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Abstract: We establish a maximal moment inequality for the weighted sum of a

sequence of random variables with finite second moments. An extension to the

Hájek-Rény and Chow inequalities is then obtained. When certain second-moment

properties are fulfilled, it enables us to deduce a strong law for the weighted sum of
a time series having long-range dependence. Applications to estimation and model

selection in multiple regression models with long-range dependent errors are also

given.
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1. Introduction

The study of long range dependent time series has been developing rapidly

(cf., Beran (1994) for a survey). As applications have become broader, the

functionals involved have become increasingly complicated. In this paper, we

give a unified maximal inequality for the weighted sum of a long range dependent

time series. Applications to estimation and model selection in multiple linear

regressions with long range dependent errors are then discussed.

To fix ideas, let {εt} be a zero-mean covariance stationary process with

sup
0≤k<∞

|γ(k)|(k + 1)α < ∞, (1.1)

where 0 < α < 1 and γ(k) = E(ε1ε1+k). The process {εt} is said to be long

range dependent if there is a real number 0 < α < 1 and a constant C0 > 0 such

that

lim
k→∞

γ(k)kα

C0
= 1; (1.2)

see Beran(1994, Chap.2). Condition (1.1) is fulfilled not only by most stationary

short memory time series (e.g., an autoregressive moving average model), but

also by long range dependent time series.
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The first general moment inequality for the weighted sum of the εt was given

by Yajima (1988, p.796 and p.806). In particular, he showed that if (1.1) holds

then for some constant k > 0,

E

{

max
1≤i≤n

∣

∣

∣

∣

∣

m+i
∑

t=m+1

ctεt

∣

∣

∣

∣

∣

2}

≤ k

(

log 4n

log 2

)2

(2n)1−α

(

m+n
∑

t=m+1

c2
t

)

. (1.3)

Although (1.3) enabled Yajima to develop his asymptotic results for the least

squares estimate in multiple linear regression models with long range dependent

errors, the inequality has shortcomings. Note, for example, that the term on the

right-hand side of (1.3) goes to infinity as n does. And, as shown in (2.10) of Sec-

tion 2, the maximal moment of (1.3) is bounded. A related maximal probability

inequality which can be applied to the change-point estimation problem is that

of Lavielle and Moulines (2000, Theorem 1). They showed that for any n ≥ 1,

any δ > 0, and any positive and nonincreasing sequence b1 ≥ · · · ≥ bn > 0,

P

(

max
1≤k≤n

bk

∣

∣

∣

∣

∣

k
∑

t=1

εt

∣

∣

∣

∣

∣

> δ

)

≤
C1n

1−α

δ2

n
∑

t=1

b2
t , (1.4)

where C1 is some positive number independent of n and bt. Recall that when

{εt} are independent random variables with E(εt) = 0 for all 1 ≤ t ≤ n and

max1≤t≤n E(ε2
t ) < ∞, (1.4) was established by Hájek and Rényi (1955) with

the exponent 1 − α on the right-hand side replaced by 0. Chow (1960) sub-

sequently extended Hájek and Rényi’s result to submartingale differences. For

related extensions of the Hájek-Rényi-Chow type inequality to short memory

linear processes, see Bai (1994). On the other hand, it should be noted that

the term on the right-hand side of (1.4) goes to infinity regardless of how fast bt

decreases. This is obviously not a desirable property for a probability inequality.

In view of the above discussion, this paper attempts to provide sharper

bounds for the left-hand sides of (1.3) and (1.4) through a unified theory. In

Section 2, utilizing inequalities due to Móricz (1976) and Hardy, Littlewood and

Pólya (1952), we establish a maximal moment inequality (2.1) for weighted sums

of random variables having finite second moments. By a monotone inequality

of Shorack and Smythe (1976), this inequality is generalized to a Hájek-Rényi-

Chow type maximal moment inequality; see Corollary 2.4. This result is then

applied to {εt} at the end of Section 2, where {εt} is a sequence of random

variables whose second moments satisfy, for some α ∈ (0, 1),

S(α, ε) = sup
k≥0

(1 + k)α sup
i,j≥1,|i−j|=k

|cov(εi, εj)| < ∞. (1.5)

(Note that (1.5), including (1.1) as a special case, allows more flexibility for

practical applications.) Based on Corollary 2.4, Corollary 2.5 and Remark 2 give



A MAXIMAL MOMENT INEQUALITY WITH APPLICATIONS 723

sharper bounds for the left-hand sides of (1.3) and (1.4) with {εt} replaced by

{εt}. In addition, almost sure behaviors of the weighted sum of {εt} are obtained

in Corollary 2.6. As will be shown later, Corollary 2.6 plays an important role

in investigating asymptotic properties of least squares estimates in regression

models.

In Section 3, we first develop a strong consistency result for the least squares

estimate in a multiple regression model with the assumption that the error struc-

ture is a ”contracted” convergence system. We then apply the general theory to

multiple regression models with error terms satisfying (1.5). It is shown that

our convergence result requires less stringent conditions than those of Yajima

(1988); see Remark 5 after Corollary 3.4. In addition, the strong consistency of

the residual mean squared error is established under rather mild assumptions.

When the model considered in Section 3 contains some possibly redundant

variables, dropping these variables can increase estimation precision and yield

more efficient statistical inferences. This motivates us to study model selection

problems in Section 4. A model selection criterion is said to be strongly consistent

if it ultimately chooses the most parsimonious correct model with probability 1;

see (4.3) for a more precise definition. Note that strong consistency selections

for multiple regression models with martingale difference or short memory time

series errors have been obtained by several authors, including Wei (1992) and

Chen and Ni (1989). For long range dependent errors, however, similar results

still seem to be lacking. To fill this gap, we show in Theorem 4.1 that an in-

formation criterion, with a penalty for larger models stronger than that of BIC

(Schwarz (1978)), is strongly consistent in multiple regression models with er-

rors satisfying (1.5). Some examples that help gain a better understanding of

Theorem 4.1 are given at the end of Section 4.

