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Abstract: We propose a new penalized likelihood method for model selection and

nonparametric regression in exponential families. In the framework of smoothing

spline ANOVA, our method employs a regularization with the penalty functional

being the sum of the reproducing kernel Hilbert space norms of functional com-

ponents in the ANOVA decomposition. It generalizes the LASSO in the linear

regression to the nonparametric context, and conducts component selection and

smoothing simultaneously. Continuous and categorical variables are treated in a

unified fashion. We discuss the connection of the method to the traditional smooth-

ing spline penalized likelihood estimation. We show that an equivalent formulation

of the method leads naturally to an iterative algorithm. Simulations and examples

are used to demonstrate the performances of the method.

Key words and phrases: Exponential family, LASSO, nonparametric regression,

penalized likelihood, smoothing spline ANOVA.

1. Introduction

We consider the nonparametric regression and model selection problem in

the exponential family framework. Suppose we are interested in predicting a

response variable Y given d-dimensional input X = (X (1), . . . , X(d)). Conditional

on X = x, assume Y follows an exponential family distribution with the canonical

density form

exp{yf(x) − B(f(x)) + C(y)}, (1.1)

where B and C are known functions. The goal of the regression problem is

to estimate f(x) based on an independently and identically distributed sam-

ple {(xi, yi)}
n
i=1. In many practical situations, the number of input variables d is

large and some of the input variables are superfluous. In such situations, effective

variable selection can improve both the accuracy and the interpretability of the

estimated model. Many variable selection methods have been proposed for the

commonly studied linear regression model. Traditional methods include forward

selection, backward elimination, and best subset selection. Recent developments

include the nonnegative garotte (Breiman (1995)), LASSO (Tibshirani (1996)),
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SCAD (Fan and Li (2001)) and LARS (Efron, Hastie, Johnstone and Tibshirani

(2004)). These methods conduct variable selection and coefficient shrinkage at
the same time, and improve on the traditional methods in terms of estimation

accuracy and stability of the solution.

The nonparametric regression model allows more flexibility than the linear

model and is the topic of this paper. Many popular proposals for variable selec-
tion and estimation in nonparametric regression, such as CART (Breiman, Fried-

man, Olshen and Stone (1984)), TURBO (Friedman and Silverman (1989)),

BRUTO (Hastie (1989)) and MARS (Friedman (1991)), use greedy search type

algorithm for variable selection. This is similar to forward selection and back-
ward elimination in the linear regression. The greedy search type algorithm can

suffer from being myopic since it looks only one step ahead, thus may not take

the globally optimal step. Given the successes of global penalized likelihood

methods such as the LASSO and the SCAD in the linear model, it is desirable
to develop global algorithms based on penalized likelihood for nonparametric

regression models.

The smoothing spline ANOVA model (SS-ANOVA) provides a general frame-
work for high dimensional function estimation, and has been successfully applied

to many practical problems. See Wahba (1990), Wahba, Wang, Gu, Klein and

Klein (1995) and Gu (2002). In this paper we consider a method of regularization

in the SS-ANOVA model with the penalty being the sum of functional component
norms. The proposed penalized likelihood method conducts simultaneous model

selection and estimation. In the Gaussian regression context, regularization with

this type of penalty has been studied by Lin and Zhang (2002) and was referred

to as the COSSO penalty. In this paper we consider the more general setting
of exponential family regression. This general framework allows the treatment

of non-normal responses, binary and polychotomous responses, and event counts

data.

Several different methods have been proposed for variable selection in the
SS-ANOVA models. In the Gaussian regression setting, Gu (1992) proposed

using cosine diagnostics as model checking tools after model fitting. For regres-

sion in exponential families, Zhang, Wahba, Lin, Voelker, Ferris, Klein and Klein

(2004) proposed the likelihood basis pursuit which conducts variable selection by
imposing the L1 penalty on coefficients of basis functions. There is also related

work in the machine learning literature in the framework of combining kernels.

Bach, Lanckriet and Jordan (2004) and Bach, Thibaux and Jordan (2004) con-

sider block 1-norm regularization for learning a sparse conic combination of ker-
nels. Their formulation can also be used for variable selection in a nonparametric

setting, and gave rise to a variational problem that is similar to ours. They de-

veloped an interesting method for approximately computing the regularization

path.
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This paper is organized as follows. Section 2 introduces the formulation of

the COSSO-type penalized likelihood method. The existence of the estimator is

established, and we also show that the penalized likelihood estimate has a finite

representation form. Section 3 develops the computational algorithm. Simula-

tions and examples are presented in Section 4 and Section 5. A summary is given

in Section 6. The proofs of the theorems are given in the appendix.

2. Penalized Likelihood Method

2.1. Smoothing spline ANOVA model

The functional ANOVA decomposition of a multivariate function f is

f(x) = b +
d

∑

j=1

fj(x
(j)) +

d
∑

j=1

d
∑

k=j+1

fjk(x
(j), x(k)) + · · ·, (2.1)

where b is a constant, fj’s are the main effects, fjk’s are the two-way interactions,

and so on. The identifiability of the terms in (2.1) is assured by side conditions

through averaging operators. In the smoothing spline ANOVA model, we assume

fj ∈ H(j), where H(j) is a reproducing kernel Hilbert space (RKHS) of functions

of x(j), admitting an orthogonal decomposition H (j) = {1} ⊕ H̄(j). The full

function space is the tensor product space

⊗d
j=1H

(j) = {1} ⊕

[

d
⊕

j=1

H̄(j)

]

⊕

[

⊕

j<k

(H̄(j) ⊗ H̄(k))

]

⊕ · · · . (2.2)

Each functional component in the SS-ANOVA decomposition (2.1) lies in a

subspace in the orthogonal decomposition (2.2) of ⊗d
j=1H

(j). In the application

of the SS-ANOVA model, usually only lower order interactions are retained in the

decomposition for easy computation and interpretability. Correspondingly, the

function space assumed for the SS-ANOVA model is a subspace F of ⊗d
j=1H

(j).

