cheng (1996) and Couallier (1999). In particular,

we assume that τ lies in a compact interval [A,B], and thus our estimator is

τ̂ = argmax x∈[A,B] |Ĵ(x)|.

The asymptotic properties of our estimator depend strongly on the error

distribution, which dictates the behaviour of KZ . In deconvolution problems, it

is common to consider two types of error distributions: the ordinary smooth

error distributions of order β have a characteristic function ϕZ(t) satisfying

d0|t|
−β ≤ |ϕZ(t)| ≤ d1|t|

−β as |t| → ∞, for some positive constants d0, d1 and

β; supersmooth error distributions have characteristic functions decreasing ex-

ponentially fast in the tails. See Fan (1991c). For simplicity, we restrict our

presentation to the ordinary smooth error case.

For any set D ⊂ R and positive integer m, let Cm(D) denote the set of

functions m times continuously differentiable on D and Dm(D) =
{
f ∈ Cm(D) :

sup0≤j≤m supx∈D |f (j)(x)| < ∞
}
. For a square integrable function f , let R(f)

denote
∫

f2. Finally, let d = fX(τ+)−fX(τ−) denote the size of the discontinuity

of fX at τ where, for any function g and point a ∈ R, we denote g(a+) =

limx→
>

a g(x) and g(a−) = limx→
<

a g(x). Then, we take rX = fX − d I[τ,+∞[,

continuous on R and, in particular, at τ since rX(τ+) = rX(τ−) = fX(τ−).

Condition A.

(A1) K ∈ C3(R) is a symmetric, kth order kernel (k ≥ 2 even), such that

‖K‖∞ = K(0) > maxx6=0 |K(x)|, K ′′(0) < 0, and
∫
|uK(r)(u)| du < ∞

for r = 0, 1, 2, 3;

(A2) rX is Lipschitz continuous with Lipschitz constant L;

(A3) fY is differentiable on R\{τ} such that supx∈R\{τ} |f
(`)
Y (x)| < ∞ for ` = 0, 1;

(A4) KZ ∈ C4(R) is such that
∫
|K ′′

Z(u)| du = O(h−β),
∫
|u| · |K ′′

Z(u)|2 du =

O(h−2β) and, for r = 0, . . . , 4, ‖K
(r)
Z ‖∞ = O(h−β) and R(K

(r)
Z ) ∼ h−2β;
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(A5) h → 0 as n → ∞ so that, for some 0 < δ < 1/2, p ∈ N0 = N \ {0} and

q ∈ N0, nh(2+2δ+β)/(1+q) → ∞ and
∑∞

n=1 n1+q−ph−4δp−p−2βp < ∞.

A discussion on these and related conditions is given in Delaigle (2003).

There it is shown that the conditions can be expressed in a rather simple form

if one sacrifices generality of the functions fZ and K. In particular, Condition

(A1) is satisfied by most kernels commonly used in deconvolution problems. See

also Fan (1991a,b) and Delaigle and Gijbels (2002, 2004a,b).

The asymptotic distribution of the estimator is described in the next theo-

rem. See Section 5 for a proof.

Theorem 3.1. Suppose the error is ordinary smooth of order β and Conditions

(A1)−(A5) hold. Assume rX ∈ Cl(R)∩D3(R\{τ}) with l ≥ 0,
∫
|u|3|K ′′(u)| du <

∞, and let k2 = 0 if l = 0 and 1 otherwise. Then, for h = o(n−1/(2β+2k2+5)), we

have √
n

h

[ τ − τ̂√
R

(
K ′′

Z

) −
hk2+2Dτ

dK ′′(0)
√

R
(
K ′′

Z

)
]

L
−→N

(
0;

Bτ

d2{K ′′(0)}2

)
, (3.1)

where Dτ = [(−1)k2+1/(k2 + 1)!][r
(k2+1)
X (τ+) + (−1)k2+1 r

(k2+1)
X (τ−)]

∫ 0
−∞ uk2+1

K ′′(u) du and Bτ = [fY (τ+) + fY (τ−)]/2.