2. Maximal Moment Inequalities

In this section, we begin with a maximal moment inequality for weighted

sums of random variables having finite second moments.

Theorem 2.1. Let {fi} be a sequence of random variables with E(f 2
i ) < ∞ for

1 ≤ i ≤ n. Assume 0 < α < 1. Then, for any sequence of real numbers c1, . . . , cn,

E
(

max
1≤i≤n

|
i
∑

j=1

cjfj|
2
)

≤ kα{ max
0≤k≤n−1

γn(k)(k + 1)α}
(

n
∑

i=1

|ci|
2

(2−α)

)2−α
, (2.1)

where kα is a constant depending on α only, and γn(k) = max
|i−j|=k

1≤i≤j≤n

|E(fifj)|.

To show (2.1), two auxiliary inequalities are needed. The first one is due to

Hardy, Littlewood and Pólya (1952, Thm. 381).
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Lemma 2.2. Given two sequences of real numbers ai ≥ 0 and bi ≥ 0, i =

1, . . . , n, if p > 1, q > 1, 1/p + 1/q > 1 and δ = 2 − 1/p − 1/q, then

∑

i6=j

(

aibj

|i − j|δ

)

≤ kp,q

(

n
∑

i=1

ap
i

)
1
p
(

n
∑

i=1

bq
i

)
1
q

,

where kp,q is a positive constant depending only on p and q.

The second auxiliary inequality is a moment inequality from Móricz (1976)

Lemma 2.3. Let p > 0 and q > 1 be two positive real numbers and Zi

be a equence of random variables. Assume that there are nonnegative con-

stants aj satisfying E|
∑i

j=1 Zj |
p ≤ (

∑i
j=1 aj)

q, for all 1 ≤ i ≤ n. Then

E(max1≤i≤n |
∑i

j=1 Zj |
p) ≤ Cp,q(

∑n
j=1 aj)

q for some positive constant Cp,q de-

pending only on p and q.

Proof of theorem 2.1. Fix 1 ≤ i ≤ n. By observing that for 0 ≤ k ≤ n − 1,

1 ≤ j1 ≤ j2 ≤ n and |j1 − j2| = k, γn(k) ≥ |E(fj1fj2)|, one gets

E|
i
∑

j=1

cjfj|
2 ≤

i
∑

j=1

i
∑

l=1

|cjcl||E(fjfl)|

≤ (

i
∑

j=1

c2
j )γn(0) +

(

max
1≤k≤n−1

γn(k)kα

)

(

∑

j 6=l

|cjcl|

|j − l|α

)

. (2.2)

Using the fact that (
∑

νp
j ) ≤ (

∑

νj)
p for p ≥ 1 and νj > 0, we have

(

i
∑

j=1

c2
j

)

γn(0) ≤
(

i
∑

j=1

|cj |
2

(2−α)

)2−α
γn(0). (2.3)

Applying Lemma 2.2 with p = q = 2/(2−α) and δ = α, we have for some Mα > 0

that

(

∑

j 6=l

|cjcl|

|j − l|α

)

≤ Mα

(

i
∑

j=1

|cj |
2

(2−α)

)2−α
. (2.4)

In view of (2.2)−(2.4), we obtain that

E
(

|

i
∑

j=1

cjfj|
2
)

≤ (Mα + 1){ max
0≤k≤n−1

γn(k)(k + 1)α}
(

i
∑

j=1

|cj |
2

(2−α)

)2−α
. (2.5)

Since 2 − α > 1, apply Lemma 2.3 with p = 2, q = 2 − α, Zj = cjfj and

a2−α
j = (Mα + 1){max0≤k≤n−1 γn(k)(k + 1)α}c2

j to finish the proof.
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An immediate extension of Theorem 2.1 is the following Hájek-Rény-Chow’s

type maximal moment inequality.

Corollary 2.4. Let the assumptions of Theorem 2.1 hold. Then, for 0 < a1 ≤

a2 ≤ · · · ≤ an,

E
(

max
1≤i≤n

|
∑i

j=1 cjfj|
2

a2
i

)

≤ 2kα{ max
0≤k≤n−1

γn(k)(k + 1)α}
(

n
∑

i=1

|
ci

ai
|

2
(2−α)

)2−α
. (2.6)

Proof. By a monotone inequality of Shorack and Smythe (1976) (see, also,

Shorack and Wellner (1986, p.844)), for any sequence of real numbers νj and aj,

if 0 < a1 ≤ · · · ≤ an, then

max
1≤k≤n

|
k
∑

j=1

νj|/ak ≤ 2 max
1≤k≤n

|
k
∑

j=1

νj

aj
|. (2.7)

Consequently, (2.6) is guaranteed by (2.1) and (2.7).

Remark 1. As a direct application of Corollary 2.4, a reverse sum analogue of

(2.6) is given as follows:

E
(

max
1≤i≤n

|
∑n

j=i cjfj|
2

a2
n−i+1

)

≤ 2kα{ max
0≤k≤n−1

γn(k)(k + 1)α}
(

n
∑

i=1

|
ci

ai
|

2
(2−α)

)2−α
.

Applying (2.6) to a sequence of zero mean random variables {εt} with sec-

ond moments satisfying (1.5), Corollary 2.5 brings (1.3) and (1.4) together in

more general settings. When n is sufficiently large, the inequalities induced by

Corollary 2.5 are much sharper than those in (1.3) and (1.4). For more details,

see Remarks 2 and 3 below.

