
Statistica Sinica 16(2006), 741-772

EFFICIENT RECURSIVE ESTIMATION AND ADAPTIVE

CONTROL IN STOCHASTIC REGRESSION AND

ARMAX MODELS

Tze Leung Lai and Zhiliang Ying

Stanford University and Columbia University
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1. Introduction

As noted by Chan’s article in this issue, a major area of Ching Zong Wei’s re-

search is efficient recursive estimation and adaptive control in stochastic dynamic

systems. In 1977, when he was a second-year graduate student at Columbia, Wei

started working in this area with Lai and Robbins. Although the initial ob-

jectives of his research were more modest, contemporary developments in the

emerging field of stochastic adaptive control led to an ambitious research pro-

gram shortly after he received his Ph.D. in 1980, culminating in a number of

major advances within the five-year period 1982−1987. In Section 2 we review

the background and significance of this work. Although Wei then turned his at-

tention to inference in time series and stochastic processes using the results and

insights from this work, and also new tools that he subsequently developed (see

Chan’s article), this work paved the way for the further important developments

in recursive estimation and adaptive control described in Section 3. Following

Wei’s path, Section 4 turns to some challenging estimation problems in time se-

ries. By using certain ideas and techniques outlined in Section 3, we develop a

new approach to efficient recursive estimation in linear time series models. In

particular, asymptotically efficient recursive estimators are developed for the pa-

rameters of ARMAX models with i.i.d. symmetric disturbances whose common

density function is unknown. Some concluding remarks are given in Section 5.
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2. Stochastic Regression Models and Adaptive Control

Wei’s (1980) Ph.D. thesis, and his related papers on strong consistency of

least squares (LS) estimates with Lai and Robbins in 1978 and 1979 mentioned

in Chan (2006), were inspired by the multi-period control problem under uncer-

tainty in econometrics. His subsequent papers on stochastic regression models,

stochastic approximation and adaptive prediction in the period 1982-87 were

motivated by applications to recursive identification and adaptive control in the

contemporary engineering literature, in particular to the problem of self-tuning

regulators.

2.1. The multiperiod control problem and strong consistency of LS

estimates

The multi-period control problem under uncertainty is to choose successive

inputs u1, . . . , un in the linear regression model

yi = α+ βui + εi, (2.1)

where α and β are unknown parameters and the random disturbances ε1, ε2, . . .

are i.i.d. with mean 0 and variance σ2, so that the outputs y1, . . . , yn are as close

as possible in some sense to a given target value y∗. A Bayesian formulation is

often used so that the problem becomes that of minimizing

∫ ∞

−∞

∫ ∞

−∞
Eα,β

[ n∑

i=1

(yi − y∗)2
]
dπ(α, β)

= nσ2 +

∫ ∞

−∞

∫ ∞

−∞
β2Eα,β

[ n∑

i=1

(ui − θ)2
]
dπ(α, β), (2.2)

where π is a prior distribution of the unknown parameters α, β and θ = (y∗−α)/β;

see Zellner (1971), Prescott (1972) and Wieland (2000). The εi are often as-

sumed to be normally distributed, and (2.2) can in principle be minimized by us-

ing dynamic programming. However, because of the “curse of dimensionality” in

numerically solving the dynamic programming equations and the analytical diffi-

culties in studying the Bayes rules, not much was known about their performance

until the recent work of Han, Lai and Spivakovsky (2005), who “sandwich” the

performance of the Bayes rule between (i) that of an approximate policy opti-

mization procedure which uses Monte Carlo simulations to circumvent the curse

of dimensionality, and (ii) that of an “oracle policy” which becomes tractable by

assuming the value of β to be revealed after k periods in the future.
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A first departure from the Bayesian approach was due to Aokoi (1974).

Assuming that the sign of β is known, say β > 0, he proposed the use of a

stochastic approximation scheme of the form

ut+1 = ut − at(yt − y∗), (2.3)

where {ai} is a sequence of positive constants such that Σ∞
1 ai = ∞ and Σ∞

1 a
2
i <

∞. This approach has the property that ut → θ a.s. Another non-Bayesian

approach is the certainty-equivalence rule proposed by Anderson and Taylor

(1976). If α and β(6= 0) are both known, the optimal choice of ut is clearly

at θ = (y∗ − α)/β. Without assuming α and β to be known, suppose that

bounds K1,K2 are known such that K1 < θ < K2. Assuming the εi to be nor-

mally distributed, the maximum likelihood estimator of of θ at stage t ≥ 2 is

θ̂t = K2 ∧ {β̂−1
t (y∗ − α̂t) ∨K1}, (2.4)

where β̂t = {Σt
1(ui − ūt)yi}/{Σt

1(ui − ūt)
2}, α̂t = ȳt − β̂tūt are the least squares

estimates of β and α, ūt = t−1Σt
1ui, and ∧ and ∨ denote minimum and maximum,

respectively. The initial values u1 and u2 are distinct but otherwise arbitrary

numbers between K1 and K2, and for t ≥ 2, the certainty-equivalence rule sets

ut+1 = θ̂t. Despite its simplicity for implementation, the certainty-equivalence

rule is difficult to analyze. A basic difficulty is that although θ̂t may conceivably

represent one’s best current guess of θ, how good the guess is depends on how

the inputs u1, . . . , ut are chosen. In particular, if the inputs ui = θ̂i−1, 1 ≤ i ≤ t,

tend to cluster around their mean ūt, then there may not be enough information

to give a reliable estimate θ̂t, even though θ̂t may well be one’s closest guess of θ

at stage t.

Based on the results of simulation studies, Anderson and Taylor (1976) con-

jectured that the certainty-equivalence rule converges to θ a.s. and that
√
t(θ̂t−θ)

has a limiting N(0, σ2/β2) distribution. They also raised the question whether

α̂t and β̂t are strongly consistent. This question led Lai and Robbins to study

the strong consistency of α̂t and β̂t when the regressors ut are sequentially de-

termined random variables, not only in the Anderson-Taylor case ut+1 = θ̂t, but

also in adaptive stochastic approximation for which the at in (2.3) is chosen to

be of the form at ∼ (tβ̂t)
−1 that would be asymptotically equivalent (if β̂t should

be strongly consistent) to the optimal choice at = (tβ)−1 when β is known.

Under the regression model (2.1), the LS estimate can be written as

β̂n − β =

n∑

i=1

(ui − ūn)εi

n∑

i=1

(ui − ūn)2
. (2.5)
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When the ui are nonrandom constants, (2.5) yields Eβ̂n = β and Var(β̂n) =

σ2/Σn
i=1(ui − ūn)2, so β̂n converges to β in L2 (and therefore also in probability)

if
n∑

i=1

(ui − ūn)2 → ∞, (2.6)

but strong consistency of β̂n under (2.6) is much more difficult to establish since

(2.5) involves a weighted sum of the εi with a double array of weights ui − ūn.

To circumvent the difficulty due to the double array structure, Lai and Robbins

(1977) used the identities

n∑

i=1

(ui − ūn)εi =
n∑

i=2

( i− 1

i

)
(ui − ūi−1)(εi − ε̄i−1),

n∑

i=1

(ui − ūn)2

=
n∑

i=2

( i− 1

i

)
(ui − ūi−1)

2

to convert double-array into single-array sums. Although {εi − ε̄i−1, i ≥ 1} is

no longer an i.i.d. sequence, it is a sequence of uncorrelated random variables

and is therefore an independent sequence when the εi are normal. Therefore

Kolmogorov’s strong law of large numbers yields the desired strong consistency

when the εi are normal, and Lai and Robbins (1977) used a strong embedding

argument for ε̄i−1 to prove the result when the i.i.d. εi satisfy E{ε2i (log+ |εi|)r} <
∞ for some r > 1, under the minimal assumption (2.6) on the design with

nonrandom ui. This method does not work for general multiple regression, and

around that time Wei joined the project to develop an alternative approach for

multiple regression models as a graduate research assistant.

A definitive solution to the strong consistency problem for nonrandom re-

gressors was obtained within a year and was published in Lai, Robbins and Wei

(1978, 1979). The basic idea is to use the concept of convergence systems in

orthogonal series theory (cf., Banach (1930) and Gaposhkin (1966)) and the

property that certain linear transformations associated with the information ma-

trices of LS estimates preserve convergence systems. Specifically, a sequence of

random variables εi is called a convergence system if

∞∑

i=1

aiεi converges a.s. for all nonrandom {ai, i ≥ 1} such that

∞∑

i=1

a2
i <∞.

(2.7)

Let xi be a k-dimensional nonrandom vector and let Hn = Σn
i=1xix

T
i . Suppose

Hn is positive definite for all n ≥ m and {εi} is a convergence system. Then
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Theorem 2 of Lai, Robbins and Wei (1979) yields

{xT
n+1H

−1
n

( n∑

i=1

xiεi

)/
(1 + xT

n+1H
−1
n xn+1)

1/2, n ≥ m} is a convergence system.

