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Abstract: Multiresolution tree-structured models are attractive when dealing with

large amounts of spatial data in environmental sciences. With the multiresolu-

tion tree structure, a change-of-resolution Kalman filter algorithm has been de-

vised to predict spatial processes in a computationally efficient manner (see, e.g.,

Huang and Cressie (1997) and Huang, Cressie and Gabrosek (2002)). In this ar-

ticle, we extend the multiresolution tree-structured model to account for multiple

response variables. Despite the increased model complexity, we derive the theo-

retical properties of statistical inference and develop direct and fast algorithms for

computation. For spatial process prediction, we develop a general theory of optimal

projection and generalize the existing change-of-resolution Kalman filter to accom-

modate singularity. For model parameter estimation, we consider a factorization of

the likelihood function to ensure computational efficiency. Moreover, under a fairly

mild condition, we derive the distributional properties of both maximum likelihood

estimates and restricted maximum likelihood estimates. We evaluate the theory

and methods developed here by a simulation study.

Key words and phrases: best linear unbiased predictor, change-of-resolution Kalman

filter, factorization of likelihood function.

1. Introduction

For a spatial random process {Z(s) : s ∈ D}, where D is a spatial domain

of interest in IR2, consider a measurement error model Z(s) = Y (s) + ε(s),

where {Y (s) : s ∈ D} denotes a latent process representing the underlying

truth and {ε(s) : s ∈ D} denotes independent measurement errors. Traditional

kriging predicts the latent process Y (·) using the best linear unbiased predic-

tor (BLUP), based on data Z(s1), . . . , Z(sn) at sampling locations s1, . . . , sn.

However, when the data size n becomes large, the kriging methods suffer from

slow computation because they involve operations of order O(n3). Multiresolu-

tion tree-structured models have been developed in recent years to overcome the

computational difficulties by imposing a multiresolution tree structure on the

latent process Y (·). The multiresolution tree-structured model was first pro-

posed by Chou, Willsky and Nikoukhah (1994). Huang and Cressie (1997),
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Huang, Cressie and Gabrosek (2002) and Zhu and Yue (2005) further devel-

oped the model to accommodate mass balance across resolutions and applied the

methodology to process spatial data, such as total column of ozone. The main

idea is to partition the spatial domain D into cells {Dj,k : k = 1, . . . , Nj , j =

1, . . . , J} in a nested fashion from coarser resolutions to finer resolutions, where

Nj is the number of cells on the jth resolution and J is the total number of

resolutions. Associated with each cell is a node and the nodes form a multireso-

lution tree structure by in-between-resolution directed edges from a parent node

in Dj,k on the jth resolution to its children nodes in Dch(j,k) on the (j + 1)th

resolution, where the cell Dch(j,k) is nested in the cell Dj,k. The latent process

Y (·) is aggregated within each cell to yj,k = |Dj,k|
−1
∫

Dj,k
Y (s)ds for the kth cell

on the jth resolution. Then the corresponding datum is zj,k = yj,k + εj,k where

εj,k is the corresponding measurement error. Coupled with the multiresolution

tree-structured model is a change-of-resolution Kalman filter algorithm for com-

puting the BLUP of y, which consists of a high-to-low-resolution filtering step

and a low-to-high-resolution smoothing step. In the high-to-low-resolution filter-

ing step, the optimal predictor of y is computed based on the data on the higher

resolutions whereas in the low-to-high-resolution smoothing step, the prediction

is based on all the data. Thus the algorithm involves operations of order O(n)

and is more attractive than kriging for processing large amounts of data.

Here we extend the multiresolution tree-structured spatial linear model (MT-

SLM) in Huang and Cressie (1997), Huang, Cressie and Gabrosek (2002) and

Zhu and Yue (2005) to account for multiple response variables. That is, we

consider a multivariate version of MTSLM, which we call multivariate mul-

tiresolution tree-structured spatial linear model (MMTSLM). There are sev-

eral challenges in extending the multiresolution tree-structured spatial linear

model from univariate to multivariate response variables. One difficulty is in

the change-of-resolution Kalman filter algorithm. For univariate multiresolution

tree-structured models, the change-of-resolution Kalman filter assumes nonsin-

gularity in the variance matrix involving y to ensure invertibility in the filtering

and smoothing steps. For multivariate multiresolution tree-structured models,

however, the variance matrix may be singular due to possible linear constraints

among the latent variables. Simple adjustment can be made to ensure nonsingu-

larity, but it is in general cumbersome to adjust the multivariate latent processes.