We write F as

F = {1} ⊕p
α=1 F

α, (2.3)

where F1, . . . ,Fp are p orthogonal subspaces of F . For the additive model, p = d

and the Fα’s are the main effect subspaces. For the two-way interaction model,

p = d(d + 1)/2 and the Fα’s represent the main effect and two-way interaction

subspaces. F is an RKHS with the norm ‖ · ‖ induced by the norm in ⊗d
j=1H

(j).

When x(j) is a continuous covariate, a typical example of H (j) is the second-

order Sobolev Hilbert space W2[0, 1] = {h : h, h′ are absolutely continuous, h′′ ∈

L2[0, 1]}. The norm in W2[0, 1] is

‖h‖2 =
{

∫ 1

0
h(t)dt

}2
+

{

∫ 1

0
h′(t)dt

}2
+

∫ 1

0
{h′′(t)}2dt.
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The reproducing kernel of W2[0, 1] is K(s, t) = 1 + K̄(s, t), where K̄(s, t) =

k1(s)k1(t) + k2(s)k2(t) − k4(|s − t|), k1(t) = t − 1/2, k2(t) = {k2
1(t) − 1/12}/2,

and k4(t) = {k4
1(t) − k2

1(t)/2 + 7/240}/24. See Wahba (1990) and Gu (2002)

for more on reproducing kernels.

When x(j) is a categorical covariate taking values on the discrete domain X =

{1, . . . , L}, a function on X is simply an L-vector and the evaluation functional

is the coordinator extraction. We define the squared norm of such an L-vector

to be 1/L of the common Euclidean space squared norm. This definition ensures

that functions on categorical variables with different numbers of categories have

comparable norms. Under this norm we have H (j) = {1} ⊕ H̄(j), where H̄(j) is

an RKHS with reproducing kernel K̄(s, t) = Lδ(s, t)−1. Here δ(s, t) = 1 if s = t;

= 0 otherwise.

2.2. COSSO penalized likelihood method

Let l{y, η} = yη −B(η), the log likelihood corresponding to the exponential

family distribution (1.1). Define the functional

L(f) =
1

n

n
∑

i=1

[

− l{yi, f(xi)}
]

. (2.4)

The proposed COSSO penalized likelihood method solves

min
f∈F

L(f) + τ 2J(f), with J(f) =

p
∑

α=1

‖P αf‖, (2.5)

where P αf is the orthogonal projection of f onto Fα, and τ > 0 is the smoothing

parameter. In the important special case of additive models, (2.5) becomes

min
f∈F

L(f) + τ 2
d

∑

j=1

‖fj‖, with f(x) = b +

d
∑

j=1

fj(x
(j)).

The penalty J(f) in (2.5) is a sum of RKHS norms, instead of the squared RKHS

norm penalty employed in smoothing splines. The LASSO in linear models can

be seen as a special case of J(f). For the input space X = [0, 1]d, consider the

linear function space F = {1} ⊕ {x(1) − 1/2} ⊕ · · · ⊕ {x(d) − 1/2}, with the usual

L2 inner product on F : (f, g) =
∫

X
fg. The penalty term in (2.5) becomes

J(f) = (12)−1/2
∑d

j=1 |βj | for f(x) = β0 +
∑d

j=1 βjx
(j). This is equivalent to the

L1 norm on the linear coefficients.

The functional J(f) is convex in f . The existence of the COSSO penalized

likelihood estimate is established under the following assumptions:

(i) ρi ≡ supη l(yi, η) < ∞, for any i ∈ {1, . . . , n};
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(ii) there is a unique minimizer of L(η) over η ∈ R.

Theorem 2.1. Let (xi, yi), i = 1, . . . , n, be i.i.d. pairs, and suppose yi|xi has

an exponential family distribution of the form (1.1). Then under assumptions

(i) and (ii), for any reproducing kernel Hilbert space F of functions with the

decomposition (2.3), there exists a minimizer of (2.5) over F .

Assumption (i) states that the likelihood based on a single observation is

bounded from above. This is a necessary condition for the existence of a maxi-

mum likelihood estimate based on a single observation, and is satisfied by most

commonly encountered exponential family distributions, including the binomial,

Poisson, negative binomial, Gaussian, and gamma distribution with fixed shape

parameter. In the case of a categorical variable Y , this assumption is always

satisfied since the likelihood is less or equal to one. Assumption (ii) is usually

satisfied in practical situations by the commonly used exponential families. One

situation in which (ii) is violated occurs when we have a Bernoulli family and

all yi’s happen to be one. In this extreme case, the minimizer is η = ∞, corre-

sponding to the probability parameter being one (η is the log odds, the natural

exponential family parameter for the Bernoulli family). Gu (2002) presented a

proof for the existence of smoothing spline estimate under assumption (ii) with

a general continuous and convex functional L. Gu’s proof was based on two lem-

mas. The proof of the first lemma can be modified to accommodate the COSSO

penalized likelihood estimate and is incorporated into our proof of Theorem 2.1.

However, the proof of the second lemma is not applicable to the COSSO esti-

mate. From our proof of Theorem 2.1, we can see that assumption (ii) can be

relaxed to the existence of a minimizer b0 of L(η) over R, and that there exist

b1 > b0 and b2 < b0 such that L(b0) < L(b1) and L(b0) < L(b2).

The following theorem shows that the solution to (2.5) lies in a finite di-

mensional space. The proof is similar to that of the representer theorem for

smoothing splines (Kimeldorf and Wahba (1971)).