Corollary 2.5. Assume that {εt} is a sequence of zero mean random variables

that satisfies (1.5). Then, for any m ≥ 0, any n ≥ 1, any sequence of real

numbers cj, j ≥ 1, and any sequence of nondecreasing positive numbers aj, j ≥ 1,

there is a positive constant Kα depending only on α such that

E
(

max
1≤i≤n

|
∑m+i

j=m+1 cjεj|
2

a2
m+i

)

≤ Kα

(

m+n
∑

i=m+1

|
ci

ai
|

2
(2−α)

)2−α
, (2.8)

and for any δ > 0,

δ2P
(

max
1≤i≤n

|
∑m+i

j=m+1 cjεj |
2

a2
m+i

> δ
)

≤ Kα

(

m+n
∑

i=m+1

|
ci

ai
|

2
(2−α)

)2−α
. (2.9)
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Remark 2. Assume that ai = 1 for all i ≥ 1. Then (2.8) becomes

E

{

max
1≤i≤n

∣

∣

∣

∣

∣

m+i
∑

j=m+1

cjεj

∣

∣

∣

∣

∣

2}

≤ Kα

(

m+n
∑

j=m+1

|cj |
2

(2−α)

)2−α
. (2.10)

Let b1 ≥ · · · ≥ bn > 0, m = 0, ci = 1 and 1/ai = bi. Then, by (2.9), we have for

any δ > 0,

δ2P

(

max
1≤k≤n

bk

∣

∣

∣

∣

∣

k
∑

j=1

εj

∣

∣

∣

∣

∣

> δ

)

≤ Kα

(

n
∑

j=1

b
2

(2−α)

j

)2−α
. (2.11)

It is worth noting that when cj = O(jl) and bj = O(jl) with l < (α − 2)/2,

the right-hand sides of (2.10) and (2.11) are both bounded. Therefore, they

are in sharp contrast to (1.3) and (1.4), which provide upper bounds tend-

ing to infinity even if cj and bj decrease exponentially. Armed with (1.4),

Lavielle and Moulines (2000) further obtained that for any 1 ≤ m ≤ n and

b1 ≥ · · · ≥ bn > 0,

P

(

max
m≤k≤n

bk

∣

∣

∣

∣

∣

k
∑

j=1

εj

∣

∣

∣

∣

∣

> δ

)

≤
C1m

2−αb2
m

δ2
+

C2(n − m)1−α

δ2

n
∑

j=m+1

b2
j , (2.12)

where C1 and C2 are positive constants independent of n,m, and {bj}. Inequality

(2.12) is still not sharp enough, because the second term on the right-hand side

of (2.12) diverges (as n → ∞), regardless of how large m is and how small the

sequence {bj} is. However, according to (2.11), this term can be replaced by

C3{
∑n

m+1 b
2/(2−α)
t }2−α for some positive constant C3 independent of n, m and

bt. When bt = O(tl) with l < (α − 2)/2, C3{
∑n

m+1 b
2/(2−α)
t }2−α can be made

smaller than any positive number, provided m is sufficiently large.

Remark 3. Kokoszka and Leipus (1998, Thm. 3.1) gave an inequality that is

closely related to (1.4). Under (1.5), their inequality implies that, for any δ > 0,

δ2P

(

max
1≤k≤n

bk

∣

∣

∣

∣

∣

k
∑

j=1

εj

∣

∣

∣

∣

∣

>δ

)

≤

n−1
∑

j=1

|b2
j+1−b2

j |j
2−α+C4

n−1
∑

j=1

b2
j+1j

(2−α)
2 +C5

n−1
∑

j=0

b2
j+1,

(2.13)

where C4 and C5 are some positive constants independent of n and {bt}, where

{bt} is a sequence of positive numbers. As observed, the right-hand side of

(2.13) is bounded by a finite positive number if the bk decays at an appropriate

hyperbolic rate. One special feature of the Kokoszka and Leipus inequality is

that the bk are not necessarily nonincreasing. On the other hand, when one
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focuses on the most-discussed case where bk is nonincreasing, (2.11) is still more

informative than (2.13). To see this, assume that bk = kl, l < 0. Straightforward

calculations show that the right-hand side of (2.13) is bounded if and only if l <

−1+(α/4). However, to ensure that the right-hand side of (2.11) is bounded, only

l < −1 + (α/2) is required. Another limitation (compared to (2.9)) of Kokoszka

and Leipus’s result is that they only considered the constant-weight case, cj = 1

for all j. It remains unclear whether their result can be used to establish a

sharp maximal probability inequality for the weighted sum of {εj} (with general

weights), which seems indispensable for exploring asymptotic properties of the

least squares estimate in regression models, as detailed in Sections 3 and 4.

The following corollary deals with the almost sure convergence of
∑n

i=1 ciεi

and its order of magnitude in case of divergence.

Corollary 2.6. Adopt the assumptions of Corollary 2.5.

(i) If
∑∞

i=1 |ci|
2/(2−α) < ∞, then

∑n
i=1 ciεi converges almost surely (a.s.).

(ii) If
∑∞

i=1 |ci|
2/(2−α) = ∞, then for any δ > 1 − (α/2),

n
∑

i=1

ciεi = o
(

G
(2−α)

2
n (log Gn)δ

)

a.s., (2.14)

where Gn =
∑n

i=1 |ci|
2/(2−α).

