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Abstract: Case-control study designs are popular in epidemiological research for

their cost saving and time saving properties. The efficiency of the design depends on

the choice of case-control ratio, which is often arbitrarily chosen, resulting in a loss

of efficacy. We study sequential case-control designs where cases occur sequentially

over time and propose a sampling rule and a simple Bayes stopping rule which lead

to the optimal sequential case-control design. This sampling rule can be applied to

“case-control within cohort” studies where controls are sampled from failure-free

members of the cohort at each distinct failure time when a case occurs, the study

design itself being intrinsically sequential in nature. The proposed stopping rule

is shown to be first order asymptotically optimal. Simulation results indicate that

finite sample performance of the stopping rule and the estimation rule is satisfactory

for moderate sample sizes.
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1. Introduction

Case-control designs have become increasingly popular in studying etiology

of a rare disease since first conceived in the 1920’s. Classical fixed sample case-

control studies select separate samples from the case and control populations

with the two sample sizes being fixed, and often the choice of the sample sizes

are ad hoc. Fixed case-control studies usually cannot attain full efficiency as

the optimal case-control ratio is unknown prior to a study. Moreover, for rare

diseases, when the cases are occurring sequentially over time, fixed sample de-

signs are usually inferior to sequential procedures in terms of time saving con-

siderations. In practice, information on cases and controls are indeed collected

sequentially in many case-control studies. See, for example, Vessey and Doll

(1968), Boston Collaborative Drug Surveillance Project (1973), O’Neil and Anello

(1978), Pasternack and Shore (1981) and O’Neill (1998). In certain investiga-

tions, there are ethical reasons for an early stopping of the study, such as saving

samples or needing immediate public health policy actions (O’Neill (1998)). A
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sequential strategy is definitely a superior choice to a fixed sample size design

when interim analysis and early stopping are possible options. The need for data

adaptive sequential designs is even greater for individually matched case-control

study with cases occurring sequentially over time where one must decide on the

appropriate choice of controls to match a newly available case. In such study

designs, a sequential sampling and stopping strategy could lead to substantial

saving of resources.

For fixed sample size case-control studies, there is substantial literature on

determining the sample size, which is an important aspect in designing any com-

parative experiment. Schlesselman (1974) provided a sample size formula based

on Cochran’s (1954) statistic. Munoz and Rosner (1994) study sample size de-

termination for the Mantel-Haenszel test (1959) on stratified data when both

sets of marginals considered in each table are fixed. Woolson, Bean and Rojas

(1986) propose sample size formulas for Cochran’s statistic in stratified and un-

stratified case-control analyses. Nam (1992) derives a sample size formula for

Cochran’s statistic with continuity correction, and Nam and Fears (1990, 1992a,

b) determine sample size for stratified case-control studies with cost per control

varying by strata. All these papers consider a dichotomous covariate of the na-

ture: exposure and non-exposure. Nam (1997) and Lui (1990, 1993) consider

an extension to multiple risk factors.

O’Neill and Anello (1978) were the first ones to indicate the advantage of

sequential design in confirmatory trials. Several published studies on the associ-

ation between breast cancer and a widely used anti-hypertensive drug reserpine

were deemed to be inconclusive. Motivated by this example, O’Neill and Anello

(1978) proposed a simple stopping rule based on Wald’s SPRT for a matched

case-control study with a single binary covariate and fixed matching ratio. The

problem of how many controls should be matched with a case was not addressed

in their framework.

Chen (2000) provides an interesting example of where a sequential strategy

may be the best choice. Consider the Nurses Health Study Stampfer, Willet,

Coldits, Roser, Speizer and Henekens (1985). At the onset of the study, blood

serum samples for 100,000 subjects were frozen for subsequent use. In later phases

of the study, some subjects developed coronary disease and others remained

disease free. Investigators wanting to study the effect of serum vitamins A and

F on the risk of disease were only authorized to use a maximum of 2,000 frozen

samples due to high cost of laboratory analysis and small amount of stored serum

for each individual. The question then is how one should allocate case or control

samples to such time as 2,000 samples are taken, so that the final estimate of

the relative risk parameters would be most accurate. Could a specified accuracy

of estimation be achieved without using 2,000 serum samples? Chen (2000)
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proposes a sequential sampling strategy based on extending asymptotic normality

of the semiparametric MLE from fixed sample size to sequential designs. A

stopping rule is proposed when one wants a fixed width confidence interval for

the relative risk parameter.

Sequential principles may naturally be called for in a “synthetic” case-control

design (Whittemore (1981) and Prentice (1986)), as a means of reducing the

number of subjects for whom covariate data need to be assembled in the context of

a cohort study. For (instantaneous) relative risk estimation, this method requires

matching each subject experiencing a failure (a case) with a desirable number of

subjects who are failure-free (controls) at the failure time when the case occurs.

Since the cases naturally occur over time in this framework, in order to determine

the “desirable” number of controls at each step, a sequential optimizing principle

may be adopted as discussed in the current paper.

We look at the sequential design problem for case control studies from a

Bayesian perspective, furnishing a sampling rule as well as a simple, easy-to-use

stopping rule. The sampling rule we propose is akin to the one proposed by

Chen (2000). However in this paper, our main focus is an easy-to-use stopping

rule, accompanying a sampling rule. To this end, we consider sequential Bayes

stopping rules. Sequential Bayes analysis is primarily concerned with two prob-

lems: (1) when to stop taking observations, and (2) what to use as a decision

when stopped. It is well-known that in a Bayesian framework, regardless of the

stopping time, the optimal decision rule given the stopped sequence is the Bayes

rule with respect to the posterior distribution at that time. Thus in a Bayesian

framework, the main problem is to find the optimal Bayes stopping time. The

computations involved in obtaining a Bayesian stopping rule by backward induc-

tion could be formidable. Consequently, finding good approximations to optimal

Bayes stopping rules is of prime importance and many candidates have been

proposed. In particular, Bickel and Yahav (1967, 1968, 1969) proposed a class

of rules termed Asymptotically Pointwise Optimal (A.P.O.) rules. Woodroofe

(1981) and Rehalia (1984) established that these rules are non-deficient in the

sense that asymptotically they have the same Bayes risk as the optimal Bayes

procedure.