Theorem 2.2. Let the minimizer of (2.5) be f̂ = b̂ +
∑p

α=1 f̂α, with f̂α ∈ Fα.

Then f̂α ∈ span{Rα(xi, ·), i = 1, . . . , n}, where Rα(·, ·) is the reproducing kernel

of Fα.

2.3. Equivalent formulation

It is possible to compute the solution to (2.5) by using Theorem 2.2. Here

we give an equivalent formulation of (2.5) that leads naturally to an iterative

algorithm. Define θ = (θ1, . . . , θp)
T and let 0 be the vector of zeros. Consider

min
f∈F ,θ≥0

1

n

n
∑

i=1

[

− l{yi, f(xi)}
]

+ λ0

p
∑

α=1

θ−1
α ‖P αf‖2 + λ

p
∑

α=1

θα, (2.6)
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where λ0 > 0 is a constant, and λ is the smoothing parameter. If θα = 0, then

the minimizer is taken to satisfy ‖P αf‖2 = 0. We take the convention 0/0 = 0

throughout this paper.

Lemma 2.1. Set λ = τ 4/(4λ0). (i) If f̂ minimizes (2.5), setting θ̂α = λ
1/2
0 λ−1/2

‖P αf̂‖ for α = 1, . . . , p, then the pair (θ̂, f̂) minimizes (2.6). (ii) On the other

hand, if a pair (θ̂, f̂) minimizes (2.6), then f̂ minimizes (2.5).

The objective function in (2.6) is similar to that for a smoothing spline with

multiple smoothing parameters, except for the additional penalty on θ’s. This

shows the connection between our method and smoothing splines. Note that λ

is the only smoothing parameter in (2.6). Generally λ0 is fixed at some value for

computational convenience.

3. Algorithms

For fixed λ0 and λ, the representer theorem for the smoothing spline states

that the minimizer of (2.6) has the form f(x) = b +
∑n

i=1 ciRθ(xi,x), where

Rθ =
∑p

α=1 θαRα and Rα is the reproducing kernel of Fα. With some abuse

of notation, we use Rα for the matrix {Rα(xi,xj)}
n
i,j=1 and Rθ for the matrix

∑p
α=1 θαRα. Let c = (c1, . . . , cn)T, f = (f(x1), . . . , f(xn))T, and 1n be the

vector of ones of length n. Then
∑p

α=1 θ−1
α ‖P αf‖2 =

∑p
α=1 θαcTRαc = cTRθc,

and (2.6) becomes

min
θ≥0,b,c

1

n

n
∑

i=1

[

− l{yi, f(xi)}
]

+ λ0c
TRθc + λ1T

pθ. (3.1)

We solve (3.1) using Newton-Raphson iteration. Given a current solution f 0, the

conditional mean of Y given xi is µ0
i = Ḃ(f0(xi)) and the conditional variance

is V 0
i = B̈(f0(xi)). Define νi = −yi + µ0

i and wi = V 0
i . The second-order Taylor

expansion of −yif(xi) + B(f(xi)) at f0(xi) is

−yif
0(xi) + B(f0(xi)) + νi

[

f(xi) − f0(xi)
]

+
1

2
wi

[

f(xi) − f0(xi)
]2

=
1

2
wi

[

f(xi) − f0(xi) +
νi

wi

]2
+ βi,

where βi is independent of f(xi). Define the adjusted dependent variable zi =

f0(xi)+(yi −µ0
i )/wi, z = (z1, . . . , zn)T, and the weight matrix W = diag[w1, . . .,

wn]. The Newton iteration update of (3.1) is to solve

min
θ≥0,b,c

(z − b1n − Rθc)TW (z − b1n − Rθc) + nλ0c
TRθc + nλ1T

pθ. (3.2)
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The first part of (3.2) is a weighted least squares with the weights changing in

each iteration. This iteratively-reweighted least squares procedure is commonly

used for computing maximal likelihood estimates in generalized linear and addi-

tive models (Hastie and Tibshirani (1990)). We propose to minimize (3.2) by

alternatively solving (b, c) with θ fixed and solving θ with (b, c) fixed. When θ is

fixed, the minimization problem is equivalent to solving the standard smoothing

spline. When (b, c) is fixed, we need to solve a quadratic programming (QP)

under linear constraints. A similar algorithm was used in Lin and Zhang (2002)

for Gaussian regression. In practice, one-step update is often sufficient to get a

good approximate solution.

3.1. Full basis algorithm

1. With θ fixed, solving (3.2) is equivalent to solving the standard smoothing

spline

min
b,cw

||zw − bsw − Rwθcw||
2 + nλ0c

T

wRwθcw, (3.3)

where zw = W 1/2z,Rwθ = W 1/2RθW 1/2,cw = W−1/2c, and sw = W 1/21n.

2. With (b, c) fixed, (3.2) becomes

min
θ≥0

(z − b1n − Gθ)TW (z − b1n − Gθ) + nλ0c
TGθ + nλ1T

pθ, (3.4)

where G = [g1, . . . , gp] with gα = Rαc. Define Gw = W 1/2G and uw =

zw − bsw − (n/2)λ0cw. It is easy to show that (3.4) is equivalent to, for some

M ≥ 0,

min
θ

||uw − Gwθ||2, subject to 1Tθ ≤ M, θ ≥ 0. (3.5)

The tuning parameter M in (3.5) is equivalent to λ in (3.4). Note (3.5) has the

same formulation as the nonnegative garrote approach (Breiman (1995)). The

following gives the complete algorithm for solving the COSSO with fixed λ0 and

M . The issue of tuning parameter is very important and will be discussed later.

Algorithm 1.

Step 1: Initialize fi = ȳ, µi = Ḃ(fi), wi = B̈(fi), zi = fi + (yi − µi)/wi for

i = 1, . . . , n.