(2.8)

The proof of (2.8) uses an induction argument and an inequality for certain se-

quences of real numbers; see Lemma 1 of Lai, Robbins and Wei (1979, pp.346-348)

whose Sections 3 and 4 use (2.8) to derive the strong consistency of LS estimates

in the multiple regression model yi = βTxi + εi under (2.7) and the minimal

assumption (Σn
i=1xix

T
i )−1 → 0 on the design constants. Chen, Lai and Wei

(1981) subsequently extended this approach to provide a unified treatment of all

previous results in the literature on the strong consistency of LS estimates in

multiple regression models with nonrandom regressors, and in particular for the

Gauss-Markov model.

Lai, Robbins and Wei (1978) also considered strong consistency of LS es-

timates under weak moment assumptions on the random errors εi. As pointed

out later by Lai and Wei (1984, Section 3), these consistency theorems can be

restated more generally in terms of certain linear transformations of lacunary

systems in orthogonal series theory. Given p > 0, a sequence of random variables

εi is called a lacunary system of order p, or Sp system, if there exists a positive

constant Kp such that for all nonrandom ci,

E
∣∣∣

n∑

i=m

ciεi

∣∣∣
p
≤ Kp

( n∑

i=m

c2i

) p

2
for all n ≥ m ≥ m0. (2.9)

Móricz (1976) has shown that if Zi are random variables for which there exist

α > 1 and nonnegative constants di such that E|Zn − Zm|p ≤ (Σn
i=mdi)

α for

n ≥ m ≥ m0, then there exists an absolute constant Cp,α such that

E
(

max
m≤i≤n

|Zi − Zm|p
)
≤ Cp,α

( n∑

i=m

di

)α
for all n ≥ m ≥ m0. (2.10)

Making use of (2.9) and the maximal inequality (2.10), Corollary 2 of Lai and

Wei (1984) generalizes Lai, Robbins and Wei (1978), who considered the special

case p=4 for Sp systems, to derive rates of a.s. convergence of the LS estimate

to β under the minimal assumption (Σn
i=1xix

T
i )−1 → 0 on the design constants.

These strong consistency results assume nonrandom xi and are therefore not

applicable to the multiperiod control problem with xi = (1, ui)
T , for which Lai

and Robbins (1979, 1981) used adaptive stochastic approximation schemes of the

form (2.3) with tat = ζt∨(β̂t∧ξt), where ζt → 0 and ξt → ∞. When the ui are se-

quentially determined random variables, as in stochastic approximation or in the
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certainty-equivalence rule, Lai and Robbins (1981) proved strong consistency of

β̂n under the condition
∑n

i=1(ui − ūn)2

log n
→ ∞ a.s. (2.11)

Although (2.11) is stronger than (2.6) for nonrandom ui, they gave an exam-

ple in which ui is Fi−1-measurable and Σn
i=1(ui − ūn)2/ log n → c a.s for some

constant c > 0, but in which β̂n → β − c−1 a.s. They also provided a set of

sufficient conditions on Σn
i=1(ui − θ)2 and ūn − θ that can be verified for adaptive

stochastic approximation, thereby proving the desired strong consistency of β̂n

and establishing the desired properties

n∑

i=1

(ui − θ)2 ∼
(σ2

β2

)
log n a.s., (2.12a)

√
n(un − θ) ⇒ N(0,

σ2

β2
), (2.12b)

for adaptive stochastic approximation schemes; see Lai and Robbins (1979, 1981).

For the Anderson-Taylor certainty-equivalence rule, however, Lai and Robbins

(1982) showed that (2.4) does not converge to θ a.s. by exhibiting an event which

has positive probability and on which un gets stuck at one of the endpoints

K1,K2 for n ≥ 2, giving little information to estimate β.

2.2. Related limit theorems and multivariate stochastic approximation

Wei (1987a) generalized (2.12a, b) to multivariate adaptive stochastic ap-

proximation schemes of the form ut+1 = ut − (tBt)
−1yt for the regression model

yi = M(ui) + εi, in which the regression function M : Rd → Rd has a unique

zero at θ and satisfies certain regularity conditions. Some basic results of this

work were already obtained in the second part of his thesis, Wei (1980), whose

first part focused on limit theorems for weighted sums of independent random

variables and more general martingale difference sequences εi that arise in regres-

sion and time series models. After completing his thesis, he continued working

with Lai in this direction, and developed laws of the iterated logarithm (LIL)

for double arrays of independent random variables in Lai and Wei (1982a), and

limit theorems for generalized linear processes in Lai and Wei (1983a, 1985). In

particular, Theorem 2 of Lai and Wei (1982a) gives the following LIL of the jth

component β̂nj of the LS estimate in the multiple regression model yi = βTxi+εi
with nonrandom regressors:

lim sup
n→∞

|β̂nj − βj |
{2 Var(β̂nj) log log(Varβ̂nj)−1} 1

2

= 1 a.s. (2.13)
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when the εi are independent random variables with Eεi = 0, Eε2i = σ2 > 0 and

supiE|εi|r < ∞ for some r > 2, and the regressors satisfy Var(β̂nj) → 0 and

some other weak regularity conditions.

2.3. The self-tuning regulator and efficient adaptive prediction and

control

A widely used stochastic model in the time series and stochastic control

literature is the ARMAX system (autoregressive moving average system with

exogenous inputs) defined by the linear difference equation

A(q−1)yn = B(q−1)un−d + C(q−1)εn, (2.14)

where {yn}, {un} and {εn} denote the output, input and disturbance sequences,

respectively, d ≥ 1 represents the delay and A(q−1) = 1 + a1q
−1 + · · · + apq

−p,

B(q−1) = b1 + · · ·+bkq−(k−1), C(q−1) = 1+c1q
−1 + · · ·+chq−h are scalar polyno-

mials in the backward shift operator q−1. Because of its theoretical interest and

practical importance, the problem of determining the inputs un, based on current

and past observations yn, yn−1, un−1, . . . (i.e., un is Fn-measurable), to keep the

outputs yn+d as close as possible to certain target values y∗n+d when the system pa-

rameters are not known in advance but have to be estimated “on-line” (i.e., dur-

ing the operation of the system) has been one of the major topics in the subject of

stochastic adaptive control. Let x0 = (y0, . . . , y1−p, u0, . . . , u2−d−k, ε0, . . . , ε1−h)T

denote the “initial condition” of (2.14). The polynomial B(z) = b1 + · · ·+ bkz
k−1

is called stable if all its zeros lie outside the unit circle, and two or more poly-

nomials are said to be relatively prime if their greatest common divisors have

degree 0.

In principle, given a probability distribution of the random sequence {x0, ε1,

ε2, . . .} and a prior distribution π of the unknown parameter vector

β = (−a1, . . . ,−ap, b1, . . . , bk, c1, . . . , ch)T , (2.15)

we can use backward induction to solve the dynamic programming equations

defining the inputs u1, . . . , uN−d that minimize

∫
Eβ

{ N∑

i=d+1

(yi − y∗i )
2
}
dπ(β), (2.16)

for every given horizon N , where the y∗i are given target values for the outputs.

Despite the analytical and computational difficulties in the implementation of the

Bayesian approach, Bayesian analysis of some very simple examples has provided

important insights into the structure of optimal control rules. In particular,
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Feldbaum (1961) and subsequent authors have shown that Bayes rules have the
“dual control” function of both probing the system for information about its
parameters and trying to drive the outputs towards their target values.

A seminal paper of Åström and Wittenmark (1973) proposed a certainty-
equivalence approach as a practical alternative to the Bayesian approach. To
begin with, consider the regulation problem (with y∗t ≡ 0) in the case of unit
delay (d = 1) and white noise (C(q−1) = 1). Replacing b1 in (2.15) by a prior
guess b 6= 0, they proposed to estimate the other parameters at stage t by
α

(t)
1 , . . . , α

(t)
p , β

(t)
2 , . . . , β

(t)
k that minimize

t∑

i=1

(yi + α1yi−1 + · · · + αpyi−p − bui−1 − β2ui−2 − · · · − βkui−k)
2, (2.17)

and to determine the input ut by the certainty-equivalence rule

ut =
α

(t)
1 yt + · · · + α

(t)
p yt−p+1 − β

(t)
2 ut−1 − · · · − β

(t)
k ut−k+1

b
. (2.18)

They also showed that if the estimates should converge as t→ ∞, then α
(t)
1 /b, . . .,

α
(t)
p /b, β

(t)
2 /b, . . . , β

(t)
k /b must necessarily converge to the coefficients a1/b1, . . .,

ap/b1, b2/b1, . . . , bk/b1 in the optimal regulator u∗t = {a1yt + · · · + apyt−p+1 −
b2ut−1 − · · · − bkut−k+1}/b1 that assumes knowledge of the system parameters,
and therefore the adaptive regulator ut “self-tunes” itself in the sense that its
defining equation has asymptotically negligible difference from that of u∗

t . More-
over, instead of adhering to a prior guess b of b1 in the rule, they also consid-
ered updating this guess with the current and past data, which amounts to a
LS certainty-equivalence rule. By reparameterizing the system (2.14) and using
least squares or extended least squares to directly estimate the transformed pa-
rameters, they also suggested natural extensions of (2.18) to general delay and
colored noise.