The indirect definition of the estimator makes it quite hard to derive the

asymptotic bias and variance of τ̂ , and thus the asymptotic mean squared error

(AMSE) of τ̂ . An approximation of the mean squared error (ApMSE) can be

obtained from the first two moments of the asymptotic distribution. Although

these are not necessarily the asymptotic moments of the estimator, they can

be used as a first approximation to assess some asymptotic properties of the

estimator.

Corollary 3.1. Under the conditions of Theorem 3.1, we have,

ApMSE[τ̂ ] =
h2k2+4D2

τ

d2{K ′′(0)}2
+

hR
(
K ′′

Z

)
Bτ

nd2{K ′′(0)}2
. (3.2)

When rX ∈ Cl(R), with l ≥ 1, we obtain the same asymptotic expression

whatever the value of l. If Dτ = 0, one has to go one or several steps further in

the Taylor expansions used in the proofs, until finding a non-zero leading term.

The above results show that the larger the discontinuity, the easier the esti-

mation. This is easy to understand intuitively, as a large discontinuity is more

likely to produce large derivatives of f̂X , and thus easily detectable maxima of

the diagnostic function Ĵ .
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From Theorem 3.1, we deduce that

τ − τ̂ = OP

(
√

hR
(
K ′′

Z

)

n

)
+ O(hk2+2). (3.3)

Under the conditions of the theorem, we know that hR
(
K ′′

Z

)
is of order h1−2β ,

and thus the rates of convergence depend on the sign of 1 − 2β. If 0 ≤ β ≤ 1/2,

minimization of (3.3) with respect to h leads to choosing h as small as possi-

ble. Under the conditions of the theorem, we can take h ∼ n−(2β+1)−1+η with

η > 0 which provides a rate of convergence slightly slower than n−1/(2β+1),

more precisely, τ − τ̂ = OP(n−(2β+1)−1+ε) with ε > 0. For β > 1/2, we

see that the optimal bandwidth is the balancing bandwidth (i.e., the band-

width which makes the two terms of (3.3) of the same order). If Dτ 6= 0, this

bandwidth satisfies h ∼ n−(2β+2k2+3)−1

. From (3.3), we then conclude that

τ − τ̂ = OP(n−(k2+2)/(2β+2k2+3)).

Remark 1. It is easy to see that the estimator can be applied for non-symmetric

error densities as well, but in this case, KZ is not necessarily symmetric. Al-

though the rates of convergence do not differ from the symmetric case, the asymp-

totic limiting distribution has to be modified to read
√

n/h
[
(τ − τ̂)/

√
GZ,h −

hk2+2Dτ/(dK ′′(0)
√

GZ,h)
] L
−→N

(
0; d−2{K ′′(0)}−2

)
, where GZ,h = fY (τ+)

∫ 0
−∞

{K ′′
Z(x)}2 dx+fY (τ−)

∫ ∞
0 {K ′′

Z(x)}2 dx. The ApMSEexpression and Lemmas 5.4

and 5.6 of Section 5 have to be modified in a similar way.

Remark 2. Similar results for the supersmooth error case, of order β, can

be found in the long version of this paper, where we show that τ̂ − τ =

OP

(
(lnn)−(k2+2)/β

)
. Although this slow rate seems rather discouraging, simula-

tions carried out with a Gaussian error indicate that the estimator works well in

that case too, even for samples of size n = 50 or 100.

4. Simulations

In this section, we illustrate the finite sample performance of the procedure

on a few examples, in the case of a Laplace error. In practice, our estimator

can be calculated as τ̂ = argmax x Ĵ(x), ( respectively τ̂ = argmin x Ĵ(x)), for a

left (respectively right) boundary point τ . In the case of two boundary points

τ1 and τ2, we take the estimators τ̂1 = argmax x Ĵ(x) and τ̂2 = argmin x Ĵ(x).

For estimating a discontinuity point, one has no information on the sign of the

discontinuity and has to stick to (2.2).