Step 2: Set θ = 1p. Calculate zw, sw and Rwθ. Solve (3.3) for (b, cw).

Step 3: Calculate uw = zw − bsw − n
2λ0cw and Gw. Solve (3.5) for θ.

Step 4: Update Rwθ and solve (3.3) for (b, cw) using current θ.

Step 5: Calculate c = W 1/2cw and f = b1n + Rθc. Update the wi’s and zi’s.

Step 6: Go to step 2, until the convergence criterion is satisfied.
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3.2. Subset basis algorithm

The computational complexity of the full basis algorithm in each iteration

is O(n3). For large data sets, the implementation of the full basis algorithm

can be slow. We propose an alternative subset basis algorithm to speed-up the

computation. The idea is to minimize the objective function of (2.6) in a sub-

space spanned by some pre-selected N basis functions. This parsimonious ba-

sis approach has been used by Xiang and Wahba (1998), Ruppert and Carroll

(2000), and Yau, Kohn and Wood (2002). In each iteration, the computational

complexity of the subset basis algorithm with N basis functions is O(nN 2).

Randomly take N points {x1∗, . . . ,xN∗} from the data and use them to

generate N basis functions. We will search for the minimizer of (2.6) in the

subspace spanned by these basis functions. Then the solution has the form

f(x) = b +

N
∑

i=1

ciRθ(xi∗,x) = b +

N
∑

i=1

ci

p
∑

α=1

θαRα(xi∗,x). (3.6)

Let c = (c1, . . . , cN )T, R∗∗
α be the matrix {Rα(xi∗,xk∗)}

N
i,k=1, and R∗

α be the

matrix {Rα(xi,xk∗)}, i = 1, . . . , n and k = 1, . . . , N . Define R∗∗
θ

=
∑p

α=1 θαR∗∗
α

and R∗
θ

=
∑p

α=1 θαR∗
α. Then f = b1n + R∗

θ
c, and (3.2) becomes

min
θ≥0,b,c

(z − b1n − Rθc)TW (z − b1n − Rθc) + nλ0c
TR∗∗

θ c + nλ1T

pθ. (3.7)

Define the vectors zw = W 1/2z, sw = W 1/21n,uw = zw − bsw, and R∗
wθ

=

W 1/2R∗
θ
.

1. With θ fixed, (3.7) is equivalent to

min
b,c

||zw − bsw − R∗
wθc||2 + nλ0c

TR∗∗
θ c. (3.8)

2. With (b, c) fixed, let Gw = [gw1, . . . , gwp] with gwα = R∗
wαc, and hλ0 be the

vector with the αth element nλ0c
TR∗∗

α c, α = 1, . . . , p. We need to solve

min
θ

||uw − Gwθ||2 + hT

λ0
θ, subject to 1T

pθ ≤ M, θ ≥ 0. (3.9)

Algorithm 2. In Algorithm 1, replace (3.3) by (3.8), and replace (3.5) by (3.9).

When n is large, the subset basis algorithm can be much more efficient than

the full basis algorithm when N is properly chosen. In the standard smoothing

spline setting, Gu and Kim (2001) showed that N can be much smaller than

n without degrading the performance of the estimation. This is also true for

our method and can be seen from the numerical results. In practice, we suggest
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using the subset basis algorithm when n is large. We use the simple random

subsampling scheme to select N basis points. Alternatively, a cluster algorithm

in Xiang and Wahba (1998) can be used.

3.3. Smoothing parameter selection

Smoothing parameters balance the tradeoff between the likelihood fit and the

penalty on function components. For an exponential family, the Kullback-Leibler

(KL) distance between the distributions parameterized by f and f̂ is KL(f, f̂) =

(1/n)
∑n

i=1

[

µ(xi){f(xi) − f̂(xi)} − {B(f(xi)) − B(f̂(xi))}
]

. Comparative KL

distance is obtained by dropping terms that do not involve f̂ ,

CKL(f, f̂) =
1

n

n
∑

i=1

[

− µ(xi)f̂(xi) + B{f̂(xi)}
]

.

Since µ is unknown, we use five-fold cross validation (CV) to tune the smoothing

parameter M in (3.5) or (3.9) adaptively. The grid search is applied. Here is the

complete algorithm for the COSSO penalized likelihood fitting and tuning.

Step 1: Set θ = 1p. Initialize fi, µi, wi, zi,W in the same way as in Step 1 of

Algorithm 1. For each fixed λ0, repeat the following two steps.

(i) Calculate zw, sw, Rwθ and solve (3.3) or (3.8) for (b, cw).

(ii) Compute f = b1n + Rθc. Update the wi’s and zi’s. Go to (i) until conver-

gence.

Step 2: Choose the best λ0 using the CV score, and fix it in all the later steps.

Step 3: For each fixed M in a reasonable range, implement Algorithm 1 (or 2 for

large datasets). Choose the best M according to the CV score.

4. Simulations

We illustrate the performances of the proposed method with Bernoulli ex-

amples. Given x, suppose the binary response Y takes value 1 with probability

p(x). To measure the estimation accuracy, the CKL distance between p̂(x) and

p(x) is calculated. We compute the expected misclassification rate (EMR) of

the model by evaluating it on 10, 000 testing points. For comparison, the Bayes

error for each example is reported. It is the classification error of the optimal

classification rule based on the true p. The subset basis algorithm is used when

N < n, and the full basis algorithm is used when N = n. We simulate 100 data

sets for each example and report the average CKL, EMR, and model size. To

give a sense of computational cost, we also report the time for one typical run

(the total time on tuning and model fitting) for each example.
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Example 1. Consider an additive model with ten continuous covariates inde-

pendently generated from Unif[0, 1]. The true logit function is

f(x) = 3x(1) + π sin(πx(2)) + 8(x(3))5 +
2

e − 1
ex(4)

− 6.