An open problem with the Åström-Wittenmark approach is whether, with
positive probability, the parameter estimates may fail to converge. Using the in-
sights from adaptive stochastic approximation in Lai and Robbins (1979, 1981)
and its multivariate extension in Wei (1980), Lai and Wei began studying this
problem in 1981. They were also inspired by a landmark paper by Goodwin,
Ramadge and Caines (1981) who circumvented the difficulties in the analysis of
sequential LS estimates in a feedback control environment by using stochastic gra-
dient (SG) estimates instead of LS estimates, and who showed that under certain
assumptions the SG certainty-equivalence control rule has the “self-optimizing”
(or “globally convergent”) property that

n−1
n∑

i=1

(yi − y∗i − εi)
2 → 0 a.s. (2.19)
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In the case of white noise and unit delay (i.e., C(q−1) = 1 and d = 1), the

SG estimates are given recursively by

βt = βt−1 +
α

rt
xt(yt − βT

t−1xt), rt = rt−1 + ‖xt‖2, (2.20)

where α > 0 is a tuning parameter and xt = (yt−1, . . . , yt−p, ut−1, . . . , ut−k)
T .

Since (2.14) can be written as the stochastic regression model yn = βTxn + εn,

using LS estimates β̂t is expected to be more efficient than using SG estimates.

Moreover, like (2.20), LS estimates can be implemented on-line via the recursions

β̂t = β̂t−1 + Ptxt(yt − β̂t−1xt), (2.21a)

Pt = Pt−1 −
Pt−1xtx

T
t Pt−1

(1 + xT
t Pt−1xt)

, (2.21b)

in which (2.21b) is the recursion (or Riccati equation) for (Σt
i=1xtx

T
i )−1. Thus,

(2.20) simply replaces Pt in (2.21a) by α/tr(P−1
t ). To demonstrate that using

LS instead of SG estimates indeed leads to a more efficient control rule, Lai and

Wei proceeded to show that a suitably chosen adaptive control rule using LS

estimates can achieve

Rn = O(log n) a.s., where Rn =

n∑

i=1

(yi − y∗i − εi)
2, (2.22)

which is much sharper than the self-optimizing property (2.19) for the SG-based

control rule. Note that if β is known and b1 6= 0, then the minimum-variance

controller ut−1 is given by βTxt = y∗t , yielding the output yt = y∗t + εt at time

t. When β is unknown, the regret Rn of an adaptive control rule at stage n is

defined by (2.22). In this connection, note that (2.12a) gives a logarithmic regret

of the Lai-Robbins adaptive stochastic approximation rule in the multiperiod

control problem with y∗t = 0, for which yt − y∗t − εt = β(ut − θ).

A first step by Lai and Wei towards generalizing the logarithmic regret in

(2.12) to the present setting was to develop new techniques to prove strong con-

sistency of LS estimates in stochastic regression models. This led to the paper

by Lai and Wei (1982b) mentioned in Section 2.1 of Chan’s article in this issue.

As pointed out in Sections 3 and 5 of Lai (2003), a major technical break-

through of Lai and Wei (1982b) was the use of “extended stochastic Liapounov

functions”, whereas previous authors relied on Liapounov functions of associated

ordinary differential equations (cf., Ljung (1977)) or on stochastic Liapounov

functions (cf., Gladyshev (1965), Robbins and Siegmund (1970), Solo (1979)

and Goodwin, Ramage and Caines (1981)). Let {εn,Fn, n ≥ 1} be a martingale
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difference such that supnE(ε2n|Fn−1) <∞ a.s. An extended stochastic Liapounov

function Vn is a nonnegative Fn-measurable random variable satisfying

Vn ≤ (1 + an−1)Vn−1 + bn − cn + wn−1εn a.s., (2.23)

where an ≥ 0, bn ≥ 0, cn ≥ 0 and wn are Fn-measurable random variables such

that Σan <∞. Although Lai and Wei (1982b) did not introduce this terminol-

ogy, as they only considered the recursions (2.21a, b), their arguments can be

used to show that (2.23) implies

max
(
Vn,

n∑

i=1

ci

)
= O

( n∑

i=1

bi +
( n∑

i=1

w2
i

) 1
2
+δ)

a.s. (2.24)

for every δ > 0. In fact, the recursions (2.21a) and (2.21b) lead to the recursive

inequality (2.23) with Vn = (β̂n − β)T P−1
n (β̂n − β), an = 0, bn = xT

nPnxnε
2
n,

cn = {(β̂n−1 −β)Txn}2(1−xT
nPnxn), wn−1 = 2{(β̂n−1 −β)Txn}(1−xT

nPnxn).

Assuming that {εn,Fn, n ≥ 1} is a martingale difference with supnE(ε2n|Fn−1) <

∞ a.s., Lai and Wei (1982b) showed that (2.24) holds in this case. Moreover,

they also showed under the stronger moment condition supnE(|εn|2+δ|Fn−1) <

∞ a.s. for some δ > 0, that

n∑

i=1

xT
i Pixiε

2
i = O

( n∑

i=1

xT
i Pixi

)
= O

(
log λmax

( n∑

i=1

xix
T
i

))
a.s.,

thereby strengthening (2.24) in this case into

max
(
Vn,

n∑

i=1

ci

)
= O

(
log λmax

( n∑

i=1

xix
T
i

))
a.s. (2.25)

Here and in the sequel, we use λmax(·) and λmin(·) to denote the maximum and

minimum eigenvalues, respectively.

Stochastic Liapounov functions Vn, used earlier by Gladyshev (1965) and

Robbins and Siegmund (1970) for the convergence analysis of stochastic approx-

imation schemes, and by Solo (1979) and Goodwin, Ramage and Caines (1981)

in their analysis of the AML and SG algorithms, are Fn-measurable random

variables satisfying

E(Vn|Fn−1) ≤ (1 + an−1)Vn−1 + bn−1 − cn−1,

in contrast with (2.23) that defines extended stochastic Liapounov functions.

Whereas stochastic Liapounov functions converge a.s. because they are non-

negative almost supermartingales, extended stochastic Liapounov functions offer
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much greater flexibility as they need not converge a.s.; convergence of Vn is only

ensured on {Σ∞
i=1E(bi|Fi−1) <∞}. Since

Vn = (β̂n − β)T
( n∑

i=1

xix
T
i

)
(β̂n − β) ≥ ‖β̂n − β‖2λmin

( n∑

i=1

xix
T
i

)
,

(2.25) yields the “local convergence” result

β̂n → β a.s. on
{ λmin

(∑n
i=1 xix

T
i

)

log λmax

(∑n
i=1 xix

T
i

) → ∞
}
. (2.26)

Moreover, since ct = {(β̂t−1 − β)T xt}2(1 − xT
t Ptxt), (2.25) also yields

n∑

t=1

(β̂
T

t−1xt − βTxt)
2I{xT

t Ptxt≤δ} = O
(

log λmax

( n∑

i=1

xix
T
i

))
a.s. (2.27)

for every 0 < δ < 1. Note that (2.27) gives an asymptotic bound on the cumula-

tive squared difference between the minimum-variance Ft−1-measurable predictor

βTxt of yt, when β is known, and the LS adaptive predictor β̂
T

t−1xt. Hence, if it

can be shown that

log(‖xn‖2 ∨ 1) = O(log n) and xT
n

( n∑

i=1

xix
T
i

)−1
xn → 0 a.s., (2.28)

then (2.27) yields Σn
t=1(β̂

T

t xt+1 − βTxt+1)
2 = O(log n), which would give the

desired logarithmic order (2.22) of the LS certainty equivalence rule β̂
T

t xt+1 =

y∗t+1 (that can be used to define ut when β̂1,t 6= 0), noting that βTxt+1 = yt+1 −
εt+1. To ensure (2.28), and to handle the stages t at which β̂1,t vanishes or is

close to 0, required much more work, culminating in Lai and Wei (1986a, 1987).

For colored noise and unit delay, (2.14) can still be written as a stochastic

regression model yt = βTψt + εt, in which β is given by (2.15) and

ψt = (yt−1, . . . , yt−p, ut−1, . . . , ut−k, εt−1, . . . , εt−h)T (2.29)

contains the unobservable εt−1, . . . , εt−h. The SG estimates are given recursively

by (2.20) with

xt = (yt−1, . . . , yt−p, ut−1, . . . , ut−k, ε̂t−1, . . . , ε̂t−h)T , where ε̂i = yi − β̂
T

i−1xi.