Proof. To show (i), define Sn =
∑n

j=1 cjεj. By (2.10), we have for all n ≥ 1,

E( max
m+1≤j≤m+n

|Sj − Sm|2) ≤ Kα

(

∞
∑

j=m+1

|cj |
2

(2−α)

)2−α
, (2.15)

where Kα is a positive constant depending only on α. Now (2.15) and Cheby-

shev’s inequality yield, for any δ > 0,

δ2P ( sup
j≥m+1

|Sj − Sm| > δ) ≤ Kα

(

∞
∑

j=m+1

|cj |
2

(2−α)

)2−α
. (2.16)

The desired result follows from (2.16) and the hypothesis that
∑∞

i=1 |ci|
2/(2−α) <

∞.

To deal with (ii), first note that if

n
∑

i=m+1

ciεi

G
(2−α)

2
i (log Gi)δ

converges a.s., (2.17)

where m is the smallest positive integer such that Gm > 1, then (2.14) is an

immediate consequence of Kronecker’s lemma. By (i) of Corollary 2.6, (2.17) is
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guaranteed by

∞
∑

i=m+1

|ci|
2

(2−α)

Gi(log Gi)
2δ

(2−α)

< ∞. (2.18)

Since

∞
∑

i=m+1

|ci|
2

(2−α)

Gi(log Gi)
2δ

(2−α)

≤

∫ ∞

Gm

1

x(log x)
2δ

(2−α)

dx

and 2δ/(2 − α) > 1, (2.18) follows.

Remark 4. Since for (2−α)/2 < θ < 1,
∑∞

i=1 i−2θ/(2−α) < ∞, (i) of Corollary 2.6

and Kronecker’s lemma imply 1/n
∑n

i=1 εi = o(1/n1−θ) a.s. This result provides

an almost sure convergence rate for the first sample moment of a sequence of

zero mean random variables whose second moments obey (1.5).

3. Strong Consistency of Least Squares Estimates

Consider the multiple regression model

yi = β1xi1 + · · · + βpxip + εi, i = 1, . . . , n, (3.1)

where {εt} is a sequence zero mean random noises, n is the number of obser-

vations, p is a known positive integer, xij , j = 1, . . . , p are known constants,

and β1, . . . , βp are unknown parameters. Throughout this section we let xi =

(xi1, . . . , xip)
′, yn = (y1, . . . , yn)′, and β = (β1, . . . , βp)

′. For n ≥ p, the least

squares estimate bn = (βn1, . . . , βnp)
′ of β based on (yi,x

′
i)
′, i = 1, . . . , n is given

by

bn =
(

n
∑

i=1

xix
′
i

)−1
n
∑

i=1

xiyi, (3.2)

provided
∑n

i=1 xix
′
i is nonsingular.

To study the strong consistency of bn under (3.1) with εt satisfying (1.5),

we first introduce the concept of a ”convergence system”. A sequence of random

variables {εt} is said to be a convergence system if
∑n

i=1 ciεi converges a.s. for

every sequence {ci} with
∑∞

i=1 c2
i < ∞. The strong consistency of bn under

the assumption that {εt} constitutes a convergence system has been studied

by Lai, Robbins and Wei (1979). To cover a wider range of dependent error

structures, we now generalize their result to the case where {giεi} is a convergence

system. Here, {gi} is a sequence of ”contraction” constants. Its role will be

clarified in the following theorem.
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Theorem 3.1. Suppose that in (3.1), Vn = (ν
(n)
ij )1≤i,j≤p = (

∑n
j=1 xjx

′
j)

−1 exists

for all n ≥ m, limn→∞ ν
(n)
jj = 0, and {giεi} is a convergence system for some

constants gi such that |gi| is positive and nonincreasing. Then,

βnj − βj = o(1) a.s., (3.3)

if

∞
∑

i=m

ν
(i)
jj (g−2

i+1 − g−2
i ) < ∞. (3.4)

Before proceeding to the proof of Theorem 3.1, we need a lemma that pro-

vides a better understanding of the series in (3.4).

Lemma 3.2. Let {li} and {hi}, i = 1, 2, . . ., be sequences of nonnegative numbers

with 0 < hi ≤ hi+1 for all i ≥ 1. Define µi =
∑∞

j=i lj. Then, for any k ≥ 1,

∞
∑

i=k

lihi = hkµk +
∞
∑

i=k+1

µi(hi − hi−1). (3.5)

Proof. First note that if µk =
∑∞

i=k li = ∞, then
∑∞

i=k lihi ≥ hkµk = ∞. In

this case, both side of (3.5) are infinite. Hence, without loss of generality, we

assume that µk < ∞. Observe that for n ≥ k + 1,

hkµk +
n
∑

i=k+1

µi(hi − hi−1) =
n
∑

i=k

hili + µn+1hn. (3.6)

Since all terms involved are positive, the lemma obviously holds if
∑∞

i=k hili = ∞.

If
∑∞

i=k hili < ∞, then o(1) =
∑∞

i=n+1 hili ≥ hn
∑∞

i=n+1 li = hnµn+1. In view of

this and (3.6), (3.5) follows.

Proof of theorem 3.1. Without loss of generality, take j = 1. For n > m, let

Tn = (xn2, . . . , xnp)
′ and write dn = xn1 − KnH−1

n Tn, where Kn and Hn satisfy

n
∑

j=1

xjx
′
j =

( ∑n
i=1 x2

i1 Kn

K ′
n Hn

)

.