Thus X(5), . . . , X(10) are uninformative. The sample size is 250. The Bayes clas-

sification error for this example is 0.216. We fit the additive model with the full

basis algorithm, and the subset basis algorithms with different numbers of bases:

N = 25, 50, 100. Figure 4.1 plots the true important functional components and

their estimates fitted using the subset algorithm with N = 100. The 5th, 50th,

95th best estimates over 100 runs are ranked according to their EMR values.

Notice the components are centered in the functional ANOVA decomposition.

We can see that our method provides very good estimates for the important

functional components.
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Figure 4.1. True (solid lines) and estimated component functions (dashed
lines for the 5th best, dashed-dotted lines for the 50th best, dotted lines for
the 95th best) over 100 runs. The additive model is fitted using the subset
basis algorithm with N = 100.
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Table 1 summarizes the average CKL and EMR of the fitted model over 100

runs. The values in the parentheses are the standard errors of the corresponding

mean values. Table 2 shows the appearance frequency of each variable, the

average model size, with the standard deviation of model size in parentheses. All

the algorithms give similar results in terms of model estimation accuracy and

variable selection. The method almost always selects X (1), X(2), X(3) (in more

than 99% of the runs), and selects X (4) in at least 91% of the runs.

Table 1. Average CKL and EMR of the COSSO penalized likelihood esti-

mates (Example 1).

N CKL EMR Time

25 0.476 (0.018) 0.235 (0.018) 23.4

50 0.477 (0.017) 0.236 (0.016) 36.9

100 0.478 (0.017) 0.235 (0.016) 80.4

250 (full) 0.480 (0.016) 0.238 (0.011) 347.3

Table 2. Appearance frequency of the variables and the average model size

(Example 1).

N 1 2 3 4 5 6 7 8 9 10 model size

25 99 99 100 91 10 8 11 9 13 14 4.54 (1.36)

50 100 100 100 92 14 10 16 12 13 16 4.73 (1.40)

100 100 100 100 93 12 10 17 12 14 17 4.75 (1.42)
250 100 100 100 93 12 10 17 12 14 17 4.75 (1.42)

Example 2. Consider situations where there exists some correlation among the

covariates. Four functions on [0, 1] will be used to build the true underlying

regression functions: g1(t) = t, g2(t) = (2t − 1)2, g3(t) = sin(2πt)/(2 − sin(2πt)),

and g4(t) = 0.1 sin(2πt)+0.2 cos(2πt)+0.3 sin2(2πt)+0.4 cos3(2πt)+0.5 sin3(2πt).

Let d = 10 and the true logit function be f(x) = 5g1(x
(1))+3g2(x

(2))+4g3(x
(3))+

6g4(x
(4)). We consider two types of covariance structure.

(trimmed) AR(1): Generate W1, . . . ,W10 independently from N(0, 1). Define

X(1) = W1, X
(j) = ρX(j−1) + (1 − ρ2)1/2Wj for j = 2, . . . , 10. Trim X’s to

[−2.5, 2.5].

Compound Symmetry (CS): Generate W1, . . . ,W10, and U independently

from Unif[0, 1]. Define X (j) = (Wj + tU)/(1 + t), for j = 1, . . . , 10. The constant

t ≥ 0 controls the degree of correlation, and corr(X (j), X(k)) = t2/(1 + t2) for

any pair j 6= k.
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1. Uncorrelated input variables: (trimmed) AR(1) with ρ = 0.

Tables 3 and 4 summarize the results from 100 simulations when there is no

correlation among the covariates. The Bayes error is 0.134. We observe that,

as the sample size increases, both CKL and EMR of the fitted model decrease

substantially, and the model selects important variables more frequently. In all

the settings, the subset basis algorithm performs as well as the full algorithm but

can reduce the time substantially.

Table 3. Average CKL, EMR and time for AR(1) example with ρ = 0.

n N CKL EMR Time

100 50 0.462 (0.049) 0.221 (0.033) 24.8

100 0.463 (0.049) 0.221 (0.032) 64.5

200 50 0.371 (0.029) 0.172 (0.020) 57.3

100 0.371 (0.026) 0.172 (0.019) 185.9

200 0.371 (0.027) 0.172 (0.020) 232.4

500 50 0.325 (0.017) 0.148 (0.014) 118.8

100 0.326 (0.016) 0.148 (0.014) 221.7
200 0.327 (0.016) 0.148 (0.014) 648.4

500 0.328 (0.013) 0.151 (0.007) 1179.1

Table 4. Appearance frequency of variables and the average model size,

AR(1) with ρ = 0.

n N 1 2 3 4 5 6 7 8 9 10 model size

100 50 86 32 99 95 32 30 29 30 31 29 4.93 (2.07)

100 87 33 99 95 35 33 30 31 32 30 5.05 (2.13)

200 50 93 40 100 100 10 14 13 7 12 12 4.01 (1.36)

100 95 39 100 100 10 14 12 10 12 14 4.06 (1.43)
200 95 39 100 100 10 14 12 10 12 16 4.08 (1.45)

500 50 100 85 100 100 6 8 6 8 7 3 4.23 (1.06)
100 100 84 100 100 6 7 7 7 7 3 4.21 (1.05)

200 100 83 100 100 6 7 7 7 7 3 4.20 (1.05)

500 100 77 100 100 7 7 3 3 9 6 4.12 (0.99)

2. Correlated input variables.

Two types of covariance structures are considered: (trimmed) AR(1) with

ρ = 0.5 and CS(t = 1). The Bayes errors are respectively 0.149 and 0.142. Tables

5−8 show that the proposed method still performs very well in model building

and estimation. When n is small, the method tends to choose some uninforma-

tive variables. As n grows, the method chooses the right model structure more
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frequently, and both CKL and EMR decrease quickly. The subset basis algorithm

works more efficiently as well.