(2.30)

The extended least squares (ELS) estimates are given recursively by (2.21a, b)

with xt defined by (2.30), or by a variant that uses ε̂i = yi − β̂
T

i xi in (2.30). By
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making use of extended stochastic Liapounov functions, Lai and Wei (1986a)

generalized (2.25) to ELS. Under stability assumptions on A(z), B(z) and C(z)

and certain regularity conditions, they also developed an ELS-based certainty-

equivalence rule whose regret has the logarithmic order (2.22).

For white noise and unit delay, Lai (1986) studied Bayes control rules in a

more tractable setting that assumes b1(6= 0) to be known, y∗i ≡ 0, and the εi
to be normal with mean 0 and variance σ2. Putting a truncated normal prior

distribution π on λ := b−1
1 (−a1, . . . ,−ap, b2, . . . , bk)

T , which is the restriction of

a standard multivariate normal distribution to the region of λ values for which

A(z) and B(z) are stable and the polynomials zp{A(z−1) − 1} and zk−1B(z−1)

are relatively prime, he showed that

∫
Eλ

{ n∑

i=1

(yi − εi)
2
}
dπ(λ) ≥ (1 + o(1))σ2(p+ k − 1) log n (2.31)

for all input sequences {un} satisfying (2.19) and the additional growth condition

u2
n = O(nδ) a.s. for some 0 < δ < 1. This led him to call an input sequence

asymptotically efficient if its regret satisfies

Rn ≤ (1 + o(1))σ2(p+ k − 1) log n a.s. (2.32)

Without assuming b1 to be known, Lai and Wei (1987) showed how LS certainty-

equivalence rules can be modified to make them asymptotically efficient. They

also considered the general delay case and constructed adaptive regulators that

satisfy
n∑

i=1

(yi − ε̃i)
2 ≤ (1 + o(1))vd(p + k + d− 2) log n a.s., (2.33)

where ε̃n+d = yn+d −E(yn+d|Fn) and v = lim supn→∞E(ε̃2n+d|Fn), thereby pro-

viding a natural extension of (2.32) to the general delay case.

An important feature of the adaptive control rules in Lai and Wei (1986a,

1987) is the use of occasional white-noise probing inputs to resolve the apparent

dilemma between the control objective and the need of information for parameter

estimation. These white-noise probing inputs yield strongly consistent auxiliary

estimates of β which can be used to monitor and modify the LS estimates.

Further discussion of this is given in Section 3. Whereas the adaptive control

rules of Lai and Wei (1986a, 1987) and those of Lai and Robbins (1979, 1981)

for the multiperiod control problem also yield strongly consistent estimates of

β, the SG-based controller of Goodwin, Ramage and Caines (1981) do not yield

SG estimates βt that converge to β a.s. Becker, Kumar and Wei (1985) made

use of the self-optimizing property (2.19) of the SG-based control law to show
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that limt→∞ βt = γβ a.s., where γ is an a.s. nonzero random variable, thereby

establishing the “self-tuning” property that the coefficients of the control law

converge a.s. to the optimal values a1/b1, . . . , ap/b1, b2/b1, . . . , bk/b1.

2.4. Weak excitation in stochastic regression models and further ap-

plications

The condition (2.26) on the strong consistency of the LS estimate β̂n in

stochastic regression models generalizes (2.11) which, as shown by Lai and Rob-

bins (1981), is in some sense the weakest possible. Its extension to the ELS

estimate in the ARMAX system (2.14) paved way for subsequent developments

concerning the Åström-Wittenmark regulator that will be reviewed in Section 3.

Previous work on strong consistency of the ELS estimate requires a persistent

excitation condition of the form

n−1
n∑

t=1

xtx
T
t converges a.s. to a positive definite matrix; (2.34)

see Ljung (1977) or its variant due to Solo (1979) that replaces xt by ψt de-

fined in (2.29). Lai and Wei (1986b) developed some basic tools for excitation

analysis via λmin(Σ
n
t=1ψtψ

T
t ) in ARMAX models. For LS estimates in stochas-

tic regression models, Lai and Wei (1982c, 1983b, 1986b), Lai (1986) and Wei

(1985, 1987b) gave further refinements and a variety of statistical applications of

(2.25) and related results in Lai and Wei (1982b).

3. Asymptotic Theory of Recursive Estimation and Adaptive Control

in ARMAX Systems

While the self-optimizing adaptive control rules of Goodwin, Ramadge and

Caines (1981), Lai and Wei (1986a, 1987), and Guo and Chen (1988) were con-

structed by modifying the certainty equivalence approach proposed by Åström

and Wittenmark (1973), the problem concerning the convergence of the orig-

inal Åström-Wittenmark regulator remained open until Guo and Chen (1991)

proved that (2.19) holds and the ELS estimate β̂t is strongly consistent for the

Åström-Wittenmark regulator, provided that b̂2t,1 is truncated at 1/ log rt−1 if it

falls below that threshold, where rn = Σn
i=1‖xi‖2. Important tools in their anal-

ysis are (2.26) and (2.27), besides the Bellman-Gronwall inequality which they

applied in an ingenious way to bound ‖xt‖2 via the dynamics of the controlled

system. Such truncation on b̂t,1 is reminiscent of a similar truncation ζt∨(β̂t∧ξt)
described in the last paragraph of Section 2.1 that reviews the work of Lai and

Robbins (1979, 1981) related to the multiperiod control problem. On the other
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hand, whereas the logarithmic regret (2.12a) holds for adaptive stochastic approx-

imation schemes that use a truncated LS estimate of the slope β in (2.1), only

the self-optimizing property (2.19) was established for the Åström-Wittenmark

regulator by Guo and Chen (1991).

Because the adaptive control rules of Lai and Wei (1986a, 1987) involve

occasional white-noise inputs to probe the system, they have to assume that A(z)

is a stable polynomial, which is a restrictive assumption since an important goal

of control theory is to choose inputs suitably to stabilize a system that becomes

unstable without such control inputs. Since the Åström-Wittenmark regulator

does not require these probing inputs, it can handle the case of unstable A(z). In

the white-noise case (C(z) = 1), Guo (1995, Thm. 6.3) showed that the Åström-

Wittenmark regulator that uses certain modifications of LS estimates can achieve

a regret of the order

Rn = O({1 + max
1≤i≤n

[iρditr(Pi−1 −Pi)]} log n) a.s. (3.1)

for every ρ > 0, where (di)i≥1 is a nonrandom sequence such that ε2i = O(di)

a.s. and Pi−1 −Pi is given by (2.21b).

For colored noise and general delay, Lai and Ying (1991a) used another

way of introducing occasional white-noise probing inputs without requiring A(z)

to be stable and thereby constructed an asymptotically efficient adaptive con-

trol rule which not only has logarithmic regret but also attains the minimal

multiplier of log n as in (2.32) and (2.33), thus providing an analog of (2.12a)

that was established by Lai and Robbins for the multiperiod control problem.

In this connection Lai and Ying (1991b) also developed an asymptotic theory

of efficient recursive estimation and adaptive prediction for ARMAX systems.

The subject of recursive estimation had been described by Åström and Eykhof

(1971) as a “fidder’s paradise,” with a long and growing list of proposed methods

and potential possibilities whose statistical properties were relatively unexplored

except for a few particular algorithms. Although the theory of stochastic ap-

proximation provides important tools to derive and analyze recursive parameter

estimates based on i.i.d. observations from parametric families (cf. Chapters

8 and 9 of Nevel’son and Has’minskii (1973)), it is unable to handle the com-

plexity of the interplay between the recursive estimates and system dynamics in

ARMAX models. The extended stochastic Liapounov function approach of Lai

and Wei described in Section 2.3 paved way for a more powerful approach that

led to a unified treatment of recursive estimation by Lai and Ying (1991b) who

also introduced parallel recursions to develop asymptotically efficient recursive

estimates of the system parameter vector (2.15).

Noting that the classical theory of efficient estimation in ARMAX models

involves maximum likelihood, the basic idea of Lai and Ying (1991b) was to
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modify the traditional off-line algorithms for maximum likelihood estimation into

on-line recursive algorithms. Suppose the εi are i.i.d. N(0, σ2); the case of non-

normal εi can be treated similarly and details are given in the next section.