Thus an automatic and more elegant procedure is needed. The other difficulty

is in the statistical inference of the model parameters. In the literature, a pop-

ular parameter estimation is maximum likelihood (ML) using an EM algorithm

(Huang, Cressie and Gabrosek (2002) and Zhu and Yue (2005)). While the EM

algorithm is numerically stable, its rate of convergence can be very slow. Hence
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it is important to devise a computationally efficient algorithm for model parame-

ter estimation and statistical inference. In particular, Johannesson and Cressie

(2004) developed a fast and statistically efficient parameter estimation method,

which utilizes a certain specific model parameterization.

Here we propose novel approaches to address both these two concerns. For

spatial process prediction, we develop a general theory of optimal projection

and generalize the existing change-of-resolution Kalman filter to accommodate

singularity. The results are suitable not only for Gaussian processes, but also

general processes with finite second moments. For model parameter estimation,

we consider a factorization of the likelihood function to ensure fast computation.

Furthermore, we utilize statistical linear model theory to derive the distributional

properties of both ML and restricted maximum likelihood (REML) estimates,

which, to our knowledge, has not been explored before.

In Section 2, we describe the multivariate multiresolution tree-structured

spatial linear model (MMTSLM). We develop general optimal prediction theory

and a generalized change-of-resolution Kalman filter algorithm in Section 3. In

Section 4, we establish statistical inference via ML and REML and their dis-

tributional properties. In Section 5, we illustrate the theory and methods by a

simulation study.

2. Multivariate Multiresolution Tree-Structured Spatial Linear Model

2.1. Model specification and assumptions

For the m response variables at each node of a multiresolution tree structure,

we use a measurement error model:

zj,k = yj,k + εj,k, k = 1, . . . , Nj , j = 1, . . . , J, (1)

where zj,k = (zjk1, . . . , zjkm) is an m-dimensional row vector of the response

variables, yj,k = (yjk1, . . . , yjkm) is an m-dimensional row vector of the latent

processes, and εj,k = (εjk1, . . . , εjkm) is an m-dimensional row vector of the mea-

surement errors that captures exogenous variability independent of yj,k, for the

kth node on the jth resolution; k = 1, . . . , Nj, j = 1, . . . , J . We further assume

that the measurement errors {ε′j,k} are independent and follow a multivariate

normal distribution:

ε′j,k ∼ N(0m,Φj), k = 1, . . . , Nj , j = 1, . . . , J, (2)

with mean 0m = (0, . . . , 0)′ and variance matrix Φj = diag{φj1, . . . , φjm} where

φji > 0, i = 1, . . . ,m. For the latent process, we assume a linear regression mean

structure:

yj,k = x′
j,kβ + uj,k, k = 1, . . . , Nj , j = 1, . . . , J, (3)
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where xj,k ∈ IRp is a p-dimensional column vector of covariates for each re-

sponse variable of zj,k, β is a p×m matrix of regression coefficients and uj,k =

(ujk1, . . . , ujkm) is an m-dimensional row vector of the residual process. Further,

we assume that the tree structure is homogeneous such that within a given reso-

lution, the number of children for each node is the same. We model the residual

process {uj,k} by a multiresolution tree structure:

u′
1,k ∼ N(0m,Σ1), k = 1, . . . , N1,

uch(j,k) = 1nj
uj,k + ωch(j,k), k = 1, . . . , Nj , j = 1, . . . , J − 1, (4)

ω′
j,k ∼ N(0m,Σj), k = 1, . . . , Nj , j = 2, . . . , J,

where uch(j,k) ≡ [u′
ch(j,k,1), . . . ,u

′
ch(j,k,nj)

]′ is an nj ×m matrix that denotes the

nj children of uj,k, ch(j, k, i) is the ith child node of (j, k), 1nj
≡ (1, . . . , 1)′ and