Sequential principles have often been exploited to develop easy-to-use strate-

gies for applied scientists. APO rules have also been used effectively in solv-

ing problems like the detection of influenza epidemics (Baron (2002)). Dalal

and Mallows (1988) propose APO rules for stopping the testing of software

prior to release, while considering the trade-off between cost of continued test-

ing and the expected losses due to any bugs remaining in the released code.

Fakhre-Zakeri and Slud (1996) consider APO rules for sequential size-dependent

searches and apply it to software reliability testing. The potential of applications
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of APO rules has not yet been fully explored. As we will note, the APO rules per-

form quite well in the case-control context though the analysis is non-conjugate

and remains outside the one parameter exponential family framework, the cases

for which most of the theoretical optimality properties have been developed.

The rest of the paper is organized as follows. In Section 2, we describe the

prospective logistic regression model for analyzing case-control data. We specify

prior distributions on the regressor related parameters and describe the approx-

imate asymptotic distribution of the posterior estimate for these parameters. In

Section 3, we introduce the sampling rule for choosing cases and controls at each

stage as well as the stopping rule, and prove the first order optimality of the pro-

posed stopping rule. In Section 4, we illustrate the sequential procedure in detail

with a single binary exposure. We conduct a small scale simulation study for

the binary exposure case to judge the finite sample performance of the proposed

estimation strategy. Section 5 contains a brief outline toward possible extension

of this method to a group-sequential framework, and for matched case-control

studies.

2. Likelihood, Prior and Posterior

For simplicity, we consider a disease variable Y and a single exposure X.

The discussion and the results generalize in a straightforward way to a vector

of multiple exposures. The data at stage n is denoted by Dn= {(xi, yi): i =

1, . . . , n}. Let n1 denote the number of cases at stage n and take rn = n1/n.

Let h(t) = exp(t)/(1 + exp(t)). Then a prospective logistic regression model for

disease incidence is

P (Y = 1|X = x) = h(γ + βx). (1)

We denote by φ1(x) and φ0(x) the densities of X in the case and control popula-

tions, respectively. We assume that φ1(x) and φ0(x) comply with Prentice-Pyke

type conditions (Prentice and Pyke (1979)) to ensure the validity of the model.

Then the usual prospective logistic likelihood, conditional on the xi values is:

Ln(γ, β) =

n∏

i=1

[h(γ + βxi)]
yi [1 − h(γ + βxi)]

1−yi . (2)

Hence the log-likelihood ln(γ, β) and the observed Fisher information matrix

In(γ, β) are given by

ln(γ, β) =

n∑

i=1

[yi(γ + βxi) − log(1 − h(γ + βxi))], (3)

In(γ, β) =

[ ∑n
i=1 h′(γ + βxi)

∑n
i=1 xih

′(γ + βxi)
∑n

i=1 xih
′(γ + βxi)

∑n
i=1 x2

i h
′(γ + βxi)

]
, (4)
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where h′(t) = exp(t)/(1 + exp(t))2 is the derivative of h(t). Note also that in

view of (4), ∂j+kln(γ, β)/∂γj∂βk (j, k = 0, 1, . . . ; j + k ≥ 3), do not involve the

yi.

Let η = (γ, β)T denote the true parameter vector, and let η̂n = (γ̂n, β̂n)T

denote the vector of maximum likelihood estimates of η at stage n. That is,

(γ̂n, β̂n) is the unique solution to the system of equations

n∑

i=1

[( 1

xi

)
(yi − h(γ + βxi))

]
= 0. (5)

Then from the asymptotic normality of the MLE, it follows that, for given values

of x,

I1/2
n (η)(η̂n − η)

d
→ N2(0, I). (6)

Then from (4) and (6), and plugging in the estimates for γ and β, it follows

that, for given values of xi and a given n, an estimate of Var (β̂n) is

̂
Var (β̂n) ≈

∑n
i=1 h′(γ̂n + β̂nxi)

|In(η̂n)|
. (7)

Recall that we have assumed P (X|Y = d) = φd(x), d = 0, 1. Chen (2000)

extended the asymptotics for the semiparametric MLE of β for a given n to the

sequential context, and established that

n
̂

Var (β̂n) −→ [Σ(r)]−1 as rn → r in probability, (8)

where

Σ(r) = rΣ1(r) + (1 − r)Σ0(r), (9)

Σ1(r) = E1[(X − A(r))2h′(γ∗(r) + βX)], (10)

Σ0(r) = E0[(X − A(r))2h′(γ∗(r) + βX)], (11)

A(r) =
rE1(Xh′(γ∗(r) + βX)) + (1 − r)E0(Xh′(γ∗(r) + βX))

[rE1(h′(γ∗(r) + βX)) + (1 − r)E0(h′(γ∗(r) + βX))]
. (12)

Here Ed denotes expectation on X under the density φd, d = 0, 1, and

γ∗(r) = log(
r

1 − r
) − log(

P (Y = 1)

P (Y = 0)
) + γ. (13)

Proposition 2.1 of Chen (2000) establishes the above result, using the rela-

tionship between prospective logistic model and retrospective likelihood at several

steps of the proof.
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We adopt a Bayesian approach and assume a bivariate normal prior on η,

π(η) ∼ N2(m,W ). Then the posterior for η is given by

π(η|Dn) =
exp[ln(η)]π(η)∫
exp[ln(η)]π(η)dη

. (14)

For convenience of writing, we now let η1 = γ, η2 = β, η̂1n = γ̂n and η̂2n = β̂n.