Table 5. Average CKL, EMR, and time for AR(1) example with ρ = 0.5.

n N CKL EMR Time

100 50 0.477 (0.054) 0.239 (0.035) 25.4

100 0.466 (0.053) 0.231 (0.033) 95.9

200 50 0.477 (0.054) 0.239 (0.035) 79.1

100 0.392 (0.027) 0.186 (0.018) 189.1

200 0.392 (0.027) 0.186 (0.018) 224.7

500 50 0.351 (0.014) 0.165 (0.014) 118.8
100 0.352 (0.013) 0.165 (0.013) 226.9

200 0.352 (0.013) 0.165 (0.013) 668.7

500 0.351 (0.011) 0.165 (0.006) 1171.0

Table 6. Variable appearance frequency and average model size for AR(1)

with ρ = 0.5.

n N 1 2 3 4 5 6 7 8 9 10 model size

100 50 82 45 100 90 38 27 31 33 22 27 4.95 (2.28)

100 88 41 100 90 30 31 21 32 29 35 4.97 (2.10)

200 50 97 49 100 100 15 16 15 16 18 11 4.37 (1.69)

100 99 48 100 100 14 18 15 18 17 12 4.40 (1.73)

200 98 48 100 100 14 18 15 18 17 12 4.40 (1.73)

500 50 100 79 100 100 7 7 6 10 8 10 4.27 (1.25)

100 100 81 100 100 4 10 7 11 6 10 4.29 (1.13)

200 100 79 100 100 4 10 7 11 6 10 4.27 (1.14)
500 100 78 100 100 12 4 11 5 9 7 4.26 (1.25)

Table 7. Average CKL, EMR, and time for CS(t = 1) setting.

n N CKL EMR Time

100 50 0.468 (0.050) 0.222 (0.023) 18.5
100 0.457 (0.049) 0.216 (0.026) 37.6

200 50 0.379 (0.022) 0.180 (0.017) 47.8
100 0.380 (0.022) 0.180 (0.017) 98.7

200 0.381 (0.023) 0.199 (0.016) 249.1

500 50 0.339 (0.012) 0.158 (0.007) 126.6

100 0.337 (0.010) 0.158 (0.007) 252.7

200 0.339 (0.012) 0.158 (0.007) 685.8

500 0.339 (0.012) 0.158 (0.007) 1269.8
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Table 8. Variable appearance frequency and average model size for CS(t = 1)

setting.

n N 1 2 3 4 5 6 7 8 9 10 model size

100 50 74 38 100 81 38 33 30 33 34 35 4.96 (2.51)

100 78 45 96 92 34 36 30 33 40 32 5.16 (2.49)

200 50 84 35 100 100 8 17 12 13 15 13 3.97 (1.49)

100 83 37 100 100 11 18 14 12 17 14 4.06 (1.57)
200 83 37 100 100 11 19 14 12 17 14 4.07 (1.57)

500 50 100 77 100 100 14 9 12 7 11 14 4.44 (1.43)

100 100 71 100 100 6 7 6 7 5 6 4.08 (0.94)

200 100 75 100 100 14 9 10 8 11 16 4.43 (1.34)

500 100 75 100 100 14 9 10 8 11 15 4.42 (1.34)

Example 3. Categorical covariates included. Consider the case when both

continuous and categorical predictors are present in the data. We first generate

eleven variables from Unif[0, 1], then make the last four variables categorical by

setting

Z(1) = I(X(8) < 0.5) + 2I(X(8) ≥ 0.5),

Z(2) = I(X(9) <
1

3
) + 2I(

1

3
≤ X(9) <

2

3
) + 3I(X(9) >

2

3
),

Z(3) = I(X(10) <
1

4
) + 2I(

1

4
≤ X(9) <

2

4
) + 3I(

2

4
≤ X(9) <

3

4
) + 4I(X(9) ≥

3

4
),

Z(4) = I(X(11) <
1

3
) + 2I(

1

3
≤ X(11) <

2

3
) + 3I(X(11) ≥

2

3
),

where I is the indicator function. The true logit function is constructed using

the same building functions as in Example 2:

f(x, z) = 5g1(x
(1)) + 3g2(x

(2)) + 4g3(x
(3)) + 6g4(x

(4)) − 4.5z(1) + 2.5
√

z(3) − 2.4.

Table 9. Average CKL and EMR for CS(t=0) setting (Example 3).

n N CKL EMR

100 100 0.536 (0.080) 0.265 (0.047)

200 100 0.351 (0.032) 0.160 (0.016)

200 0.351 (0.033) 0.159 (0.017)

500 100 0.284 (0.009) 0.125 (0.006)

200 0.284 (0.009) 0.125 (0.006)

500 0.284 (0.009) 0.125 (0.006)
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1. Uncorrelated input variables.

The correct model size is 6 and the Bayes error is 0.107. Table 10 shows that Z (1)

is never missed; Z(3) is selected in 80% runs when n = 200, and in more than 98% runs

when n = 500. Figure 4.2 plots the 5th,50th, 95th best estimates over 100 runs.

Table 10. Variable appearance frequency and average model size for CS(t =

0) case.

n N x1 x2 x3 x4 x5 x6 x7 z1 z2 z3 z4 model size

100 100 83 34 78 93 15 18 18 100 41 73 37 5.90 (2.37)

200 100 100 64 100 100 11 18 10 100 8 82 9 6.02 (1.41)

200 100 73 99 100 7 16 16 100 8 79 5 6.03 (1.34)

500 100 100 100 100 100 19 10 13 100 2 98 1 6.43 (0.74)

200 100 100 100 100 13 10 9 100 1 100 1 6.35 (0.64)
500 100 100 100 100 19 11 13 100 2 98 1 6.44 (0.77)
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2. Correlated input variables.