By Lemma 3 of Lai, Robbins and Wei (1979), bn1 − β1 = ρn/sn, where

sn =
1

ν
(n)
11

= sm +

n
∑

i=m+1

d2
i (1 + T ′

iH
−1
i−1Ti), (3.7)
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ρn = ρm +

n
∑

i=m+1

di

{

εi − T ′
iH

−1
i−1

(

i−1
∑

k=1

Tkεk

)}

. (3.8)

First assume that

∞
∑

i=m+1

d2
i (1 + T ′

iH
−1
i−1Ti)

s2
i g

2
i

< ∞. (3.9)

Equation (3.9) and the assumption that {giεi} is a convergence system yield that

∞
∑

i=m+1

diεi

si
=

∞
∑

i=m+1

digiεi

sigi
converges a.s.. (3.10)

But by Lemma 1 (ii) of Chen, Lai and Wei (1981), {giξi} is also a convergence

system, where

ξn =
T ′

nH−1
n−1(

∑n−1
k=1 Tkεk)

(1 + T ′
nH−1

n−1Tn)
1
2

.

Therefore, by (3.9),

n
∑

i=m+1

diT
′
iH

−1
i−1(

∑i−1
k=1 Tkεk)

si
=

n
∑

i=m+1

di(1 + T ′
iH

−1
i−1Ti)

1
2 giξi

sigi

converges a.s.. In view of this, (3.10), (3.7), (3.8), and Kronecker’s lemma, bn1 −

β1 = ρn/sn = o(1) a.s..

It remains to prove (3.9). For this, in (3.5) let k = m + 1, hi = g−2
i , and

li = d2
i (1 + T ′

iH
−1
i−1Ti)/s

2
i . Then, the series (3.9) is equivalent to g−2

m+1µm+1 +
∑∞

i=m+2 µi(g
−2
i − g−2

i−1), where, for i ≥ m + 1,

µi =

∞
∑

j=i

lj =

∞
∑

j=i

sj − sj−1

s2
j

≤
1

si−1
.

Hence,
∑∞

i=m ν
(i)
11 (g−2

i+1 − g−2
i ) =

∑∞
i=m s−1

i (g−2
i+1 − g−2

i ) < ∞ implies (3.9). This

completes the proof.

Next we apply Theorem 3.1 to the case where {εt} satisfies (1.5). We start

with a lemma that gives a sufficient condition on gi under which {giεi} is a

convergence system.

Lemma 3.3. Under the same assumptions of Corollary 2.5 and

∞
∑

i=1

|gi|
2

(1−α) < ∞, (3.11)
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{giεi} is a convergence system.

Proof. By Corollary 2.6, it suffices to show that if
∑∞

i=1 a2
i < ∞, then

∑∞
i=1

|aigi|
2/(2−α) < ∞. By Hölder’s inequality (e.g., Hardy, Littlewood and Pólya

(1952, p.22)) with p = 2 − α and q = (2 − α)/(1 − α), one obtains that

∞
∑

i=1

|aigi|
2

(2−α) ≤ (
∞
∑

i=1

a2
i )

1
(2−α) (

∞
∑

i=1

|gi|
2

(1−α) )
(1−α)
(2−α) .

In view of (3.11),
∑∞

i=1 a2
i < ∞ ensures that

∑∞
i=1 |aigi|

2/(2−α) < ∞.

A special class of gn that satisfies (3.11) has g−1
n = (n log n)(1−α)/2(log n)δ

for some δ > 0. In this case,

1

g2
n

−
1

g2
n−1

∼ (1 − α)n−α(log n)1−α+2δ. (3.12)

Now, when (1.5) is fulfilled by {εt}, a set of sufficient conditions for strong con-
sistency of bn is given in the following corollary.

Corollary 3.4. Under model (3.1), assume (1.5) and limn→∞ v
(n)
jj = 0, where

v
(n)
jj is defined as in Theorem 3.1. If, in addition, for some δ > 0

∞
∑

k=m

ν
(k)
jj (log k)1−α+δ

kα
< ∞,

then βnj − βj = o(1) a.s..

Proof. Since the value of δ in (3.12) can be arbitrary and n−α(log n)1−α+δ/[(n+

1)−α(log(n+1))1−α+δ ] converges to 1 as n tends to infinity, Corollary 3.4 follows
from these observations, Theorem 3.1 and Lemma 3.3.

Remark 5. To obtain the strong consistency of bn, Yajima (1988) needed to
replace {εt} in (3.1) with the stationary process {εt} satisfying (1.1), and to
assume that

λk

k1−α
→ ∞ as k → ∞, and

∞
∑

k=m

λ−1
k log2 k

kα
< ∞,

where λk = λmin(
∑k

j=1 xjx
′
j) is the minimal eigenvalue of

∑k
j=1 xjx

′
j . Since

for each j, λ−1
k ≥ ν

(k)
jj , Corollary 3.4 can achieve the same goal under weaker

assumptions on the design points as well as the noise process.

Assume that

lim
n→∞

1

n

n
∑

k=1

E(ε2
k) = γ∗(0) exists. (3.13)
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Corollary 3.5 below shows that under model (3.1), the residual mean squared
error

σ̂2
n =

1

n

n
∑

i=1

(yi − x′
ibn)2

is a strongly consistent estimate of γ∗(0). Define (l
(n)
ij )1≤i,j≤p =

∑n
j=1 xjx

′
j and

Λn = (ρ
(n)
ij )1≤i,j≤p, where ρ

(n)
ij = l

(n)
ij /(l

(n)
ii l

(n)
jj )1/2. The following assumptions are

required in our analysis.

(C.1) lim inf
n→∞

λmin(Λn) > 0.

(C.2) For any δ1 > 0, log(D̄n) = o(nδ1), where D̄n = max1≤i≤p l
(n)
ii .

(C.3) There exists θ > 0 such that

S(θ, ε2) = sup
k≥0

(1 + k)θ sup
i,j≥1,|i−j|=k

|cov(ε2
i , ε

2
j )| < ∞.