By expanding ln(η) around the MLE η̂n, and noting that ∇ln(η̂n) = 0, we have

exp[ln(η)]

= exp
[
ln(η̂n) −

1

2
(η − η̂n)T In(η̂n)(η − η̂n) + Kn(η, η̂n) + Rn(η, η̂n)

]

= exp[ln(η̂n)] exp[−
1

2
(η−η̂n)T In(η̂n)(η−η̂n)]

(
1+Kn(η, η̂n)+Rn(η, η̂n)

)
, (15)

where

Kn(η, η̂n) =
1

6

∑

k,l,m=1,2

(ηk − η̂nk)(ηl − η̂nl)(ηm − η̂nm)
∂3ln(η)

∂ηk∂ηl∂ηm

∣∣∣
η=η̂

n

, (16)

and Rn(η, η̂n) denotes the remainder terms involving fourth and higher order

partial derivatives. By (14) and (15), we have

π(η|Dn) =
Bn(η, η̂n)∫
Bn(η, η̂n)dη

, (17)

where

Bn(η, η̂n) = exp[−
1

2
(η− η̂n)T In(η̂n)(η − η̂n)]π(η)

(
1 +Kn(η, η̂n)+Rn(η, η̂n)

)
.

(18)

Based on (17) and (18), we now have the following lemma.

Lemma 1. Assume that limn→∞ inf n−2
∑

i

∑
j(xi−xj)

2h′(γ+βxi)h
′(γ+βxj) >

0, a.s., and
∑n

i=1 x2
i = Op(n). Then

(i) I−1
n (η̂n) = Op(n

−1);

(ii) E(η|Dn) = η̂n + Op(n
−1);

(iii)E[(η − η̂n)(η − η̂n)>|Dn] = I−1
n (η̂n) + Op(n

−3/2).

Proof. The proof of Lemma 1 is technical, and deferred to the supplementary

materials available online.

It may be noted that as a consequence of (ii) and (iii) of Lemma 1,

Var (η|Dn) = Var (η − η̂n|Dn) = I−1
n (η̂n) + Op(n

− 3

2 ). (19)

The following result, which is immediate from (19), will be used in the subsequent

sections:

nVar (β|Dn) = n
̂

Var (β̂n) + Op(n
− 1

2 ), (20)
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where ̂Var (β̂n) was defined at (7).

3. The Sequential Design

In this section, we derive the sampling strategy at each stage and propose

an accompanying easy-to-use stopping rule. We establish certain large sample

properties of our design. Before we begin describing the proposed design, we

point out that the design question addressed in this paper is very different from

the classical problem of designing covariates xi in a logistic regression model, for

which there exists a number of papers (Chaloner and Larntz (1989) and Wu

(1985)). Our goal is to select the “responses” or the cases and controls in a

data-adaptive, sequential way, to optimally estimate the odds ratio parameter

exp(β). Designing the covariates is not a meaningful proposition in the context

of a retrospective case-control study.

3.1. The Sampling Rule

We noted in Lemma 1 that the posterior variance of β for any n is asymp-

totically equivalent to the asymptotic variance of the ML estimate of β, namely

Var (β̂n), n times which converges to [Σ(r)]−1.

Following Chen (2000), it can be shown that [Σ(r)]−1 is a strictly convex

function of r on [0,1] with a unique minimum achieved at r∗, say. A multiple of

the derivative of [Σ(r)]−1 is given by

D(r) =
r

1 − r
Σ1(r) +

1 − r

r
Σ0(r). (21)

The optimal choice for the case-control ratio r∗ that minimizes [Σ(r)]−1 is the

unique solution to the equation D(r) = 0. An estimator of D(r), say D̂(r), can

be obtained by plugging in current estimates of γ, β and the empirical analogues

of φ1 and φ0 in (21). Chen (2000) also justifies the use of γ̂n as a working

estimate of γ̂∗(rn) (as defined in (13) and also appearing in D̂(rn)) at each step.

Result (Chen (2000)): A sequential case-control design with case percentage rn

is asymptotically efficient if and only if rn → r∗ as n → ∞.

The proposed sampling rule at the nth stage of the experiment is as follows:

• take a sample from the case population if D̂(rn)<0;

• draw a sample from the control population if D̂(rn)>0;

• choose arbitrarily if D̂(rn)=0.

The intuitive idea behind the sampling rule is that, since we are looking for

the minimum of a convex function of rn, if the estimated derivative is positive

we decrease rn (i.e., choose a control sample) to move closer to the minimum
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and, conversely, when the derivative is negative we increase rn (i.e., choose a

case sample) to achieve the minimum.

Note that this sampling rule resembles the stochastic approximation ideas of

Wu (1985), where the goal is to approximate the root of a system of appropriate

equations sequentially. Here our goal is not to find the exact value of r∗, but to

accurately estimate β.

Chen (2000) also established that under such a sampling scheme, the case-

control sampling is asymptotically efficient in the sense that

rn → r∗ a.s. as n → ∞. (22)

He proposed a stopping rule based on a fixed width confidence interval for β. In

the following, we propose a very simple stopping rule when estimation is done in

a Bayesian framework.

3.2. The APO stopping rule

We begin with the general framework for A.P.O. stopping rules. For a de-

tailed formulation the reader is referred to the papers by Bickel and Yahav (1967,

1968) and other references mentioned in the introduction.

Let the loss function be Ln(c) = Yn + nc, with P (Yn > 0) = 1 and Yn → 0

as n → ∞. One may think of Yn as the posterior risk under a prior at time n,

with c as the cost per sampling unit. Let T be the class of all stopping rules. A

stopping rule T is defined to be A.P.O. if, for any S ∈ T ,

lim sup
c→0

LT (c)

LS(c)
≤ 1 a.s..

In many standard situations the A.P.O. rule turns out to be of the form N =

inf{n(≥ m) : n ≥ (Yn/c)}, where m is the initial sample size.

In the case-control sampling situation where the parameter of interest is β,

we take

Ln(c) = Var (β|Dn) + cn, (23)

where c is the cost per unit sample. Let Gn = nVar (β|Dn). Then we propose

the following APO stopping time:

N = inf{n(≥ m) : n ≥ (
Gn

c
)

1

2 }, (24)

where m is the initial sample size. Also, N → ∞ a.s. as c → 0.

Remark 1. Chen (2000) proposed a stopping time Nd associated with a fixed

width confidence interval (β̂N − d, β̂N + d) with confidence coefficient 1− α that
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is asymptotically consistent and efficient under the sampling rule as described in

Section 3.1. The proposed stopping time is of the form

Nd = inf
{
n ≥ 1 : n ≥

z2
α

2

d2Σ̂(r̂∗n)

}
,

where r̂∗n is the solution to D̂(r) = 0 at stage n (the construction of D̂(r) is

described right after(21)), and zα is the upper 100(1 − α)th percentile of the

standard normal distribution.