In the white noise case C(z) = 1, the maximum likelihood estimates coincide

with the LS estimates that have the recursive representation (2.21a, b). For

colored noise, ELS uses the same recursions with xt given by (2.30), where the

ε̂i replaces the unobservable εi in (2.29). The recursive identification literature

calls this algorithm RML1 (recursive maximum likelihood of the first kind), and

the variant that uses ε̂i = yi − β̂
T

i xi in (2.30) is called “approximate maximum

likelihood” (AML). Although AML and RML1 have been referred to as recursive

versions of the “maximum likelihood” method, their statistical properties are

actually unrelated to those of the off-line maximum likelihood estimator, and it

is more appropriate to regard them simply as formal extensions of the recursive

least squares algorithm (2.21a, b). There is, however, some resemblance between

them and the iterative EM algorithm that is sometimes used to compute the

off-line maximum likelihood estimator when the εi are i.i.d. N(0, σ2) random

variables. The jth iteration in the EM algorithm to compute the maximum

likelihood estimator based on y1, u1, . . . , yn, un consists of a E-step that replaces

the unobservable εi in (2.29) by ε
(j−1)
i := E(εi|β(j−1)) = yi −βT

(j−1)ψi,j−1, where

β(j−1) denotes the estimate of β after j − 1 iterations and

ψi,j−1 = (yi−1, . . . , yi−p, ui−d, . . . , ui−d−k+1, ε
(j−1)
i−1 , . . . , ε

(j−1)
i−h )T . (3.2)

It then revises the estimate by an M-step that gives the least squares solution

β(j) = (Σn
i=1ψi,j−1ψ

T
i,j−1)

−1Σn
i=1ψi,j−1yi. The recursions for AML or RML1

simply replace ψi,j−1 in (3.2) by xi, without any iterative refinement and without

updating the estimates of εi when new data are available. This explains why the

AML or RML1 algorithm fails to inherit the statistical properties of the maximum

likelihood estimator, and can even run into serious difficulties when C(z) differs

so much from 1 (the white-noise case) that the positive real assumption

C(z) is stable and min
|t|≤π

Re{ 1

C(eit)
− 1

2
} > 0, (3.3)

which has been assumed for the convergence analysis of ELS in Solo (1979) and

Lai and Wei (1986a), is violated.

Given the initial condition ψ0 and the parameter value β, the εi in (2.29)

can be expressed as a function εi(β) of β, which yields (2.29) with ψt being a

vector-valued function ψt(β). The log-likelihood function at stage n is

`n(β) = −
n∑

i=1

(yi − βTψi(β))2

2σ2
+ constant. (3.4)
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Differentiation of (3.4) and (2.14) with respect to β yields

∇`n(β) = σ−2
n∑

i=1

(yi − βTψi(β))∇(βTψi(β)), (3.5)

∇(βTψi(β)) + c1∇(βTψi−1(β)) + · · · + ch∇(βTψi−h(β)) = ψi(β). (3.6)

The off-line maximum likelihood estimator is determined by numerical solution

of the equation ∇`n(β) = 0 using iterative schemes. From (3.5) it follows that

σ2∇2`n(β) = −
n∑

i=1

(∇βTψi(β))(∇βTψi(β))T +

n∑

i=1

(yi−βTψi(β))∇2(βTψi(β)).

(3.7)

The Gauss-Newton scheme to solve ∇`n(β) = 0 starts with an initial guess β
(0)
n

of β and defines the jth iterative step by setting β
(j)
n − β(j−1)

n equal to

[ n∑

i=1

(∇βTψi(β))(∇βTψi(β))T
]−1

β=β
(j−1)

n

×
[ n∑

i=1

(yi − βTψi(β))(∇βTψi(β))
]
β=β

(j−1)

n

.

Define xn by (2.30) and let cn−1,1, . . . , cn−1,h be the estimates of c1, . . . , ch given

by β̂n−1. A one-step implementation of the iterative scheme which initializes at

β
(0)
n = β̂n−1 and which approximates ∇`n−1(β̂n−1) by 0, yn − β̂T

n−1ψn(β̂n−1) by

ε̂n that is defined in (2.30), and ∇(βTψn(β))|
β=β̂

n−1

by φn that is defined like

(3.6) via the recursion

φn + cn−1,1φn−1 + · · · + cn−1,hφn−h = xn, (3.8a)

yields the RML2 algorithm (recursive maximum likelihood of the second kind;

see Ljung and Söderström (1983, pp.26-30)):

β̂n = β̂n−1 + Pnφnε̂n, (3.8b)

Pn = Pn−1 −
Pn−1φnφ

T
nPn−1

(1 + φT
nPn−1φn)

, (3.8c)

where P0 is a positive definite matrix.

While the RML2 algorithm circumvents the computational complexity in

updating the off-line maximum likelihood estimator by using the preceding ap-

proximations, these approximations may be poor if β̂n−1 differs substantially
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from β, and no consistency or asymptotic normality results have been estab-

lished for it. To ensure that β̂n−1 is eventually close to β, Lai and Ying (1991b)

suggested the following modification of (3.8b). Let β̃n be a consistent recursive

estimate of β such that β̃n −β = o(δn) a.s., where δn can be computed from the

input-output data up to stage n and converges to 0 a.s. In particular, we can

use the generalized method of moments (GMM) that will be described in Section

4.3 to construct such β̃n. Let Sn be a cube with center β̃n and width δn. Since

‖β̃n − β‖ = o(δn) a.s.,

P{β ∈ Sn for all large n} = 1. (3.9)

The consistent estimators β̃n and the associated confidence sets Sn are used in

Lai and Ying (1991b) to monitor the RML2 algorithm (3.8a, b, c) and need

only be updated occasionally at times m1 < m2 < . . . The basic idea is to

constrain (monitor) the algorithm so that it lies inside Smj
for mj ≤ n < mj+1

by using at stage n the projection πn with respect to the norm of the matrix

P−1
n = P−1

0 + Σn
i=1φiφ

T
i . Specifically, for x ∈ Rp+k+h and mj ≤ n < mj+1, let

πn(x) denote the unique solution of the quadratic programming problem

(πn(x) − x)T P−1
n (πn(x) − x) = min

y∈Smj

{(y − x)TP−1
n (y − x)}. (3.10)

It is convenient to choose Smj
to be a cube so that we have linear constraints

for (3.10). The monitored recursive maximum likelihood estimate introduced by

Lai and Ying (1991b) replaces (3.8b) in RML2 by

β̂n = πn(β̂n−1 + Pnφnε̂n), (3.11)

for which they showed that on {λmax(P
−1
n ) → ∞ and φT

nPnφn → 0},
n∑

i=1

(β̂
T

i−1xi − βTψi)
2

≤ (σ2 + o(1)) log det
( n∑

i=1

φiφ
T
i

)
+ o

( ∑

j:mj≤n

h∑

r=1

(‖φmj−r‖ ∨ 1)2
)

a.s. (3.12)

Note that (3.12) gives an asymptotic bound on the cumulative squared difference

between the minimum-variance Fi−1-predictor βTψi of yi (when β is known and

ψi is observable) and the adaptive predictor β̂
T

i−1xi, analogous to (2.27).

In the case of unit delay (d = 1), if it can be shown that with probability

1,Σn
i=1‖φi‖2 → ∞ but is bounded by n1+o(1), while φT

nPnφn → 0 and

∑

j:mj≤n

h∑

r=1

(‖φmj−r‖2 ∨ 1)2 = O(log n). (3.13)
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Then, in view of (3.12), the certainty equivalence regulator β̂
T

t xt+1 = 0 (that

can be used to define ut when b̂1,t 6= 0) would have a regret satisfying

Rn ≤ (1 + o(1))σ2{(p ∨ h) + k − 1} log n a.s., (3.14)

which agrees with (2.32) in the case h = 0. Lai and Ying (1991a) proved (3.14)

for a modified version of the RML2-based certainty equivalence rule. An impor-

tant ingredient of this asymptotically efficient adaptive regulator is an auxiliary

consistent recursive estimate β̃t which can be used to monitor RML2, and which

is constructed by the generalized method of moments (see Section 4.3) applied to

occasional blocks of well-excited input-output data. To generate these well ex-

cited blocks, the stochastic gradient (SG) algorithm (2.20) is also run in parallel,

with xt defined by (2.30) in which β̂i−1 should be replaced here by the SG esti-

mate βi−1. Since SG has been shown by Goodwin, Ramage and Caines (1981)

to be able to stabilize the system even though A(z) may be unstable, occasional

blocks of white noise probing inputs can be introduced via the disturbed control

scheme of Caines and Lafortune (1984):

βT
t (yt, . . . , yt−p+1, ut, . . . , ut−k+1, wt, . . . , wt−h) = wn (3.15)

for nj ≤ n < mj, where wi are i.i.d. bounded random variables with Ew1 =

0, Ew2
1 > 0, and n1 < m1 < n2 < m2 . . . are suitably chosen stopping time such

that mj − nj → ∞ and Σt
j=1(mj − nj) = o(log t). For t 6∈ ∪j{n : nj ≤ n < mj},

the RML2-based certainty equivalence rule β̂
T

t xt+1 = 0 is used if b̂1,t 6= 0, setting

ut = wt if b̂1,t = 0.

Lai and Ying (1991a) also extended this idea to general target values y∗t and

delay d > 1 by using the so-called “implicit approach” in the adaptive control

literature and still obtained (3.14) but with a somewhat larger multiplicative

constant. The preceding approach for unit delay is called explicit (or indirect);

see Section 7 of Lai and Ying (1991a).