Consider the covariance structure CS(t = 1). The Bayes error is 0.115.

Tables 11 and 12 show that the method performs well.

Table 11. Average CKL and EMR for the CS(t = 1) setting (Example 3).

n N CKL EMR

100 100 0.486 (0.081) 0.231 (0.045)

200 100 0.367 (0.025) 0.165 (0.014)

200 0.367 (0.026) 0.165 (0.014)

500 100 0.306 (0.013) 0.134 (0.007)

200 0.306 (0.013) 0.134 (0.008)

500 0.306 (0.014) 0.134 (0.008)

Table 12. Variable appearance frequency and the average model size for
CS(t = 1) setting.

n N x1 x2 x3 x4 x5 x6 x7 z1 z2 z3 z4 model size

100 100 43 31 85 97 19 22 19 100 32 72 30 5.50 (2.40)

200 100 67 51 99 100 18 14 9 100 8 80 15 5.61 (1.74)

200 67 51 99 100 18 13 10 100 8 80 14 5.60 (1.75)

500 100 97 83 100 100 15 12 11 100 4 98 5 6.25 (1.09)

200 98 81 100 100 12 13 10 100 2 100 3 6.19 (1.00)
500 98 82 100 100 12 13 10 100 2 100 3 6.20 (0.99)

Example 4. Two-way interaction model. Generate four continuous covari-

ates independently from Unif[0, 1]. The true logit function contains an interaction

term, with

f(x) = 4x(1) + π sin
(

πx(1)
)

+ 6x(2) − 8
(

x(2)
)3

+ 3 cos
(

2π(x(1) − x(2))
)

− 5.

The important components are X (1), X(2), and their interaction effect. The Bayes

error is 0.155. The two-way interaction model is fitted for n = 200 and n = 500.

Table 14 shows that the interaction term f12 is selected in all the runs.

Table 13. Average CKL, EMR, and times for Example 4.

n N CKL EMR Time

200 50 0.515 (0.005) 0.247 (0.004 30.59

100 0.515 (0.005) 0.247 (0.004) 57.59

200 0.514 (0.004) 0.248 (0.003) 99.71

500 50 0.448 (0.003) 0.192 (0.002) 187.30

100 0.444 (0.008) 0.191 (0.007) 384.72
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Table 14. Variable appearance frequency and average model size for Example 4.

n N x1 x2 x3 x4 x1, x2 x1, x3 x1, x4 x2, x3 x2, x4 x3,x4 model size

200 50 100 99 19 18 100 14 13 10 18 7 3.98 (1.56)

100 100 99 19 18 100 14 13 10 18 7 3.98 (1.56)

200 100 100 19 17 100 15 13 13 20 9 4.06 (1.64)

500 50 100 100 11 13 100 12 6 9 8 1 3.60 (0.74)

100 100 100 13 15 100 15 11 10 12 5 3.81 (0.92)

5. Data Examples

We apply the COSSO penalized likelihood method to four benchmark data-

sets available at the UCI machine learning repository. Both the additive and

two-way interaction COSSO are applied. When n ≤ 200, we use the full basis

algorithm; otherwise the subset basis algorithm is used with N = 200.

Cleveland Heart Disease. The problem concerns the prediction of the pres-

ence or absence of heart disease given various medical tests. There are 296

instances with seven categorical and six continuous covariates (contributed by R.

Detrano).

BUPA Liver Disorder. The problem is to predict whether or not a male

patient has a liver disorder based on blood tests and alcohol consumption. There

are 345 observations with six continuous variables (donated by R. S. Forsyth).

PIMA Indian Diabetes. The problem is to predict the positive test for dia-

betes given a number of physiological measurements. The patients are females

older than twenty-one years from Pima Indian heritage, Arizona. There are

eight variables. Since the original data contains some impossible values (like zero

bmi), we remove those instances and consider the remaining 532 observations

(contributed by V. Sigillito).

Wisconsin Breast Cancer (WBC). The problem is to predict whether a

tissue sample from a patient is malignant or benign. There are 699 observations

and nine features; we use 683 complete records (donated by Dr. William H.

Wolberg).

For each dataset, we estimate the mean error rate by ten-fold cross validation.

In the ten-fold cross validation, the data is divided into ten parts, and each

part in turn becomes the test set and the other nine parts form the training

set. The tuning parameters are tuned with five-fold cross validation within the

training set, then the performance of the algorithm is evaluated on the test

set. Lim and Loh (2000) conducted a thorough comparison among thirty-three

classification algorithms, including twenty-two decision tree, nine statistical, and
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two neural network algorithms, on these datasets. Their results are also based on
ten-fold cross validation. Table 15 presents the EMRs of the additive COSSO,
two-way interaction COSSO, and the best rule of the thirty-three algorithms
reported in Lim and Loh (2000), which is referred to as “best(LL2000)”. We

can see from the table the performance of our method is comparable to the best
performance of the thirty-three algorithms. We summarize the average model
size of the additive and two-way interaction models in Table 16.

Table 15. EMRs of the additive, two-way interaction COSSO method, and
the best(LL2000).

additive COSSO two-way COSSO best(LL2000)

BUPA 0.257 (0.022) 0.286 (0.023) 0.28

Cleveland 0.169 (0.022) 0.165 (0.018) 0.14

PIMA 0.220 (0.014) 0.214 (0.014) 0.22
WBC 0.031 (0.008) 0.026 (0.005) 0.03

Table 16. Average model size of the additive and two-way interaction COSSO
models.