Our stopping rule cannot be directly compared with the fixed width confi-

dence interval based stopping rule of Chen (2000), as our goal is to maximize

the precision of the point estimate of β. The two objectives are quite differ-

ent. The development of A.P.O rules related to set estimation can be found in

Gleser and Kunte (1976). They consider a loss function that is a linear combi-

nation of the length of the interval, the indicator of non-coverage, and the cost

of sampling. Again, this is which is not directly comparable to the fixed-width

confidence interval based approach discussed in Chen (2000).

Another important aspect of sequential inference is sequential testing of hy-

potheses with a desired level of significance, and the power to detect specified

effect sizes. This leads to the more common framework of deriving power curves

for given effect sizes. Chen (2000) justifies the use of the sampling rule as dis-

cussed in the current paper in conjunction with the classical theory of sequential

tests (Siegmund (1985)) for case-control sampling. Possible uses of A. P. O.

rules in the context of testing of hypotheses are indicated in Bickel and Yahav

(1967).

Remark 2. In the example cited in the introduction, the Nurse’s Health Study

(1985), there was an upper bound of 2,000 on the number of allowable samples.

In such instances, the stopping rule would be modified to min(N, 2000). Similar

modification will be needed if there are only a finite number of cases available,

which is often the case for a rare disease.

Remark 3. One may naturally question the structure of the loss function Ln(c),

where c and Var (β|Dn) may vary on quite different scales. However, in our set-

up, one can calibrate c as needed, to reach compatibility with the desired level

of accuracy for estimating β. The large sample properties are in fact obtained as

c → 0 (implying N → ∞ a.s.). To elicit the ideal utility surface empirically in a

specific problem is an interesting issue in itself, and will depend critically on the

application.

Remark 4. The framework can be extended to choose the optimal case-control

ratio when one has a vector of multivariate exposures instead of a single exposure.
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In fact, Chen (2000) extends the sampling scheme to the case where one is
dealing with a general p-dimensional vector β. In this case Σ(r), as defined in
(9), turns out to be a matrix function of r, and there may not exist an r∗ such
that Σ(r∗) ≤ Σ(r) for all r ∈ [0, 1] in the sense of positive definiteness. To
determine the ”optimal” case control ratio, it then becomes necessary to choose
a general criterion in terms of E[(β̂n − β)(β̂n − β)>], and to minimize this as a
function of rn. One could define a fairly general criterion like

trace(B>E[(β̂n − β)(β̂n − β)>]B) (25)

for a fixed p × p matrix B 6= 0, for example. A typical choice of B is then
Diag(b1, . . . , bp), where bi can be viewed as a weight attached to the accuracy of
estimating the effect of the ith component of the covariate vector. For B = I,
the criterion reduces to the squared norm E||β̂n − β||2, so that interest lies in
estimating the effect of the entire p-variate exposure vector.

In a typical case-control study, one is often interested in controlling or ad-
justing for the effect of other covariates like age, ethnicity, family history of the
disease, and the like, while studying the association of the disease and a set of
risk factors. In such situations, one could simply choose B as a diagonal matrix
with the diagonal elements corresponding to the covariates set at zero, and the
diagonal elements corresponding to the exposure variables of interest set at non-
zero values. The multivariate framework is very general and can handle many
situations and objectives by suitable selection of the form of the fixed matrix B.

The intriguing observation in Chen (2000) is that the limiting value of the
criterion function in (25) as rn → r, a.s., is trace(B>Σ−1(r)B). Moreover, the
convexity of this limiting function as a function of r is retained even in this fully
multivariate set-up. The derivative function DB(r) of the limiting expression can
also be estimated at each step and, consequently, the sampling rule as described
in the case of scalar β can be directly adapted to the multivariate setting.

As far as the A.P.O. stopping rule in the multiparameter setting is concerned,
the loss function Ln(c) can also be directly modified in accordance with a par-
ticular choice of the criterion function as described in (25). In the expression for
Ln(c), as given in (23), Var (β|Dn) can be replaced by the posterior expectation
of the chosen criterion function given Dn, and the MLE β̂n in (25) related by
the Bayes estimate E(β|Dn). Generalization of the A.P.O. rule to this setting
has been described in Hoekstra (1989), and the structure of the A.P.O. rule is
exactly similar to the case with a scalar β.

Next, returning to our set-up with a scalar β, we present the key intuitive
idea behind the asymptotic behavior of this stopping rule, before presenting the
formal theorem. Let

Un = n ̂Var (β̂n). (26)
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• By Lemma 1 and (20), Gn = Un + Op(n
−1/2). By (8), the leading term

Un
P
→ [Σ(r)]−1 as n → ∞ and, in fact, to [Σ(r∗)]−1 as rN → r∗ under the

given sampling rule (see (21)).

• Since N → ∞ a.s. as c → 0, UN
P
→ [Σ(r∗)]−1 as c → 0. Hence, GN

P
→

[Σ(r∗)]−1 as c → 0.

This argument leads to the fact that the combination of stopping rule and sam-

pling rule lead to an efficient sampling scheme for estimating β. We now present

the more formal theorem regarding the first order asymptotic optimality of the

stopping rule.

Theorem 1. For the stopping time N as defined in (24),

(i) P (N < ∞) = 1;

(ii) cN 2 P
→ [Σ(r∗)]−1 as c → 0;

(iii)LN (c)/ρ(c)
P
→ 1 as c → 0, where ρ(c) = infS∈T E(LS(c))= 2c1/2[Σ(r∗)]−1/2;

(iv) E[LN (c)]/ρ(c) → 1 as c → 0. The A.P.O. rule is first order efficient or

asymptotically optimal (A.O.).

Proof. The proof of this theorem is rather technical and is relegated to the

supplementary materials available online.