4. Efficient Semiparametric Estimation in Linear Time Series Models

Although the monitored RML2 algorithm in the preceding section is mo-

tivated by maximum likelihood estimation when the εi are i.i.d. normal, the

same algorithm and its associated adaptive control rule can still be applied to

more general random disturbances εi. In fact, Lai and Ying (1991a, b) assume

that {εn,Fn, n ≥ 1} is a martingale difference sequence such that E(ε2n|Fn−1) =

σ2 > 0 and supnE(|εn|r|Fn−1) < ∞ a.s. for some r > 2, and derive results such

as (3.14) in this setting. On the other hand, because of the complexity of the

feedback control scheme, they have not provided traditional asymptotic normal-

ity results that show the asymptotic efficiency of the recursive approximations to
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the off-line maximum likelihood estimates. In this section we consider estimation

in simpler designs for ARMAX models, e.g., estimation in open loop for which

the ψt in (2.29), with ut−1, . . . , ut−k replaced by ut−d, . . . , ut−d−k+1 for general

delay, have good excitation properties to yield
√
n-consistency and asymptotic

normality of the recursive estimates.

To begin with, we replace the projection πn in (3.11) by a simpler mod-

ification of RML2 when the input-output data have good excitation proper-

ties. In Lai and Ying (1991b), the projection πn (with respect to the norm

of P−1
n ) is used to bound the extended stochastic Liapounov function Vn :=

(β̂n − β)T P−1
n (β̂n − β) by

Vn ≤ (β̂n−1 − β + Pnφnε̂n)TP−1
n (β̂n−1 − β + Pnφnε̂n). (4.1)

Instead of the projection πn, it is simpler to directly apply the auxiliary estimate

β̃n that is used to monitor the RML2 algorithm as follows:

β̂n =




β̂n−1 + Pnφnε̂n if ‖β̂n−1 + Pnφnε̂n − β̃n‖ ≤ δn,

β̃n otherwise.
(4.2)

With probability 1, since β̃n − β = o(δn), it follows that for all large n, (4.1)

still holds if ‖β̂n−1 + Pnφnε̂n − β̃n‖ > δn and λmax(P
−1
n ) = O(λmin(P

−1
n )). In

particular, (4.1) still holds for all large n if β̂n is defined by (4.2) and

n−1
n∑

i=1

ζiζ
T
i converges a.s. to a positive definite nonrandom matrix A, (4.3)

where ζi+c1ζi−1+ . . . chζi−h = ψi. In this section, the excitation condition (4.3)

is assumed and the “monitored RML2 algorithm” refers to (4.2). In addition,

A(z) and C(z) are assumed to be stable and the εn in (2.14) are assumed to be

i.i.d. with mean 0 and variance σ2.

We next extend the monitored RML2 algorithm to i.i.d. εi that have a

common density function f , not necessarily normal, with respect to Lebesgue

measure. In this case the log-likelihood function (3.4) has the more general form

`n(β) =

n∑

i=1

log f(yi − βTψi(β)) + constant. (4.4)

Assuming f to be continuously differentiable and letting g = −f ′/f , the off-line

maximum likelihood estimator solves the estimating equation

n∑

i=1

g(yi − βTψi(β))∇(βTψi(β)) = 0, (4.5)
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and ∇(βTψi(β)) still satisfies (3.6). Instead of maximum likelihood assum-

ing pre-specified f , Martin and Yohai (1985) proposed to use more robust M-

estimators in which g in (4.5) is a given score function, not necessarily of the

form −f ′/f .

4.1. Monitored recursive M-estimators

In the case where g′ ≥ 0, the Gauss-Newton method to solve (4.5) starts

with an initial guess β
(0)
n of β and defines the (j + 1)st iterative step by

β(j+1)
n = β(j)

n +
{ n∑

i=1

g′(e
(j)
i,n)[(∇βTψi(β))(∇βTψi(β))T ]

}−1

×
{ n∑

i=1

g(e
(j)
i,n)∇(βTψi(β))

}∣∣∣
β=β

(j)

n

, (4.6)

where e
(j)
i,n = yi − βTψi(β)|

β=β
(j)

n

. When g(x) = x (so g′ ≡ 1), the iterative

scheme (4.6) reduces to the Gauss-Newton scheme described in Section 3. When

g = −f ′/f,Eg(εi) = 0 and Eg′(εi) = Eg2(εi) > 0, and one usually replaces g′ in

(4.6) by g2 in this case. We therefore assume that

Eg(ε1) = 0 and Eg̃(ε1) = Eg′(ε1) > 0, (4.7)

where g̃ is some known nonnegative function. Note that if g is nondecreasing,

then we can simply set g̃ = g′.

To develop an M-estimation version of (4.2), we recursify the Gauss-Newton

algorithm (4.6) as before, but with P−1
n replaced by

P̃−1
n = P̃−1

n−1 + g̃(ε̂n−1)φnφ
T
n . (4.8)

The monitored recursive M-estimator is defined by (4.2), in which P−1
n is replaced

by P̃−1
n and ε̂n by g(ε̂n). Specifically,

β̂n =




β̂n−1 + P̃nφng(ε̂n) if ‖β̂n−1 + P̃nφng(ε̂n) − β̃n‖ ≤ δn,

β̃n otherwise.
(4.9)

Clearly β̂n → β. From (4.3), it follows that

n−1P̃−1
n → Ã = AEg̃(ε1) = AEg′(ε1). (4.10)

We next use the extended stochastic Liapounov function approach to analyze

the monitored recursive M-estimator. Define Vn = (β̂n − β)T P̃−1
n (β̂n − β). As
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pointed out in the paragraph containing (4.1), the recursion (4.9) yields that

with probability 1, for all large n,

Vn ≤ (β̂n−1 − β + P̃nφng(ε̂n))T P̃−1
n (β̂n−1 − β + P̃nφng(ε̂n))

= Vn−1+2φT
n (β̂n−1−β)g(ε̂n)+[φT

n (β̂n−1−β)]2g̃(ε̂n)+φT
n P̃nφng

2(ε̂n). (4.11)

Since g(ε̂n) = g(ε̂n − εn + εn) and ε̂n − εn ∈ Fn−1, it follows that

E[g(ε̂n)|Fn−1] =

∫
g(ε̂n − εn + u)f(u)du

=

{∫
g′(t∗(ε̂n − εn) + u)f(u)du

}
(ε̂n − εn),

where t∗ ∈ (0, 1). Because C(q−1)(ε̂n − εn) = −(β̂n−1 − β)Tφn, C(q−1) is stable

and β̂n is consistent, we have

n∑

i=1

φT
i (β̂i−1 − β)g(ε̂i)

=
n∑

i=1

φT
i (β̂i−1 − β)(ε̂i − εi)Eg

′(ε1) + o(1)
n∑

i=1

[φT
i (β̂i−1 − β)]2

= −(1 + o(1))

n∑

i=1

[φT
i (β̂i−1 − β)]2Eg̃(ε1) + o(1)

n∑

i=1

φT
i P̃iφ

T
i a.s. (4.12)

Combining (4.11) and (4.12) yields

Vn +

n∑

i=1

[φT
i (β̂i−1 −β)]2Eg̃(ε1) ≤ (1 + o(1))

n∑

i=1

φT
i P̃iφiEg

2(ε1) a.s. (4.13)

Since P̃−1
n = (Eg̃(ε1) + o(1))P−1

n a.s., it follows that with probability 1,

n∑

i=1

φT
i P̃iφi = (1 + o(1))[Eg̃(ε1)]

−1
n∑

i=1

φT
i Piφi

= (1 + o(1))[Eg̃(ε1)]
−1 log P−1

n

= (1 + o(1))(p + k + h)[Eg̃(ε1)]
−1 log n.

Putting this in (4.13), we obtain

Vn +Eg̃(ε1)

n∑

i=1

(ε̂n − εn)2 ≤ (1 + o(1))Eg2(ε1)[Eg̃(ε1)]
−1(p+ k + h) log n a.s.

(4.14)
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From (4.14), it follows that with probability 1, ‖β̂n − β‖2 = O(log n/n),

which implies that the monitoring is not used for all large n, provided that

δn = o(n1/2−α) for some α > 0. In other words, β̂n = β̂n−1 + P̃nφng(εn) for all

large n. This recursion leads to

P̃−1
n (β̂n−β) = P̃−1

n (β̂n−1 − β + P̃nφng(ε̂n))

= P̃−1
n−1(β̂n−1 − β) + φn[φT

n (β̂n−1 − β)g̃(ε̂n) + g(ε̂n)]

=

n∑

i=1

φi[φ
T
i (β̂i−1−β)g̃(ε̂i)+g(ε̂i)−g(εi)]+

n∑

i=1

φig(εi)+O(1) a.s.

Using g(ε̂i) − g(εi) ∼= g′(ε)(ε̂i − εi), it can be shown that the first term on right-

hand side of the above equality is of order o(
√
n).

√
n(β̂n − β) = nP̃n

1√
n

n∑

i=1

φig(εi) + o(1) ⇒ N
(
0, A−1[Eg̃(ε1)]

−2Eg2(ε1)
)
,

(4.15)

establishing the asymptotic normality of the monitored recursive estimator.