The typical shape of the diagnostic function Ĵ is illustrated in Figure 4.1

for increasing bandwidths (this for a sample of size n = 100 from Density #3

below, contaminated by a Laplace error), with the actual endpoints (here −3
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and 3) indicated by vertical lines. We see that the diagnostic function is indeed

maximized at points close to −3 and minimized at points close to 3.

We select the bandwidth by estimating the asymptotic MISE optimal band-

width for estimating the derivative of a density developed in the case of contin-

uous and differentiable densities, i.e., for a second order kernel K, we estimate

the bandwidth that minimizes AMISE
{
f̂ ′

X(x;h)
}

= R(K ′
Z)/(nh3) + h4µ2

K,2θ3/4,

where µK,2 denotes the second moment of the kernel K, θ3 = R(f
(3)
X ) is es-

timated by the normal reference or plug-in estimation methods described in

Delaigle and Gijbels (2002, 2004b) and, in the symmetric error case, R(K ′
Z)

can be calculated by (2π)−1
∫

t2|ϕK(t)|2|ϕZ(t/h)|−2 dt.
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Figure 4.1. Typical shape of Ĵ(x) for a sample of size n = 100 from Density
#3 contaminated with a Laplace error, for increasing bandwidths (from the
left to the right and from the top to the bottom).

We use the second order kernel K corresponding to ϕK(t) = (1 − t2)3 ·

1[−1,1](t), commonly used in deconvolution problems. We consider four densities

with compact support: density #1 is fX(x) = 1/3·1[0,3](x); density #2 is fX(x) =

3/175(−x2 +6x+5) ·1[0,5](x); density #3 is fX(x) = (sin2(x/2)+2)/(15− sin 3) ·

1[−3,3](x); and density #4 is fX(x) = (sinx + 1.1)/(28.5 − cos 25) · 1[0,25](x).
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For each of the above densities, we generated 100 samples of size n = 100 and

250, contaminated by a Laplace error with a noise-to-signal ratio Var Z/Var X =

10%. We only present the results for densities #2 and #4. The results for the

other densities were similar, although slightly better. Figure 4.2 shows scatter-

plots of the 100 replicated estimators of the left and right endpoints of densities

#2 and #4, indicated by + and �, respectively. The true endpoints are indicated

by horizontal lines. We see that the method performs quite well, even in these

rather difficult cases, and the results improve as the sample size increases. As one

could have expected, the left endpoint of Density #2 is more difficult to estimate

than the right endpoint, because it has a smaller jump size, yet we see that the

bias decreases as the sample size increases. See Delaigle and Gijbels (2006) for

more detailed results on this type of problem and other more challenging ones.
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Ĵ(x)

0

0

2

4

6

-1
0

1
0

2
0

20

3
0

40 60 80 100

Figure 4.2. Scatterplots of 100 replicated estimators for samples of size

n = 100 (left panels), or 250 (right panels), from density #2 (top panels)

and #4 (bottom panels) contaminated by a Laplace error with a noise-to-

signal ratio VarZ/VarX = 10%. Estimates of the right (respectively left)

endpoint are indicated by the character � (respectively +).

Finally, we mention that we implemented our estimator on other types of

error densities such as the supersmooth Gaussian density and the non-symmetric

and discontinuous exponential density. The method seems to work well in these
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cases too. See also Delaigle and Gijbels (2003).

5. Proofs of the Results

For u < 0 and rX ∈ C`+1(R \ {τ}), the `th order Taylor expansion of rX

around τ may be written as rX(τ +u) = rX(τ)+ur′X(τ−)+ · · ·+(u`/`!)r
(`)
X (τ−)+

R`(τ), where R`(τ) = (u`+1/(` + 1)!) r
(`+1)
X (τ + θu), with 0 < θ < 1. We obtain

a similar expansion for u > 0, with τ+ instead of τ−.

We partition the interval [A,B] in n1+q intervals of equal size, and define En

as the set of endpoints of the partition, i.e., En = {z0, . . . , zn1+q}, where z0 =

A < z1 < · · · < zn1+q = B, and zj+1 − zj = (B −A)/n1+q for j = 0, . . . , n1+q − 1,

where q satisfies Condition (A5).