4. Example: Binary Exposure

Since the above discussion is quite general, we illustrate our methods explic-

itly for the common situation in which one has a binary exposure (like smoking

habit, use of oral contraceptive, or family history of cancer). For the ith sam-

ple, let Xi = 1(0) if a person is exposed (unexposed); Yi = 1(0) if a person has

the disease or is a case (does not have the disease or is a control). The joint

probability function of Yi and Xi is (Cox (1972) and Zelen and Parker (1986))

f(yi, xi) =
exp(λxi + γyi + βyixi)

1 + exp(λ) + exp(γ) + exp(λ + γ + β)
.

This leads to

f(xi|yi) =
exp[(λ + βyi)xi]

1 + exp[(λ + βyi)]
;

f(yi|xi) =
exp[(γ + βxi)yi]

1 + exp[(γ + βxi)]
.
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The parameter β can be expressed as

exp(β) =
f(xi = 1|yi = 1)/f(xi = 0|yi = 1)

f(xi = 1|yi = 0)/f(xi = 0|yi = 0)

=
f(yi = 1|xi = 1)/f(yi = 0|xi = 1)

f(yi = 1|xi = 0)/f(yi = 0|xi = 0)

=
f(1, 1)f(0, 0)

f(0, 1)f(1, 0)
.

We are interested primarily in inference for β. At the nth stage let there be

n1 cases and n0 controls. Let n11 denote the number of exposed cases, and

n10 denote the number of exposed controls. So rn = n1/n = 1 − n0/n; Let,

u(t) = h′(t) = exp(t)/[1 + exp(t)]2 and h(t) = 1 − h(t). Thus u(t) = h(t)h(t).

Our goal is to derive an expression for Σ(r) for this particular example.

Remark 5. Note that in this context, φd(x) is Bernoulli with success proba-

bilities h(λ+dβ), d = 0, 1. In this bivariate binary case, instead of going through

the prospective formulation and then taking expectation with respect to the co-

variate densities φd(x), as shown in (8)−(13), one can work directly with the

retrospective likelihood to derive an expression for the asymptotic variance of

the MLE of β, namely, β̂n, and obtain identical results. In the following we show

the equivalence of these two approaches.

Prospective Formulation. It is shown in the supplementary materials avail-

able online that, following equations (8)−(11),

Σ(r) = (1 − r)
h(γ∗(r) + β)h(λ)h(γ∗(r))h(λ)

h(γ∗(r) + β)h(λ) + h(γ∗(r))h(λ)
. (27)

Recall that as stated in (13), γ∗(r) = log(r/1− r)− log(p1/(1−p1))+γ. For this

problem, the marginal disease probability, p1 = P (Y = 1), is easily calculated as

p1 = P (Y = 1) =
exp(γ)[1 + exp(λ + β)]

1 + exp(λ) + exp(γ) + exp(λ + γ + β)
. (28)

Hence,
p1

1 − p1
=

h(λ + β)

exp(γ)h(λ)
. (29)

Using the expression for γ∗(r) we have,

h(γ∗(r) + β)h(λ) =

r
1−r

1−p1

p1
exp(γ + β)h(λ)

1 + r
1−r

1−p1

p1
exp(γ + β)

. (30)
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From (29) and (30) we may write,

h(γ∗(r) + β)h(λ) =
rh(λ + β)h(λ)

rh(λ + β) + (1 − r)h(λ)
, (31)

h(γ∗(r))h(λ) =
rh(λ + β)h(λ)

rh(λ + β) + (1 − r)h(λ)
. (32)

Plugging (31) and (32) in (27), it can be shown, after simplification, that

Σ−1(r) =
1

1 − r
[h(γ∗(r) + β)h(λ)]−1 + [h(γ∗(r))h(λ)]−1

= [rh(λ + β)h(λ + β)]−1 + [(1 − r)h(λ)h(λ)]−1

= [ru(λ + β)]−1 + [(1 − r)u(λ)]−1. (33)

Next we illustrate that this analysis is exactly equivalent to using the retrospec-

tive likelihood directly, and using the asymptotic distribution for the MLE of

β as derived from using the score function corresponding to the retrospective

likelihood.

Direct use of retrospective likelihood. For this example, one can directly

work with the likelihood function based on f(xi|yi)’s at the nth stage,

Ln(λ, β) =
exp[n11(λ + β) + n10λ]

[1 + exp(λ + β)]n1 [1 + exp(λ)]n0

.

The observed Fisher information matrix at the nth stage is

In(λ, β) = n

[
rnu(λ + β) + (1 − rn)u(λ) rnu(λ + β)

rnu(λ + β) rnu(λ + β)

]
.

If rn → r, a.s. (0 < r < 1) as n → ∞, then n−1In converges a.s. to

[
ru(λ + β) + (1 − r)u(λ) ru(λ + β)

ru(λ + β) ru(λ + β)

]
.

As before, let, λ̂n and β̂n denote the MLE’s of λ and β. Then from the asymp-

totic normality of the MLE and the above expression for the Fisher Information

matrix, n1/2(β̂n − β)
d
→ N [0, g(λ, β, r)], where g(λ, β, r) = [ru(λ + β)]−1 + [(1 −

r)u(λ)]−1. Note that g(λ, β, r) is identical to [Σ(r)]−1 as furnished in (33). This

clearly demonstrates the equivalence of the two approaches.
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Considering g (or Σ−1(r)) as a function of r, one can immediately calculate

∂

∂r
g(λ, β, r) = [u(λ)]−1 1

(1 − r)2
− [u(λ + β)]−1 1

r2
, (34)

∂2

∂r2
g(λ, β, r) = [u(λ)]−1 2

(1 − r)3
+ [u(λ + β)]−1 2

r3
. (35)

By (35), g(γ, β, r) is a convex function of r, 0 < r < 1, with minimum attained

at

r∗ =
[u(λ)]

1

2

[u(λ)]
1

2 + [u(λ + β)]
1

2

. (36)

Sampling Rule: Let g′(λ̂n, β̂n, rn) = ∂
∂rg(λ, β, r)

∣∣∣
λ=λ̂n,β=β̂n,r=rn

. The exact ex-

pression for g′ is obtained by plugging in λ = λ̂n, β = β̂n, r = rn in (34). At the

nth stage of the experiment, take a sample from

• the case population if g′(λ̂n, β̂n, rn) < 0;

• the control population if g′(λ̂n, β̂n, rn) > 0;

• arbitrary if g′(λ̂n, β̂n, rn) = 0.