4.2. Adaptive semiparametric estimation

The subject of adaptive estimation began with Stein’s (1956) work on esti-

mating and testing hypotheses about a Euclidean parameter β or, more generally,

a function h(β) in the presence of an infinite-dimensional nuisance parameter G.

He considered the problem of when and how one can estimate β when G is un-

known as well asymptotically as when G is known. In the case of i.i.d. observa-

tions, Bickel (1982) and Fabian and Hannan (1982) provided general solutions

to this problem. Their theory was subsequently extended by Kreiss (1987) to

study adaptive estimation of the parameters of a stationary ARMA model. We

consider the somewhat more general case of the ARMAX model (2.14).

For the ARMA model (i.e., B(q−1) = 0), Kreiss (1987) made use of the

stability of A(z) and C(z) to derive the following power series representations for

some η > 1:

1

A(z)
=

∞∑

j=0

αj(β)zj ,
1

C(z)
=

∞∑

j=0

γj(β)zj , for all |z| ≤ η. (4.16)

With γj(β) defined from the invertibility of C(z), let

Zi−1(β) =

t−1∑

i=0

γi(β)ψt−i(β), (4.17)
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which plays a basic role in Kreiss’ construction of adaptive estimators. Under the

identifiability assumption that ap 6= 0, ch 6= 0 and A(z), C(z) have no common

zero and under some additional assumptions, Kreiss (1987) showed that when

f is unknown, it is possible to construct adaptive estimators which have the

same asymptotic optimality properties as the maximum likelihood estimator that

assumes f to be known and that is constrained to lie in a O(n−1/2)-neighborhood

of the true parameter β. Starting with a
√
n-consistent preliminary estimator

β∗
n of β such that β∗

n can assume values in a prescribed discrete set, he defined

an adaptive estimator β̂n by a linear approximation around β∗
n to the estimating

equation (4.5) in which the unknown g is replaced by an estimate ĝn,i:

β̂n = β∗
n +

{
În

n∑

t=1

Zt−1(β
∗
n)ZT

t−1(β
∗
n)

}−1
n∑

i=1

ĝn,i(εi(β
∗
n))ZT

i−1(β
∗
n), (4.18)

where În is an estimate of I(f) =
∫
(f ′/f)2fdx. The estimator ĝn,i(x) of g(x) in

(4.18) depends on the n−1 quantities ε1(β
∗
n), . . . , εi−1(β

∗
n), εi+1(β

∗
n), . . ., εn(β∗

n).

The adaptive estimator (4.18) uses ideas similar to those of Bickel (1982)

and Fabian and Hannan (1982) in the i.i.d. case, but is much more complicated

because it involves the inversion (4.16) of the operator C(q−1) for evaluating

the Zt−1(β
∗
n) in (4.18). This is particularly inconvenient when one needs to

update (4.18) sequentially whenever new data become available. The heavy

computational burden for (4.18) is in sharp contrast to the recursive “on-line”

estimators emphasized in the engineering literature, where the primary purpose

of parameter estimation for the ARMAX system is to support decisions that have

to be taken during the operation of the system.

We next construct an “on-line” adaptive procedure that achieves the semi-

parametric efficiency. Following Kreiss (1987), we assume that f is symmetric

about the origin. We also assume that f is differentiable as many times, and has

as many moments, as needed. We again, as in Section 4.1, require the availabil-

ity of the auxiliary estimate β̃n to monitor the recursion. Define the normalized

efficient score

ge(u) =
−f ′(u)

f(u)

E
[

f ′(ε1)
f(ε1)

]2 , (4.19)

which is “normalized” because E[g′e(ε1)] = 1. Suppose that we have a consistent

estimate ĝn ∈ Fn−1 of ge and that ĝn is an odd function with derivative ĝ ′n
converging to g′e. Such an estimate may be constructed using residuals from

either the auxiliary estimate β̃i or simply β̂i, i ≤ n− 1. Define, recursively,

P−1
n = P−1

n−1 + φnφ
T
n , (4.20a)
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β̂n =




β̂n−1 + Pnφnĝn(ε̂n) if ‖β̂n−1 + Pnφnĝn(ε̂n) − β̃n‖ ≤ δn,

β̃n otherwise.
(4.20b)

To derive the asymptotic properties of this recursive adaptive estimator, we

again use the extended stochastic Liapounov function Vn = (β̂n−β)T Pn(β̂n−β).

Similar to the derivation in Section 4.1, with probability 1,

Vn ≤ Vn−1 + [φT
n (β̂n−1 − β)]2 + 2φT

n (β̂n−1 − β)ĝn(ε̂n) +φT
nPnφnĝ

2
n(ε̂n) (4.21)

for all large n. Moreover, it can be shown that

n∑

i=1

φT
i (β̂i−1 −β){ĝi(ε̂i)−E[ĝi(ε̂i)|Fi−1]} = o(

n∑

i=1

[φT
i (β̂i−1 −β)]2) a.s.. (4.22)

In addition, since ĝi ∈ Fi−1, ε̂i − εi ∈ Fi−1 and
∫
ĝi(u)f(u)du = 0,

n∑

i=1

φT
i (β̂i−1 − β)E[ĝi(ε̂i)|Fi−1]

=

n∑

i=1

φT
i (β̂i−1 − β)

∫
ĝi(ε̂i − εi + u)f(u)du

= (1 + o(1))

n∑

i=1

∫
ĝ′i(u)f(u)duφT

i (β̂i−1 − β)(ε̂i − εi)

= (1 + o(1))
n∑

i=1

φT
i (β̂i−1 − β)(ε̂i − εi)

= −(1 + o(1))

n∑

i=1

(ε̂i − εi)
2 a.s..

Combining this with (4.21) and (4.22) yields

Vn +

n∑

i=1

(ε̂i − εi)
2 ≤ (1 + o(1))

n∑

i=1

φT
i Piφiĝ

2
i (ε̂i)

= (1 + o(1))
{
E

[f ′(ε1)
f(ε1)

]2}−1
(p+ k + h) log n a.s.. (4.23)

It follows from (4.23) that ‖β̂n − β‖2 = O(log n/n) a.s., so that the monitored

modification β̂n = β̃n is in fact used only finitely many times with probability 1.
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To derive the asymptotic normality of the recursive adaptive estimator, we

write

P−1
n (β̂n − β) = P−1

n−1(β̂n−1 − β) + φn[φT
n (β̂n−1 − β) + ĝn(ε̂n)]

=
n∑

i=1

φi[φ
T
i (β̂i−1 − β) + ĝi(ε̂i)−ĝi(εi)] +

n∑

i=1

φiĝi(εi) +O(1) a.s..

The first term on the right-hand side of the last equality can be shown to be of

order o(
√
n). The second term, when properly normalized, has a limiting normal

distribution by the Martingale Central Limit Theorem. Therefore, by (4.3),

√
n(β̂n − β) = (nP−1

n )
1√
n

n∑

i=1

φiĝi(εi) + o(1)

⇒N

(
0,

{
AE

[f ′(ε1)
f(ε1)

]2}−1
)
. (4.24)

4.3. Recursive GMM estimators

The auxiliary consistent estimates in Sections 4.1 and 4.2 that are used to

monitor the recursive M-estimators or adaptive estimators can be constructed

by recursive modifications of Hansen’s (1982) generalized method of moments

(GMM), which takes the form of spectral factorization and Yule-Walker-type

equations when applied to ARMAX models. Let c0 = 1 and c′i = σci for i =

0, . . . , h. Let vn = C(v−1)εn. Then {vn}n>h is a covariance-stationary sequence

whose autocovariances γj = E(vnvn+j) are given by

γj =

h−j∑

i=0

c′ic
′
i+j (j = 0, . . . , h), (4.25)

and γj = 0 if j > h. Letting Γ(z) = Σh
j=−hγjz

j , note that (4.25) is equivalent

to the spectral factorization Γ(z) = σ2C(z)C(z−1). Given γ0, . . . , γh, one can

solve the system of nonlinear equations (4.25) by standard Newton-Raphson it-

erations, which Tunnicliffe-Wilson (1979) showed to be quadratically convergent

by making use of spectral factorization and the theory of harmonic functions. In

practice, the γj in (4.25) are unknown and have to be replaced by estimates

based on observed data. Suppose that at time n one has an estimate γ̂n,j of γj

for which
∞∑

n=1

|γ̂n+1,j − γ̂n,j| <∞ a.s. for j = 0, . . . , h, (4.26a)
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that there exists δn, depending on the input-output data y1, u1, . . . , yn, un up to

stage n, such that δn → 0 a.s., and that

max
0≤j≤h

|γ̂n,j − γj| = o(δn) a.s., δn−1 + δn+1 + n−a = O(δn) a.s. (4.26b)

for some a > 0. Note that (4.26b) implies that the γ̂n,j are strongly consis-

tent. Making use of (4.26) and a modification of Tunnicliffe-Wilson’s argument,

Lai and Ying (1992) established the strong consistency of the following recursive

estimate ĉn = (ĉn,0, . . . , ĉn,h)T of c′ = (c′0, . . . , c
′
h)T . Let ∆n−1 be a (h+1)×(h+1)

matrix whose (r, s)th element is ĉn−1,r+s + ĉn−1,r−s, setting ĉn−1,j = 0 if j > h

or j < 0. Let ĉ0,0 > 0 = ĉ0,1 = · · · = ĉ0,h and

ĉn = ĉn−1 −∆−1
n−1

( h−j∑

i=0

ĉn−1,iĉn−1,i+j − γ̂n,j

)T

0≤j≤h
, j ≥ 1. (4.27)

Perform a stability test for the polynomial Σh
j=0ĉn,jz

j, redefining (4.27) by ĉn =

ĉn−1 if and only if the stability test fails. Note that (4.27) is essentially a

one-step Newton-Raphson approximation, initialized at ĉn−1, to the solution

(c′n,0, . . . , c
′
n,h)T of the system of equations γ̂n,j = Σh−j

i=0 c
′
n,ic

′
n,i+j(j = 0, . . . , h).