5.1. Auxiliary results

The following sequence of lemmas lead to the proof of Theorem 3.1. Through-

out, K is a kth order symmetric kernel with k ≥ 2. The following condition will

be useful.

Condition C. (Cm
1 ) K ∈ Cm(R) is such that lim|x|→∞ K(m−1)(x) = 0; (Cm

2 )

KZ ∈ Cm(R); (Cm
3 )

∫
|u| · |K

(m)
Z (u)|2 du = O(h−2β); (Cm

4 )
∫
|K

(m)
Z (u)| du =

O(h−β); (Cm
5 ) ‖K

(m)
Z ‖∞ = O(h−β); (Cm

6 ) R(K
(m)
Z ) ∼ h−2β ; (Cm

7 )
∫
|uK(m)(u)|

du < ∞.

The next lemma is a generalization of a result of Stefanski and Carroll

(1990). See Delaigle and Gijbels (2002) for a proof.

Lemma 5.1. Let r ≥ 0. If K ∈ Cr(R), we have E [K
(r)
Z ((x − Y )/h)] =

E [K(r)((x − X)/h)].

Lemma 5.2. Assume (C2
1) and (C2

2), and rX ∈ Cl(R) ∩D3(R \ {τ}) with l ≥ 0.

Let k2 = 0 if l = 0 and 1 otherwise. Then, if K ′(0) = 0 and
∫
|u|3|K ′′(u)| du <

∞,

E
[ 1

nh

n∑

i=1

K ′′
Z

(τ − Yi

h

)]
= hk2+1Dτ + O(hk2+2). (5.1)

Proof. From Lemma 5.1 and the condition K ′(0) = 0, we can write

E
[ 1

nh

n∑

i=1

K ′′
Z

(τ − Yi

h

)]
=

∫ 0

−∞
K ′′(u)rX(τ−hu) du+

∫ +∞

0
K ′′(u)rX(τ−hu) du .
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A Taylor expansion of rX of order 2 around τ− (resp. τ+) for u > 0 (resp.

u < 0), combined with the fact that
∫

ujK ′′(u) du = 0 for j = 0, 1, provides the

result.

Lemma 5.3. Let r ≥ 0. Under (A2), (Cr+1
1 ), (Cr+1

2 ) and (Cr+1
7 ), we have

E
[
hrĴ (r)(x)

]
= dK(r)((x − τ)/h) + O(h), uniformly in x.

One requires Lemma 5.1 and Lipschitz continuity of rX for this.

Lemma 5.4. Let r ≥ 0. Under (A2), (A3), (Cr+1
1 ), (Cr+1

2 ), (Cr
3), (Cr+1

7 ), and

if K
(r)
Z is symmetric, we have

Var
[
h−1K

(r)
Z

(τ − Y

h

)]
=

fY (τ+) + fY (τ−)

2h

∫ {
K

(r)
Z (u)

}2
du + O(h−2β).

Proof. From Lemma 5.1, a first order Taylor expansion of fY around τ+ or τ−,

and the symmetry of K
(r)
Z , we have

Var
[
h−1K

(r)
Z

(τ − Y

h

)]
= h−1

∫ {
K

(r)
Z (u)

}2
fY (τ − hu) du + O(1)

=
fY (τ+) + fY (τ−)

2h

∫ {
K

(r)
Z (u)

}2
du + R2 + O(1),

where |R2| ≤ supx∈R\{τ} |f ′
Y (x)|

∫
|u| · |K

(r)
Z (u)|2 du = O(h−2β).

The next lemma generalizes a result of Fan (1991a) to the case where the

density fX is not continuous. The proof is similar to the proof of the result in

Fan (1991a). See Delaigle and Gijbels (2003).