Here g′(λ̂n, β̂n, rn) is identical to the estimated derivative of [Σ(r)]−1, namely

D̂(rn) as described in Section 3.1.

We assume the N(m,W ) prior on (λ, β). The posterior variance of β can

then be calculated, as in Lemma 1, as nVar (β|Dn) = Gn = Un + Op(n
−1/2),

where Un = n ̂Var (β̂n) = [(1 − rn)u(λ̂n)]−1 + [rn u(λ̂n + β̂n)]−1.

Remark 6. In the light of Lemma 1, the APO rule N , as defined in (24), can

again be approximated as (by replacing Gn with Un in the definition of N)

Ñ = inf{n ≥ m : n ≥ (
Un

c
)

1

2 }. (37)

The stopping rule is very easy to implement, one simply has to calculate Un

at each stage of sampling and check to see if it falls below cn2. Moreover, the

combined sampling and stopping strategy lead us to the design with an optimal

case-control ratio for large n.

4.1. Simulation study for binary exposure

Since all the above results are for large N , we conducted a small scale simu-

lation study to assess the finite sample performance of our design in the binary

case. The goal was to estimate β accurately. We started with five cases and

five controls in each simulation run. We then generated the data retrospectively

at each sampling step, i.e. given that we selected a case (yi = 1) or a control
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(yi = 0) to be sampled at the ith step, we generated the exposure (xi|yi) from a

Bernoulli distribution with success probability

exp[(λ + βyi)]

1 + exp[(λ + βyi)]
.

We varied the values of c over a grid of 0.05 to 0.0001. For several true values

of β and λ and several choices of priors, the stopping time N , the proportion of

cases rN , and the value of cN 2 were noted to validate the results in Theorem

1. Recall that the posterior distribution of η was approximated as a bivariate

normal distribution

N2((In(η̂n) + W−1)−1(In(η̂n)η̂n + W−1m), (In(η̂n) + W−1)−1).

The approximate posterior mean of β (denoted by β̂APM , the suffix APM stand-

ing for approximate posterior mean) and the MLE of β at the stopping time

N (denoted by β̂MLE) were calculated. Since the Laplace approximation to the

posterior mean may not be adequate for small sample sizes, after obtaining the

data at stopping time N we estimated the posterior mean by a standard Markov

chain Monte Carlo numerical integration technique, using the same prior as used

in determining the stopping time. This estimate is denoted by β̂MCMC . We

allowed a burn-in of 20,000 iterations and the final estimate β̂MCMC is based

on every tenth observation of the last 10,000 runs of five multiple chains, af-

ter allowing the burn-in period. Convergence of the chain was assessed by the

Gelman and Rubin (1992) diagnostic. As we notice in the results, to the advan-

tage of the practitioner, the Laplace approximation performs adequately in most

cases and avoids the computational burden of running an MCMC.

For each configuration of prior parameters, the simulation was repeated 500

times. The results were averaged over the 500 iterations. To establish our con-

vergence results as indicated in Theorem 1, we recorded values of N , rN and cN2

for each simulation run. We then calculated the mean and variance of N , rN and

cN2 over these 500 runs. It was noted that the sequential design strategy indeed

leads to the optimal choice of r∗ as given in (36), even for moderate sample sizes.

The convergence of cN 2 to g(λ, β, r∗) is also evident.

We now consider the estimation of β, the parameter of interest. Along with

the mean of the three estimates of β obtained in 500 runs, we also computed the

MSE corresponding to the three estimates of β by averaging the squared deviation

of the estimates from the true value over the 500 replications. The performance

of the Bayes estimate relative to that of MLE, depends on the choice of the prior

parameters, especially for larger values of c (i.e., smaller values of N) and the

difference between the two diminishes as c becomes smaller (N becomes larger),

i.e. as GN − UN
P
→ 0. For smaller values of N , the Bayes estimate tends to
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have a smaller MSE than the maximum likelihood estimates, but the gain in
terms of MSE largely depends on the selection of priors. For values of β which
are small, for example, in Table 1 with β = −1, the MSE’s are somewhat large
compared to the effect sizes for small to moderate values of N , when the prior
mean (µβ) is set at 0 with a large prior variability (σβ = 4). A more informative
prior (µβ = −1.5, σβ = 1) produces much smaller MSE as noted in Table 2.
For larger absolute values of β, or larger effect sizes, the relative magnitude of
the MSE’s for all three estimates are found to be smaller compared to effect
sizes (Tables 3, 4). We present our results for larger effect sizes also under two
prior choices: (i) a diffuse prior with large variability in Table 3 to reflect the
situations where there is lack of precise prior information, and (ii) an informative
prior in Table 4 to represent the situations where credible scientific guesses are
available. We also include the case of no effect or β = 0 in the supplementary
documentation available online, again with a diffuse prior. In some scenarios,
specially for small N , the MCMC estimate of β is better than the estimate
obtained by Laplace approximation, β̂APM , but one must note that the Laplace
approximation performs quite comparably with the MCMC estimate and saves
enormous computing complexity. In the simulation results, we note that the
values of N and the precision of the estimates do depend on the true values that
determine the limiting values r∗ of rN and g(λ, β, r∗) of cN2, though the basic
pattern of the findings remain the same. Mathematica codes for the simulation
are available at http://www.stat.ufl.edu/∼mukherjee/research.