From (4.25) and (4.26), it follows that ĉn = c′ + o(δn) a.s., and therefore

ĉn,j

ĉn,0
= cj + o(δn) a.s. for j = 1, . . . , h. (4.28)

To construct recursive GMM estimates γ̂n,j of γj so that (4.26) holds, we

assume the identifiability condition

zpA(z−1), zk−1B(z−1) and zhC(z−1) are relatively prime polynomials. (4.29)

Let λ = (−a1, . . . ,−ap, b1, . . . , bk)
T be the vector of ARX parameters and let

vn = (yn−1, . . . , yn−p, un−d, . . . , un−d−k+1)
T . Note that (2.14) can be written in

the form

yn = λTvn + εn + c1εn−1 + · · · + chεn−h. (4.30)

Letting Gn be the σ-field generated by {εi : i ≤ n}, we introduce instrumental

variables zn, which are Gn−h−1-measurable ν× 1 random vectors with ν ≥ p+ k,

and estimate λ by using the sample covariances between vn and zn and between

yn and zn, i.e.,

λ̂n = (VT
nVn)−1VT

nZn, where Vn =

n∑

i=1

ziv
T
i ,Zn =

n∑

i=1

ziyi. (4.31)
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From (4.30) it follows that λ̂n = λ+(VT
nVn)−1VT

nΣn
i=1zi(εi+c1εi−1+· · ·+chεi−h).

We next describe two typical classes of input-output data for which zn can be

defined so that the corresponding λn satisfy

λ̂n = λ+ o(δn) a.s., (4.32)

and then show how such λ̂n can be used to define estimates γ̂n,j of γj so that

(4.26) is satisfied.

(A) Suppose that {un} is a stationary sequence independent of {εn} such

that (Euiuj)1≤i,j≤m is positive definite for every m ≥ 1 and E|u1|α < ∞ for

some α > 4. Define zn = (yn−h−1, . . . , yn−h−p, un−d+p, . . . , un−d−p−k+1)
T . Then

n−1Σn
i=1ziv

T
i converges a.s. to a nonrandom (3p + k) × (p + k) matrix H that

has full rank p+k. Moreover, since (yn−h−1, . . . , yn−h−p)
T is Fn−h−1-measurable

and {un} is independent of {εn}, it follows from martingale limit theorems that

n∑

i=1

zi(εi + c1εi−1 + · · · + chεi−h) = O((n log log n)1/2) a.s.

Hence, defining λ̂n as in (4.31), we have λ̂n = λ + o(n−1/2(log n)ρ) a.s. for

every ρ > 0, and Σ∞
n=1‖λ̂n − λ̂n−1‖ < ∞ a.s. Letting en,t = yt − λ̂

T

nxt, define

γ̂n,j = (n − j)−1Σn−j
t=1 en,ten,t+j for j = 0, . . . , h, which can also be expressed in

the form

(n−j)γ̂n,j =

n−j∑

t=1

ytyt+j−λ̂
T

n

( n−j∑

t=1

yt+jvt

)
−λ̂T

n

( n−j∑

t=1

ytvt+j

)
+λ̂

T

n

( n−j∑

t=1

vtv
T
t+j

)
λ̂n,

(4.33)

thereby providing a convenient formula for updating the estimates γ̂n,j without

having to calculate the residuals en,t for all t ≤ n at every stage n. The γ̂n,j thus

defined satisfy (4.26a, b) with δn = n−1/2(log n)ρ, for any choice of ρ > 0.

(B) Suppose supn|εn| < ∞ a.s. We now weaken the assumption of the

preceding paragraph that the entire sequence {un} be stationary and independent

of {εn}, in order to extend the above ideas to adaptive control applications.

Suppose that Σn
i=1u

2
i = O(n) a.s., and that there exist integer-valued random

variables (1 ≤)n1 < m1 ≤ n2 < m2 ≤ · · · satisfying the following assumptions:

(a) ni is a stopping time (i.e., {ni = t} ∈ Ft for all t) and mi − ni is Fni
-

measurable;

(b) mi+1 − ni+1 = O(#i) and lim inf(mi+1 − ni+1)/{#1/2
i (log #i)

c} > 0 a.s., for

some c > 3/2, where #n =

n∑

r=1

(mr − nr);
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(c) max
{ p−1∑

ν=0

y2
ni−ν ,

k+d−2∑

ν=1

u2
ni−ν

}
= o(mi − ni) a.s.;

(d) un = wn for ni ≤ n < mi, where wn are independent with sup
n

|wn| < ∞
a.s. and are independent of {εn}.

Letting J = ∪∞
i=1{n : ni +p+k+h+d ≤ n ≤ mi}, define the (3p+k)×1 vectors

zn =

{
(yn−h−1, . . . , yn−h−p, un−d+p, . . . , un−d−p−k+1)

T , if n ∈ J,

0, otherwise.
(4.34)

This means that the λ̂n defined by (4.31) need only be updated at n ∈ J since

Vn = Vmi
and Zn = Zmi

for mi < n < ni+1 + p + k + h + d. In fact, we need

update the λ̂n only at n = mi as we define γ̂n,j by (4.33) for n ∈ {m1,m2, . . .},
and set

γ̂n,j = γ̂mi,j for mi < n < mi+1. (4.35)

Since A(z) is stable and since Σn
i=1ε

2
i + Σn

i=1u
2
i = O(n) a.s., it follows that

Σn
i=1y

2
i = O(n) a.s. Assumption (d) is tantamount to using exogenous probing

inputs wn (that are independent of the εn) only occasionally at stages n ∈ J ,

so that at other times feedback control laws can be used to generate inputs.

Assumption (b) says that these probing inputs are introduced in blocks of at

least certain prescribed lengths that eventually tend to ∞, while assumption (c)

requires that each of these blocks begins only when the input-output data for

several past observations do not exceed a certain magnitude, which can be done

since Σn
i=1u

2
i + Σn

i=1y
2
i = O(n) a.s. Since {wt} and {εt} are independent, we

can modify the proof of Theorem 4 and Corollary 2 of Lai and Ying (1991a) to

conclude that

lim
r→∞

( r∑

i=1

mi∑

t=ni+p+k+h+d

ziv
T
i

)

#r
= H , γ̂mi,j = γj+O(#

−1/2
i (log #i)

ρ) a.s. (4.36)

for any ρ > 1
2 and j = 0, . . . , h, where H is a nonrandom matrix of full rank

p+ k. Making use of (4.36) together with assumption (b), it can be shown that

(4.26a, b) again holds for the γ̂n,j defined by (4.35).

Without assuming A(z) to be stable, Lai and Ying (1991a) modified the

preceding approach that uses directly occasional blocks of white-noise probing

inputs wt by running SG in parallel and introducing wt via (3.15). Their recursive
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GMM estimators used to monitor RML2 are still defined by (4.27) and (4.35)

from these occasional blocks of well excited input-output data.

5. Conclusion

In his article in this issue, Chan says, “By reviewing (Wei’s) publications,

one often comes up with more than the stated results. In fact, there are numerous

possible areas of extension due to Wei’s work.” He then mentions several exam-

ples in time series analysis and concludes that Wei’s work in asymptotic inference

“has greatly broadened the scope of time series and stochastic regression.” In this

article we have focused on another area of Wei’s research that reaffirms Chan’s

conclusions. In particular, in Section 4 we have given one such area of extension

by using the theory of recursive estimation and extended stochastic Liapounov

functions to study efficient semiparametric estimation in ARMAX models.

Acknowledgement

This research was supported by the National Science Foundation under

DMS-0305749 at Stanford University and DMS-0203798 and DMS-0504871 at

Columbia University.

References

Anderson, T. W. and Taylor, J. (1976). Some experimental results on the statistical problem of

least squares estimates in control problems. Econometrica 44, 1289-1302.

Aokoi, M. (1974). On some price adjustment schemes. Ann. Econ. Soc. Measurements 3, 95-116.
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