Lemma 5.5. Let r ≥ 0. Under (A2), (A3), (Cr+1
1 ), (Cr+1

2 ), (Cr
3), (Cr

4), (Cr
5),

(Cr
6), (Cr+1

7 ), and if K
(r)
Z is symmetric and nh → ∞ as n → ∞, we have

hr−1Ĵ (r−1)(τ) − E
[
hr−1Ĵ (r−1)(τ)

]
√

Var
[
hr−1Ĵ (r−1)(τ)

)]
L

−→N(0; 1). (5.2)

Lemma 5.6. Let r ≥ 0. Under (A2), (Cr+1
1 ), (Cr+1

2 ), (Cr+1
5 ), (Cr+1

6 ), (Cr+1
7 ),

if supx∈R\{τ} |fY (x)| < ∞ and if nh → ∞ as n → ∞, we have, for all p ∈ N0

and for n large enough,

E [hrĴ (r)(x) − hrE Ĵ (r)(x)]2p

≤ 2n−ph−p−2βp ·
{ 2

π

∫
|t|2r+2+2β |ϕK(t)| dt · sup

x∈R\{τ}
|fY (x)| (

2

d0
)2

}p
.
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Proof. Let Tj denote K
(r+1)
Z ((x − Yj)/h). Then E [hrĴ (r)(x) − hrE Ĵ (r)(x)]2p

can be written as

1

(nh)2p

n∑

i=1

E
[
Ti − E (T1)

]2p

+
1

(nh)2p

n∑

i=1

∑

j 6=i

2p−2∑

li=2

E
[
Ti − E (T1)

]li · E
[
Tj − E (T1)

]2p−li

+ · · · +
1

(nh)2p

∑

i1 6=i2 6=...6=ip

ip∏

j=i1

E
[
Tj − E (T1)

]2
, (5.3)

where we used E [Ti − E (Ti)] = 0. By Lemma 5.3, we have ETi = O(h) and,

for all j ≥ 2, using arguments similar to the proof of Lemma 5.5, we have

E [T j
i ] = O(h1−jβ). We deduce that, for all l ≥ 2, E

[
Ti − E (T1)

]l
= O(h1−lβ).

Finally, we get E [hrĴ (r)(x)− hrE Ĵ (r)(x)]2p = O(n−ph−p−2βp), since nh → ∞ as

n → ∞. From the above calculations, we also see that we can write

E [hrĴ (r)(x) − hrE Ĵ (r)(x)]2p

=
1

nph2p

{
E

[
K

(r+1)
Z

(x − Y1

h

)]2}p
· (1 + o(1))

≤
1

nph2p

{
2h sup

x∈R\{τ}
|fY (x)| · R(K

(r+1)
Z )

}p
· (1 + o(1))

≤ n−ph−p−2βp ·
{

2cβ(K) sup
x∈R\{τ}

|fY (x)| · (
2

d0
)2

}p
· (1 + o(1)),

where cβ(K) = π−1
∫
|t|2r+2+2β |ϕK(t)|2 dt. Details of the last inequality can be

found in Delaigle and Gijbels (2003).

Lemma 5.7. Let r ≥ 0. Assume (A2), (A5), (Cr+1
1 ), (Cr+2

2 ), (Cr+1
5 ), (Cr+2

5 ),

(Cr+1
6 ) and (Cr+1

7 ). Further assume that ‖K (r+1)‖∞ < ∞ and supx∈R\{τ} |fY (x)|

< ∞. Then if nh → ∞ as n → ∞, we have for all ε > 0,

∞∑

n=1

P
(
h−2δ sup

x∈[A,B]
|hrĴ (r)(x) − hrE Ĵ (r)(x)| > ε

)
< ∞ , (5.4)

with δ > 0 as in (A5).

Proof. Recall the definition of En. For each x in [A,B] there exists at least

one point z(x) in En such that |x − z(x)| ≤ (B − A)n−(1+q). For all ω ∈ Ω, the
sample space, we have

sup
x∈[A,B]

|hrĴ (r)(x) − hrE Ĵ (r)(x)| ≤ S1,n + S2,n + S3,n, (5.5)
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where S1,n ≡ supx∈[A,B] |h
rĴ (r)(x)−hrĴ (r)(z(x))|, S2,n ≡ supx∈[A,B] |h

rĴ (r)(z(x))