Table 1. True values of the parameters: λ = 0.5, β = −1, r∗=0.5, g(r∗ =
0.5, λ = 0.5, β = −1)=17.021. Prior parameters: µλ = µβ = 0, σλ =
4, σβ = 4, ρ = 0.2. β̂APM denotes the posterior mean obtained by using the
Laplace approximation, ˆβMCMC is the exact posterior mean as obtained by
implementing the MCMC numerical integration scheme based on the data
at stopping time N . The quantities in the parentheses denote the respective
MSE’s as estimated from the 500 replications.

c Mean(N) Mean(rN ) Mean(cN2) β̂MLE β̂APM β̂MCMC

(Var (N)) (Var (rN )) (Var(cN2)) (MSE(β̂MLE)) (MSE(β̂APM )) (MSE(β̂MCMC ))

0.05 19.94 0.4999 20.07 -0.9619 -0.9130 -0.9443

(3.94) (0.002) (10.17) (0.8310) (0.7398) (0.7251)

0.02 30.89 0.5002 19.17 -1.0195 -0.9822 -1.0001

(4.19) (0.001) (7.11) (0.5398) (0.4965) (0.5002)

0.005 60.18 0.4995 18.14 -0.9875 -0.9692 -0.9704

(5.44) (0.0003) (2.07) (0.2609) (0.2543) (0.2402)

0.001 131.57 0.4996 17.32 -0.9331 -0.9279 -0.9301

(9.28) (0.0001) (0.66) (0.1615) (0.1569) (0.1623)

0.0001 414.69 0.5005 17.20 -1.0102 -1.0100 -1.0100

(27.21) (0.00005) (0.19) (0.0416) (0.0407) (0.0400)
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Table 2. True values of the parameters: λ = 0.5, β = −1, r∗=0.5, g(r∗ =

0.5, λ = 0.5, β = −1)=17.021. Prior parameters: µλ = 0, µβ = −1.5, σλ = 1,

σβ = 1, ρ = 0.2. β̂APM denotes the posterior mean obtained by using the

Laplace approximation, ˆβMCMC is the exact posterior mean as obtained by

implementing the MCMC numerical integration scheme based on the data

at stopping time N . The quantities in the parentheses denote the respective

MSE’s as estimated from the 500 replications.

c Mean(N) Mean(rN ) Mean(cN2) β̂MLE β̂APM β̂MCMC

(Var (N)) (Var (rN )) (Var(cN2)) (MSE(β̂MLE)) (MSE(β̂APM )) (MSE(β̂MCMC ))

0.05 19.86 0.5032 19.821 -0.8862 -1.0164 -1.0239

(2.02) (0.00165) (8.85) (0.7985) (0.3196) (0.3041)

0.02 30.91 0.5019 19.13 -1.0442 -1.0719 -1.0632

(2.38) (0.00093) (3.81) (0.7190) (0.3696) (0.3421)

0.005 59.69 0.5023 17.83 -0.9608 -1.0015 -0.9999

(3.85) (0.00028) (1.41) (0.2408) (0.1668) (0.1509)

0.001 132.35 0.5000 17.52 -1.0214 -1.0350 -1.0285

(7.87) (0.00014) (0.56) (0.1173) (0.0995) (0.1035)

0.0001 415.32 0.4998 17.25 -1.0415 -1.0452 -1.0457

(36.48) (0.00004) (0.25) (0.0546) (0.0528) (0.0507)

Table 3. True values of the parameters: λ = 1, β = −3, r∗=0.5778, g(r∗ =

0.5778, λ = 1, β = −3)=28.531. Prior parameters: µλ = µβ = 0, σλ =

σβ = 4, ρ = 0.5. β̂APM denotes the posterior mean obtained by using the

Laplace approximation, ˆβMCMC is the exact posterior mean as obtained by

implementing the MCMC numerical integration scheme based on the data

at stopping time N . The quantities in the parentheses denote the respective

MSE’s as estimated from the 500 replications.

c Mean(N) Mean(rN ) Mean(cN2) β̂MLE β̂APM β̂MCMC

(Var (N)) (Var (rN )) (Var(cN2)) (MSE(β̂MLE)) (MSE(β̂APM )) (MSE(β̂MCMC ))

0.05 26.52 0.5787 36.79 -2.899 -2.672 -2.713

(32.47) (0.00941) (324.10) (1.0621) (0.9313) (0.9112)

0.02 41.01 0.5841 34.67 -2.949 -2.802 -2.815

(52.45) (0.00511) (188.23) (0.7357) (0.6799) (0.6524)

0.005 79.07 0.5876 31.71 -3.001 -2.921 -2.919

(90.34) (0.0023) (63.86) (0.3980) (0.3693) (0.3710)

0.001 171.49 0.5768 29.60 -2.999 -2.965 -2.973

(195.24) (0.0012) (24.68) (0.1784) (0.1732) (0.1741)

0.0001 536.53 0.5784 28.84 -2.993 -2.983 -2.991

(534.51) (0.00033) (6.32) (0.0568) (0.0564) (0.0563)



714 MALAY GHOSH AND BHRAMAR MUKHERJEE

Table 4. True values of the parameters: λ = −1, β = 4, r∗=0.676, g(r∗ =

0.676, λ = −1β = 4)=48.443. Prior parameters: µλ = 0, µβ = 5, σλ =

2, σβ = 1, ρ = 0.2. β̂APM denotes the posterior mean obtained by using the

Laplace approximation, ˆβMCMC is the exact posterior mean as obtained by

implementing the MCMC numerical integration scheme based on the data

at stopping time N . The quantities in the parentheses denote the respective

MSE’s as estimated from the 500 replications.

c Mean(N) Mean(rN ) Mean(cN2) β̂MLE β̂APM β̂MCMC

(Var (N)) (Var (rN )) (Var(cN2)) (MSE(β̂MLE)) (MSE(β̂APM )) (MSE(β̂MCMC ))

0.05 39.44 0.7132 94.31 4.104 4.238 4.329

(333.96) (0.0200) (15562.20) (1.003) (0.4658) (0.4322)

0.02 56.11 0.6977 67.68 4.0763 4.1859 4.2196

(237.84) (0.0085) (1497.24) (1.0567) (0.6189) (0.6207)

0.005 100.83 0.6715 52.48 3.9173 4.0144 4.0007

(333.48) (0.0039) (389.31) (0.4189) (0.3098) (0.2887)

0.001 227.26 0.6724 50.12 4.0271 4.0687 4.0183

(488.01) (0.0015) (103.17) (0.1443) (0.1288) (0.1345)