BUPA Cleveland PIMA WBC

additive COSSO 6.0 (0.03) 9.4 (2.95) 6.0 (0.94) 8.8 (0.63)
two-way COSSO 12.2 (4.9) 10.0 (3.43) 6.6 (2.16) 14.6 (1.27)

6. Summary

We propose a penalized likelihood method in a nonparametric generalized
regression setting for simultaneous model estimation and variable selection. The
special penalty form is able to shrink insignificant components to exact zeros.

Our method handles continuous and categorical variables in a uniform manner,
and demonstrates competitive performance in numerous examples. The subset
basis algorithm is shown to be efficient for large datasets.
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Appendix 1. Proof of Solution Existence

Proof of Theorem 2.1. Without loss of generality, we take τ = 1. Denote

the last part of (2.3) by F1. Because
∑p

α=1 ‖P
αf‖2 ≤ J2(f), we have that
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J(f) ≥ ‖f‖ for any f ∈ F1. Let RF1 be the reproducing kernel of F1 and 〈·, ·〉F1

be the inner product in F1. Let a = maxn
i=1 R

1/2
F1

(xi,xi). By the definition of a

reproducing kernel we have, for any f ∈ F1 and i = 1, . . . , n,

|f(xi)| = |〈f(·), RF1(xi, ·)〉F1 | ≤ ‖f‖〈RF1(xi, ·), RF1 (xi, ·)〉
1/2
F1

= ‖f‖R
1/2
F1

(xi,xi) ≤ a‖f‖ ≤ aJ(f). (A.1)

Denote the objective functional in (2.5) by D(f). By the theory of exponen-

tial family distributions, B is convex and infinitely differentiable. Therefore from

(A.1) we see that D(f) is convex and continuous in F . Let ρ = (1/n)
∑n

i=1 ρi,

where the ρi’s are defined in assumption (i) and are finite. It is easy to see that

for any f ∈ F , we have

D(f) ≥ J(f) − ρ. (A.2)

Denote the minimizer in assumption (ii) by b0. For any r > 0, consider the

set

Er = {f ∈ F : f = b+f1,with b ∈ {1}, f1 ∈ F1, J(f) ≤ ρ+B(0)+1, |b−b0 | ≤ r}.

Then Er is a closed, convex, and bounded set. By Theorem 4 of Tapia and

Thompson (1978, p.162), there exists a minimizer of D(f) in Er. Denote this

minimizer by fr = br + f̄r, with br ∈ {1} and f̄r ∈ F1. From (A.2) we have

J(fr) ≤ D(fr) + ρ ≤ D(b0) + ρ ≤ D(0) + ρ < B(0) + ρ + 1. (A.3)

Now if D(f) has no minimizer in F , then fr must be on the boundary of Er.

From (A.3) we must have |br − b0| = r. Because D is convex and D(fr) ≤ D(b0),

we have

D{[αbr+(1−α)b0]+αf̄r} = D(αfr+(1−α)b0) ≤ αD(fr)+(1−α)D(b0) ≤ D(b0),

(A.4)

for any 0 ≤ α ≤ 1. Now take a sequence ri → ∞ and set αi = 1/ri. Then

αif̄ri
→ 0 in F since J(αif̄ri

) = αiJ(f̄ri
) ≤ αi(ρ + B(0) + 1) → 0. Since

|[αibri
+(1−αi)b0]− b0| = αi|bri

− b0| = 1, there exists a convergent subsequence

of [αibri
+ (1 − αi)b0] converging to either b0 + 1 or b0 − 1. By looking at this

subsequence, we get that D(b0 + 1) ≤ D(b0) or D(b0 − 1) ≤ D(b0) from (A.4),

and that D is continuous in F . That is, L(b0 + 1) ≤ L(b0) or L(b0 − 1) ≤ L(b0).

This contradicts the uniqueness of the minimizer of L(η) over {1}. Therefore

D(f) has a minimizer in F .

Appendix 2. Proof of Representer Theorem

Proof of Theorem 2.2. For any f ∈ F , we can write f = b +
∑p

α=1 fα with

fα ∈ Fα. Let the projection of fα onto span{Rα(xi, ·), i = 1, . . . . , n} ⊂ Fα
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be denoted by gα, and its orthogonal complement by hα. Then fα = gα + hα,

and ‖fα‖
2 = ‖gα‖

2 + ‖hα‖
2, α = 1, . . . , p. Since the reproducing kernel of F is

R = 1 +
∑p

α=1 Rα, we have

f(xi) = 〈1 +

p
∑

α=1

Rα(xi, ·), b +

p
∑

α=1

(gα + hα)〉 = b +

p
∑

α=1

〈Rα(xi, ·), gα〉,

where 〈·, ·〉 is the inner product in F . Therefore (2.5) can be written as

1

n

n
∑

i=1

[

− l{yi, b +

p
∑

α=1

〈Rα(xi, ·), gα〉}
]

+ τ2
p

∑

α=1

(‖gα‖
2 + ‖hα‖

2)1/2.

Then any minimizer f satisfies hα = 0, α = 1, . . . , p, and the theorem is proved.

Proof of Lemma 2.1. Denote the functional in (2.5) by D(f), and the func-

tional in (2.6) by N(θ, f). For any θα ≥ 0, f ∈ F , we have λ0θ
−1
α ‖P αf‖2 +

λθα ≥ 2λ
1/2
0 λ1/2‖P αf‖ = τ2‖P αf‖, and equality holds if and only if θα =

λ
1/2
0 λ−1/2‖P αf‖. Therefore N(θ, f) ≥ D(f) for any θα ≥ 0, α = 1, . . . , p, and

f ∈ F , and the equality holds if and only if θα = λ
1/2
0 λ−1/2‖P αf‖, α = 1, . . . , p.

The conclusion follows.
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