−hrE Ĵ (r)(z(x))| and S3,n ≡ supx∈[A,B] |h
rE Ĵ (r)(z(x))−hrE Ĵ (r)(x)|. To simplify

notation, we do not indicate the dependence of the random variables on ω. We

treat the three terms separately. For the first, note that for all ω ∈ Ω and for all

x ∈ [A,B] we have (by the Mean-Value Theorem)

|hrĴ (r)(x)−hrĴ (r)(z(x))| ≤ hr|Ĵ (r+1)(ξ)| · |x− z(x)| ≤ h−2‖K
(r+2)
Z ‖∞ · |x− z(x)|,

where ξ lies between x and z(x) and ‖K
(r+2)
Z ‖∞ ≤ c1h

−β, with c1 a positive

constant independent of ω and n. We conclude that

h−2δS1,n = h−2δ sup
x∈[A,B]

|hrĴ (r)(x) − hrĴ (r)(z(x))| ≤ c1 · (B − A)h−2−2δ−βn−1−q.

For handling the second term in (5.5), note that we have, for all ω ∈ Ω,

sup
x∈[A,B]

|hrĴ (r)(z(x)) − hrE Ĵ (r)(z(x))| ≤ sup
z∈En

|hrĴ (r)(z) − hrE Ĵ (r)(z)|.

Hence for all ε > 0 and ` ≥ 1, we can write

∑̀

n=1

P
(
h−2δS2,n > ε

)
≤

∑̀

n=1

∑

z∈En

[
P

(
h−2δ|hrĴ (r)(z) − hrE Ĵ (r)(z)| > ε

)]
.

Now by Chebychev’s Inequality and Lemma 5.6, we have that, for any z ∈ R

and n large enough (say n ≥ M),

P
(
h−2δ|hrĴ (r)(z) − hrE Ĵ (r)(z)| > ε

)
≤

E [hrĴ (r)(z) − hrE Ĵ (r)(z)]2p

ε2p

h−4δp

≤ c2n
−ph−p−2βph−4δp,

where c2 is independent of n. Taking the limit as ` → ∞, we deduce that

∞∑

n=1

P
(
h−2δS2,n > ε

)

≤ M − 1 + c2

∞∑

n=M

n1+q−ph−4δp−p−2βp + c2

∞∑

n=M

n−ph−4δp−p−2βp < ∞,

by Condition (A5). For the third term in (5.5), using Lipschitz continuity of rX

and the bound |z(x) − x| ≤ (B − A)n−1−q, we get

h−2δS3,n = h−2δ sup
x∈[A,B]

|hrE Ĵ (r)(z(x)) − hrE Ĵ (r)(x)| ≤ c3n
−1−qh−1−2δ ,
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with c3 a positive constant independent of n (and of ω). Let ε be any positive real

number. Since we have shown that, for all ω ∈ Ω, h−2δS1,n +h−2δS3,n ≤ c1 (B −

A)h−2−2δ−βn−1−q + c3n
−1−qh−1−2δ (which, under Condition (A5), tends to zero

as n → ∞), we have for n large enough (say n ≥ M), h−2δS1,n +h−2δS3,n ≤ ε/2.

Thus we can write

∞∑

n=1

P
(
h−2δS1,n+h−2δS2,n+h−2δS3,n >ε

)
≤ (M − 1) +

∞∑

n=M

P
(
h−2δS2,n >

ε

2

)

< ∞.

Lemma 5.8. Suppose that τ̂ = τ + O(h1+η) a.s., with η > 0. Assume (A2),

(A5), (C3
1), (C4

2), (C3
5), (C4

5), (C3
6), (C3

7), and suppose that ‖K (3)‖∞ < ∞ and

supx∈R\{τ} |fY (x)| < ∞. Then if nh → ∞ as n → ∞, we have h2Ĵ ′′(ξ)
a.s
−→dK ′′(0)

for any ξ between τ and τ̂ .