Corollary 3.5. Under model (3.1), assume that (1.5), (3.13), and (C.1)−(C.3)
hold. Then

lim
n→∞

σ̂2
n = γ∗(0) a.s.. (3.14)

To prove (3.14), an auxiliary lemma is needed.

Lemma 3.6. Under model (3.1), assume that (1.5) and (C.1) are satisfied. Then,

for any δ > 2 − α,

1

n

n
∑

i=1

x′
iεiVn

n
∑

i=1

xiεi = o
({log n + log(D̄n)}δ

nα

)

a.s.. (3.15)

Proof. First note that
n
∑

j=1

x′
jεjVn

n
∑

j=1

xjεj =
(

D−1
n

n
∑

i=1

xiεi

)′
DnVnDn

(

D−1
n

n
∑

i=1

xiεi

)

,

where Dn = Diag((l
(n)
11 )1/2, . . . , (l

(n)
pp )1/2) is a diagonal matrix with the ith di-

agonal element equal to (l
(n)
ii )1/2. By (C.1) and Corollary 2.6, one has for any

δ > 2 − α,

(

D−1
n

n
∑

i=1

xiεi

)′
DnVnDn

(

D−1
n

n
∑

i=1

xiεi

)

= O(1)‖D−1
n

n
∑

i=1

xiεi‖
2

= O(1)

p
∑

i=1

(

1

(l
(n)
ii )

1
2

n
∑

j=1

xjiεj

)2

= o

(

p
∑

i=1

E2−α
in

l
(n)
ii

(log Ein)δ

)

+ O(1) a.s.,
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where Ein =
∑n

j=1 |xji|
2/(2−α). This result and the fact that E2−α

in ≤ n1−αl
(n)
ii

imply

1

n

(

D−1
n

n
∑

i=1

xiεi

)′
DnVnDn

(

D−1
n

n
∑

i=1

xiεi

)

= o
({log n + log(D̄n)}δ

nα

)

a.s.,

and hence (3.15) follows.

Proof of corollary 3.5. For n ≥ m,

σ̂2
n =

1

n

n
∑

i=1

ε2
i −

1

n

n
∑

j=1

x′
jεjVn

n
∑

j=1

xjεj. (3.16)

By (C.2) and Lemma 3.6,

1

n

n
∑

i=1

x′
iεiVn

n
∑

i=1

xiεi = o(1) a.s.. (3.17)

To deal with the first term on the right-hand side of (3.16), first assume that

(C.3) holds for 0 < θ < 1. Applying Corollary 2.5 to {ε2
t − Eε2

t }, one has for

1 ≤ N1 < N2 and some C > 0 (independent of N1 and N2),

E
(

max
N1≤j≤N2

(

N2
∑

j=N1

ε2
j − Eε2

j

j

)2)

≤ C
(

N2
∑

j=N1

j
−2

(2−θ)

)2−θ
, (3.18)

which, together with Kronecker’s lemma and (3.13), yields

lim
n→∞

1

n

n
∑

i=1

ε2
i = γ∗(0) a.s.. (3.19)

Now, assume that (C.3) holds for some θ ≥ 1. Then, for any 0 < θ ′ < 1,

S(θ′, ε2) < ∞. This and Corollary 2.5 ensure that (3.18) holds with θ replaced

by any θ′. Hence, (3.19) is still valid for the case of θ ≥ 1. As a result, (3.14)

follows from (3.16), (3.17) and (3.19).

Remark 6. If (3.13) is replaced with

lim inf
n→∞

1

n

n
∑

k=1

E(ε2
k) > 0, (3.20)

then the same argument as in Corollary 3.5 yields

lim inf
n→∞

σ̂2
n > 0 a.s.. (3.21)



734 CHING-KANG ING AND CHING-ZONG WEI

Remark 7. (C.3) is easily fulfilled in practice. For example, if

εt =

∞
∑

j=0

wjνt−j , (3.22)

where {νj} is a sequence of independent random variables with E(νj) = 0 and

sup
j

Eν4
j < ∞, (3.23)

and {wj} is a sequence of real numbers with w0 = 1 and wj = O(j−ι) for some

1/2 < ι < 1, then straightforward calculations yield (1.5) with α = 2ι − 1 and

(C.3) with θ = 2α. In addition, when (1.5) is assumed and {εt} is a Gaussian

process, it is also not difficult to see that (C.3) holds for θ = 2α.

4. Strongly Consistent Model Selection

As mentioned in Section 1, when some βj , 1 ≤ j ≤ p, in model (3.1)

vanishes, adopting a subset model may improve estimation and prediction effi-

ciency. Let M̄ = {x1, . . . , xp} denote the full model described in (3.1). Based on

{y1, . . . , yn, x1j , . . . , xnj , j = 1, . . . , p}, this section aims to select a subset model

M0 ∈ M = {M : M ⊆ M̄}, which is the correct model with fewest variables.

Without loss of generality, we assume that M0 = {x1, . . . , xq}, where 1 ≤ q ≤ p.

Hence, (3.1) can be rewritten as

yi = β1xi1 + · · · + βqxiq + εi, (4.1)

where βi 6= 0 for all 1 ≤ i ≤ q. For M ∈ M, define a loss function

Ln(M) = log σ̂2
n(M) + Pncard(M), (4.2)

where σ̂2
n(M) represents the residual mean squared error obtained from fitting

model M using least squares, card(M) is the number of the regressor variables in

model M and Pn, depending on n, is a positive number to be determined later.

Let M̂n ∈ M satisfy Ln(M̂n) = minM∈M Ln(M). In situations where (1.5) is

fulfilled by {εt}, Theorem 4.1 below shows that

P (M̂n = M0, eventually) = 1, (4.3)

provided Pn is suitably chosen. To achieve (4.3), we require a stronger condition

than (C.1).