0.0001 694.46 0.6775 48.37 3.9321 3.9479 3.9529

(1455.36) (0.0003) (28.52) (0.0553) (0.0512) (0.0527)

5. Extension to Group Sequential Design and Matched Case-Control

Study

The sampling scheme and the stopping rule, as described above, is based on

a purely sequential strategy where one stops at each stage to choose a case or a

control. Practitioners often prefer interim analysis based on a batch sequential

strategy, especially when the allowable sample size is fairly large and it may

take many steps of sampling before one stops. Group sequential methods in

a fully decision theoretic Bayesian framework have been limited because of the

great analytical and computational complexity in implementing solutions via

backward induction (Degroot (1970)). The main literature has been restricted

to applications related to clinical trials with simple model settings, like one sided

tests with binary outcomes (Lewis and Berry (1994)), and few (typically two

to five) backward steps. Carlin, Kadane and Gelfand (1998) propose a forward

sampling algorithm that eases the computational burden of backward induction,

offering the possibility of many interim looks. For a detailed review of group-

sequential methods, see Jennison and Turnbull (2000).

In this section we briefly indicate how our proposed methods could be ex-

tended to the group sequential framework. The extension of the sampling scheme,

as indicated in Chen (2000), is briefly described as follows.



DATA-ADAPTIVE SEQUENTIAL DESIGN 715

• Let mk denote the size of the kth batch. We consider (i) the mk’s are fixed

by the practitioner, the more common scenario, and (ii) the mk’s are to be

determined at each step.

• Let m1k denote the number of cases and m0k denote the number of controls

to be chosen in batch k, with mk = m0k + m1k.

• Let r̂∗k denote the solution to D̂(r) = 0 with the current estimate D̂ at stage

k.

• Let nk =
∑k

j=1 mj be the total sample size after batch k is drawn, with

n1k =
∑k

j=1 m1j and n0k =
∑k

j=1 m0j the total number of cases and controls

after stage k, nk = n0k + n1k.

Case (i). If the mk’s are predetermined by the practitioner, one simply needs to

decide on how to allocate the cases and the controls at each stage. Suppose one

has completed sampling the (k−1)th batch and is about to select the kth batch.

The proportion of cases after stage k, if one chooses m1k cases, is rk =

(n1k−1 + m1k)/(nk−1 + mk). We recommend the following choice for m1k:

m1k = max{min(r̂∗k−1(nk−1 + mk) − n1k−1,mk), 0}. (38)

This choice minimizes the absolute departure of rk from r∗k−1. After the kth

stage,

rk = max
{ n1k−1

nk−1 + mk
,min

(
r̂∗k−1,

n1k−1 + mk

nk−1 + mk

)}
. (39)

If mk is small, instead of solving D̂(r) = 0 at each stage one could go by the

sign of D̂(rnk−1) and choose all cases (controls) if the sign is negative (positive),

exactly as in the purely sequential case.

Case (ii). The batch sizes mk are unknown, so one has to decide on both mk and

m1k. One may choose mk and m1k to satisfy

n1k−1 + m1k

nk−1 + mk
= r̂∗k−1. (40)

Since there are infinitely many solutions to the above equation, we suggest the

following strategy.

• If n1k−1/nk−1 < r̂∗k−1, choose no controls and (nk−1r̂
∗
k−1 − n1k−1)/(1 − r̂∗k−1)

cases.

• If n1k−1/nk−1 > r̂∗k−1, choose no cases and (−nk−1r̂
∗
k−1 + n1k−1)/r̂

∗
k−1) con-

trols.

• If n1k−1/nk−1 = r̂∗k−1, choose an equal number of cases and controls.
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When the evaluated expression for the number of cases (controls) does not re-

sult into integers, one could approximate the number of cases by the greatest

(smallest) integer contained in (exceeding) the evaluated expression.

The Stopping Rule. The APO rule is a straightforward generalization of the

purely sequential case. Stop at the Nth batch, where

N = inf{J ≥ 1 :

J∑

k=1

mk = nJ ;nJ ≥ (
GnJ

c
)

1

2 }. (41)

Proofs for asymptotic properties of the sampling design in the group sequential

case can be obtained in a similar way, but necessitate complex computations that

are omitted in the current paper.

Remark 7. The 1 : m0k matched case-control analysis can be viewed as a special

case of (40) with m1k ≡ 1 and mk = 1+m0k. In the matched design, one chooses

m0k satisfying (40). This is the strategy one might implement in a synthetic

case-control design, or a case-control within a cohort study where a “desirable”

number of controls are selected when a case occurs. More typically, for a case-

control study, all available cases (say nk) over a time interval are selected and

the number of controls (mk) is chosen after the cases are recruited. The strategy

for choosing mk, as described in (40), could be adopted in this setting as well,

with the given value of nk. We would like to point out that the appropriate

likelihood for such sampling designs is a weighted conditional logistic likelihood,

and using a likelihood such as the one used in this paper will only give one a

rough idea regarding the approximate number of controls to be selected at each

time point. The asymptotics using the exact conditional logistic likelihood and

a similar sequential treatment appears to be much more complex, and remains

beyond the scope of this paper.

Remark 8. As one referee has pointed out, case-control studies differ from

randomized clinical trials in the sense that in a case-control study, the investi-

gators do not provide an intervention; thus, the need for interim looks at the

data (for safety monitoring purposes) is far smaller. So the classical set-up of

group sequential framework is less appealing in a case-control study. The current

paper is indeed quite different from the popular sequential clinical trial designs

in its objective and implementation. Here we address the problem of sequentially

determining the optimal case-control ratio where the prespecified goal is preci-

sion in estimating β. If interim evaluation of the optimal case-control ratio is

hard, one could introduce a cost for performing interim analysis in the loss func-

tion and address the problem in a Bayesian decision theoretic framework. Since

the method is computationally very simple, and sampling or assaying a frozen
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serum sample as needed in the Nurse’s Health Study could be quite expensive,

the proposed sequential method could save considerable resources. The decision

theoretic approach could also motivate new design strategies in the context of

similar practical problems related to a case-control sampling design where de-

termining the sampling ratio is of critical importance (Morgenstern and Winn

(1983)).
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