Proof. We have

|h2Ĵ ′′(ξ) − dK ′′(0)| ≤ |h2Ĵ ′′(ξ) − h2E Ĵ ′′(τ)| + |h2E Ĵ ′′(τ) − dK ′′(0)|

≤ T1,n + T2,n + T3,n,

with T1,n = supx∈[A,B] |h
2Ĵ ′′(x) − h2E Ĵ ′′(x)|, T2,n = supx∈[τ∧τ̂ ,τ∨τ̂ ] |h

2E Ĵ ′′(x) −

h2E Ĵ ′′(τ)|, and T3,n = |E h2Ĵ ′′(τ)−dK ′′(0)|. By Lemmas 5.7 and 5.3, T1,n
a.s.
−−→ 0

and T3,n → 0.

Now, by Lemma 5.3 and a Taylor expansion of K ′′ around 0, we have for all

x ∈ [A,B], h2E Ĵ ′′(x)−h2E Ĵ ′′(τ) = d[(x − τ)/h]K (3)(θ)+O(h), with θ between 0

and (x−τ)/h, and where the remainder term O(h) is uniform in x. In particular,

since [τ ∧ τ̂ , τ ∨ τ̂ ] ⊂ [A,B], we can write T2,n ≤ h−1|d| · ‖K(3)‖∞ · |τ̂ −τ |+O(h) =

O(hη) + O(h), where the last equality holds almost surely. This proves that

T2,n
a.s
−−→ 0.

Proposition 5.2 below shows that under the conditions of the theorem, the

condition τ̂ −τ = O(h1+η) a.s. of Lemma 5.8 is satisfied, with η corresponding to

δ in (A5). Its proof requires Proposition 5.1, the proof of which can be found in

Delaigle and Gijbels (2003). See also Couallier (2000). Let In = {x ∈ [A,B] :

|x − τ | > h1+δ}, with δ > 0.

Proposition 5.1. Under (A1) to (A5), we have
∑∞

n=1 P (supx∈In
|Ĵ(x)| ≥

|Ĵ(τ)|) < ∞.

Proposition 5.2. Under (A1) to (A5), we have τ̂ − τ = O(h1+δ) a.s., with

δ > 0 as in (A5).
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Proof. By definition of τ̂ , we have P
(
τ̂ ∈ In

)
≤ P

(
supx∈In

|Ĵ(x)| ≥ |Ĵ(τ)|
)
,

and
∞∑

n=1

P ( sup
x∈In

|Ĵ(x)| ≥ |Ĵ(τ)|) < ∞ =⇒ P (A) = 1,

by the Borel-Cantelli lemma, if we define A = {w :
∞⋃

n=1

∞⋂
m=n

{|τ̂m−τ |/h1+δ
m ≤ 1}}.

We have that ∀ω ∈ A : lim supn→∞ |τ̂n − τ |/h1+δ
n ≤ 1, and thus τ̂ −τ = O(h1+δ)

almost surely.

5.2. Proof of Theorem 3.1.

By applying a Taylor expansion of Ĵ ′ around τ , we can write 0 = Ĵ ′(τ̂) =

Ĵ ′(τ) + (τ̂ − τ)Ĵ ′′(ξ) where ξ lies between τ and τ̂ . Thus we have

τ − τ̂ = Ĵ ′(τ)/Ĵ ′′(ξ), (5.6)

where by Lemma 5.8, Ĵ ′′(ξ) is almost surely different from zero as n → ∞, since

K ′′(0) < 0. Under the conditions of the theorem, we have τ̂ − τ = O(h1+δ)

a.s. (see Proposition 5.2). Hence the conditions of Lemma 5.8 are satisfied. The

asymptotic law of τ − τ̂ follows from the asymptotic law of Ĵ ′(τ)/Ĵ ′′(ξ). From

Lemma 5.5 for r = 2, we know that

hĴ ′(τ) − E [hĴ ′(τ)]√
Var (hĴ ′(τ))

L
−→N(0; 1),

where Var
[
hĴ ′(τ)

]
follows from Lemma 5.4. From Lemma 5.2, we know that

E [hĴ ′(τ)] = hk2+1Dτ + O(hk2+2), and we deduce that

hĴ ′(τ) − hk2+1Dτ√
Bτ

nh R
(
K ′′

Z

)
L

−→N(0; 1).

The conclusion follows from (5.6) and Lemma 5.8.
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