(C.1’) lim inf
n→∞

λmin(Λn) > 0, and for some r1 > 1 − α,

lim inf
n→∞

min1≤i≤p l
(n)
ii

nr1
> 0. (4.4)
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Theorem 4.1. Under models (3.1) and (4.1), assume that (1.5), (3.20), (C.1’),

(C.2) and (C.3) hold. Let Pn in (4.2) satisfy

lim
n→∞

n1−min{1,r1}Pn = 0, (4.5)

and for some 0 < η < α,

lim inf
n→∞

nηPn > 0. (4.6)

Then, (4.3) follows.

Proof. We first show that if p > q, then it is not possible to choose an overfitting

model for Ln(M) as n is sufficiently large. More precisely, if M ∈ M is a subset

model with M ⊇ M0 and M 6= M0, then we are going to prove that

P (Ln(M) > Ln(M0), eventually) = 1. (4.7)

When q < p, there is a model Mu ⊇ M0 which satisfies card(Mu) < card(M̄).

Let ui denote the ith regressor corresponding to model Mu. Choose a variable x∗

from M̄ − Mu and add x∗ into Mu. Denote this extended model by M ∗
u . Then,

Ln(M∗
u) − Ln(Mu) = log σ̂2

n(M∗
u) − log σ̂2

n(Mu) + Pn. To obtain (4.7), it suffices

to show that

P (log σ̂2
n(Mu) − log σ̂2

n(M∗
u) − Pn < 0, eventually) = 1. (4.8)

First note that

log σ̂2
n(Mu) − log σ̂2

n(M∗
u) ≤ (σ̂2

n(Mu) − σ̂2
n(M∗

u))/σ̂2
n(M∗

u). (4.9)

The same reasoning that shows (3.21) yields

lim inf
n→∞

σ̂2
n(M∗

u) > 0 a.s.. (4.10)

In view of these and (4.6), (4.9) and (4.10), (4.8) is guaranteed by showing that

for any 0 < η1 < α,

n
(

σ̂2
n(Mu) − σ̂2

n(M∗
u)
)

= o(n1−η1) a.s.. (4.11)

Now,

n
(

σ̂2
n(Mu) − σ̂2

n(M∗
u)
)

=
(

n
∑

i=1

u∗′

i εi

)

Vn(M∗
u)
(

n
∑

i=1

u∗
i εi

)

−
(

n
∑

i=1

u′
iεi

)

Vn(Mu)
(

n
∑

i=1

uiεi

)

,
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where Vn(M∗
u) = (

∑n
i=1 u∗

i u
∗′
i )−1, Vn(Mu) = (

∑n
i=1 uiu

′
i)
−1 and u∗

i is the ith

regressor corresponding to model M ∗
u . By (C.2) and the same argument used to

obtain Lemma 3.6, we have for any 0 < η1 < α,

(

n
∑

i=1

u′
iεi

)

Vn(Mu)
(

n
∑

i=1

uiεi

)

= o
(

n1−η1
)

a.s., (4.12)

(

n
∑

i=1

u∗′

i εi

)

V (M∗
u)
(

n
∑

i=1

u∗
i εi

)

= o
(

n1−η1
)

a.s.. (4.13)

Consequently, (4.11) follows.

The remaining part of the proof focuses on the underspecified case. In partic-

ular, we show that for any pair of models Mu and Mv , with Mu ⊇ M0, Mv ⊂ Mu,

and M0 6= Mv,

P (log σ̂2
n(Mv)−log σ̂2

n(Mu)−(card(Mu)−card(Mv))Pn >0, eventually)=1. (4.14)

Without loss of generality, assume Mu = {x1, . . . , xq+s} for some 0 ≤ s ≤ p − q

and Mv ⊇ {xl, . . . , xq} for some 2 ≤ l ≤ q. By Wei (1992, Thm. 3.1),

σ̂2
n(Mv) − σ̂2

n(Mu) ≥ σ̂2
n(M v) − σ̂2

n(Mu) ≥ σ̂2
n(M v) −

1

n

n
∑

i=1

ε2
i

=
1

n

(

β2
1sn(u) + 2β1

n
∑

i=1

(xi1 − Kn(u)H
−1
n(u)Ti(u))εi − Rn

)

, (4.15)

where M v = {x2, . . . , xq+s}, sn(u) =
∑n

i=1(xi1 − Kn(u)H
−1
n(u)Ti(u))

2, Ti(u) =

(xi2, . . . , xi(q+s))
′, Rn = (

∑n
i=1 T ′

i(u)εi)H
−1
n(u)(

∑n
i=1 Ti(u)εi), and with uj being the

ith regressor corresponding to model Mu,
(

∑n
i=1 x2

i1 Kn(u)

K ′
n(u) Hn(u)

)

=

n
∑

j=1

uju
′
j .

By the same reasoning as (4.12) and (4.13), we have for any 0 < η1 < α,

Rn = o
(

n1−η1
)

a.s.. (4.16)

Corollary 2.6 ensures that for any δ > 1 − (α/2),

n
∑

i=1

(

xi1 − Kn(u)H
−1
n(u)Ti(u)

)

εi = O(1) + o
(

F
(2−α)

2
n (log Fn)δ

)

a.s., (4.17)
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where Fn =
∑n

i=1 |xi1 − Kn(u)H
−1
n(u)Ti(u)|

2/(2−α). According to (C.1’), (C.2),

(4.15)−(4.17), using F 2−α
n ≤ n(1−α)sn(u) and

(
1

q
)λmin

(

n
∑

i=1

xix
′
i

)

≤ sn(u) ≤ ‖x
(n)
1 ‖2 (4.18)

(see Lai and Wei (1982)), one has

σ̂2
n(Mv) − σ̂2

n(Mu) ≥
sn(u)β

2
1

n

(

1 + o(1)
)

a.s.. (4.19)

This, (4.18), (C.1’), and the fact that lim infn→∞ σ̂2
n(Mu) > 0 (which is guaran-

teed by the same reasoning as (4.10)) further yield that

lim inf
n →∞

(

log σ̂2
n(Mv) − log σ̂2

n(Mu)
)

n1−min{1,r1} > 0 a.s.. (4.20)

Consequently, (4.14) follows from (4.5) and (4.20).

Remark 8. The assumptions used in Theorem 4.1 are almost the same as those

used in Corollary 3.5, except that (3.13) is replaced by (3.20) and (4.4) is added

into (C.1). In fact, (4.4) is given to ensure that the signal in the model is strong

enough so that a suitable Pn (which satisfies (4.5)) can be introduced to prevent

Ln(M) from choosing an underspecified model, as clarified in (4.15)−(4.20). On

the other hand, (4.6) is used to avoid overfitting.

Remark 9. When (C.2) in Theorem 4.1 is strengthened to

(C.2’) for some r3 ≥ 1, log(D̄n) = O((log n)r3),

and (4.6) is weakened to

lim inf
n→∞

nαPn

(log n)2r3
> 0, (4.21)

(4.3) still follows.

The following examples help gain further insight into Theorem 4.1.

Example 1. Let xi = (1, cos v1i, sin v1i, . . . , cos vli, sin vli, cos vl+1i)
′ be the ith

regressor variable associated with the full model, where l ≥ 1 is a positive integer,

0 < v1 < . . . < vl < π are real numbers, and vl+1 = π. Then, it can be shown

(e.g., Zygmund, (1959, Chap.I)) that (C.1’) with r1 = 1 and (C.2’) with r3 = 1

hold. For the polynomial regression, the ith regressor variable associated with

the full model can be assumed to be xi = (1, i, . . . , ip−1)′ for some positive integer

p. By Anderson (1971, p.581-582) and Yajima (1988), (C.1’) with r1 = 1 and

(C.2’) with r3 = 1 are also satisfied.
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Example 2. When (C.1’) and (C.2) are satisfied, to attain (4.5) and (4.6) (so

that Ln(M) is strongly consistent), Pn can be chosen to be C/nη2 , where C > 0

and 1 − min{1, r1} < η2 < α. If (C.2’) is also satisfied, then by Remark 9, a
milder penalty Pn = C1(log n)2r3/nα, C1 > 0, would suffice to achieve the same

purpose. However, these choices of Pn are not applicable in situations where α is

unknown. Fortunately, in case r1 ≥ 1 (which occurs in many practical situations,

as shown in Example 1), this dilemma can be alleviated by letting

Pn =
C2

(log n)C3
, (4.22)

where C2 and C3 are some positive numbers. It is not difficult to see that (4.5)

and (4.6) (or (4.5) and (4.21)) are attained by (4.22), without information about

α.

Example 3. When (C.1’) and (C.2’) are assumed, Ln(M) cannot be consistent

even if (4.21) is marginally violated. To see this, consider the polynomial re-
gression model and assume that xi = (1, i)′ and xi0 = (1). Therefore, the full

model contains a constant term and a linear trend, whereas the smallest true

model contains only a constant term. We also assume that {εt} is second-order

stationary and satisfies (1.2). By some algebraic manipulations, it can be shown

that

lim inf
n→∞

E{n(σ̂2
n(M0) − σ̂2

n(M̄ ))}

n1−α
> Cα, (4.23)

where σ̂2
n(M0) and σ̂2

n(M̄) are residual mean squared errors corresponding to xi0

and xi, respectively, and Cα is some positive constant depending only on α. If

we further assume that {εt} is a Gaussian process, then by Corollary 3.5 and
(4.23),

lim inf
n→∞

P
(

log σ̂2
n(M0) − log σ̂2

n(M̄) > Pn

)

> 0, (4.24)

provided Pn = O(n−α). Inequality (4.24) shows that Ln(M) with Pn = O(n−α)

is no longer consistent. Since log n/n = O(n−α), one important implication of

this result is that BIC, that is, Ln(M) with Pn = log n/n, is not consistent

in the regression model with long range dependent errors. This is a somewhat
different situation from that encountered in the case of short memory errors.

Chen and Ni (1989) have shown that BIC is strongly consistent, provided {εt}

is a stationary short memory process with spectral density that is bounded and

bounded away from zero.

Before leaving this section, we note that since (1.5) is satisfied by both

short and long memory time series, Theorem 4.1 is especially useful in situa-

tions where the strength of dependence of {εt} is unknown. More specifically,
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assume that (C.1’), with r1 ≥ 1, and (C.2) (or (C.2’)) hold, and that {εt} is

an ARFIMA(0, d, 0) process, where −1/2 < d < 1/2 is unknown. The latter

ensures that εt has an infinite moving-average representation as given by (3.22).

We also assume that νt in (3.22) satisfies (3.23). By Brockwell and Davis (1987,

p.467), Theorem 4.1, Remark 7 and Example 2, Ln(M) with Pn = C1/(log n)C2 ,

for some C1, C2 > 0, is strongly consistent. On the other hand, since Brockwell

and Davis (1987, p.467) also showed that (1.2) is fulfilled by an ARFIMA(0, d, 0)

model with 0 < d < 1/2, according to Example 3, BIC is not consistent once the

value of d falls in (0, 1/2).
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