ωch(j,k) ≡ [ω′
ch(j,k,1), . . . ,ω

′
ch(j,k,nj)

]′ is an nj×m matrix that denotes the nj error

terms of ch(j, k) and captures random fluctuations independent of uj,k. More

specifically, the child nodes of (j, k) are {(j + 1, (k − 1)nj + 1), . . . , (j + 1, (k −

1)nj + nj)} and hence the ith child node is ch(j, k, i) ≡ (j + 1, (k − 1)nj + i) for

i = 1, . . . , nj . Here Σ1 is an m×m variance matrix that captures the covariance

among the m residuals in u1,k and Σj is an m×m variance matrix that captures

the covariance among the m error terms in wj,k.

For generality, we assume a flexible correlation structure among the children

uch(j,k). Let u1 = [u′
1,1, . . . ,u

′
1,N1

]′ denote the collection of the residual process

on the coarsest resolution. Then we model u1 by an N1×m random matrix that

follows a normal distribution (see, e.g., Appendix C, Lauritzen (1996)):

u1 ∼ NN1×m(0N1×m,H1 ⊗Σ1), (5)

where 0N1×m is an N1 ×m matrix of zeros, H1 is an N1 ×N1 correlation matrix

that captures the correlation among the root nodes and ⊗ denotes the Kronecker

product. We further model the error term ωch(j,k) by an nj ×m random matrix

such that

ωch(j,k) ∼ Nnj×m(0nj×m,H j+1 ⊗Σj+1), k=1, . . . , Nj , j=1, . . . , J − 1, (6)

where Hj+1 is an nj ×nj correlation matrix that captures the correlation among

the child nodes ch(j, k).

2.2. Alternative model specification via vectorization

For notational convenience, we proceed to vectorize the individual scalar

nodes in the multiresolution tree structure. Let (0, 1) denote an imaginary

node on the imaginary 0th resolution, which has the N1 root nodes as its child
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nodes. Then N0 ≡ 1, n0 ≡ N1, and ch(0, 1) ≡ {(1, 1), . . . , (1, N1)}. For the

jth resolution, let the vector node {j, k} ≡ {(j, (k − 1)nj−1 + 1), . . . , (j, (k −

1)nj−1 + nj−1)} denote the group of nodes that share a common parent, where

k = 1, . . . , Nj−1, j = 1, . . . , J . In fact, the common parent of {j, k} is the scalar

node (j−1, k) on the (j−1)th resolution (i.e {j, k} ≡ ch(j−1, k)). We also define

the parent vector node of {j, k}, pa{j, k}, to be the vector node that contains

the scalar node (j − 1, k) (parent of {j, k}) on the (j − 1)th resolution. Since the

number of vector nodes on the jth resolution is the number of (scalar) parent

nodes on the (j− 1)th resolution (i.e., Nj−1), we have k = 1, . . . , Nj−1 for {j, k}.

Now, we define a vectorization operator → such that for an n×mmatrix A =

[aij], i = 1, . . . , n, j = 1, . . . ,m, vec(A) = ~A ≡ (a11, . . . , a1m, . . . , an1, . . . , anm)′.

That is A is vectorized by row to form an nm-dimensional column vector (see,

e.g., Chapter 16.2, Harville (1997)). Now let

Zj,k ≡ ~zch(j−1,k), Y j,k ≡ ~ych(j−1,k), U j,k ≡ ~uch(j−1,k),
(7)

W j,k ≡ ~ωch(j−1,k), ej,k ≡ ~εch(j−1,k), Xj,k ≡ xch(j−1,k) ⊗ Im,

denote the vector of response variables, the vector of the latent processes (original

and residual), the vector of the error terms, the vector of the measurement errors,

and the matrix of the covariates, all of which correspond to the vector node {j, k}.

By the fact that for matrices A, B and C,

vec(A + B) = ~A + ~B and vec(ABC ′) = (A ⊗ C)~B (8)

((B.5), Lauritzen (1996)), the MMTSLM can be rewritten in vector form as

follows. The measurement error model is

Zj,k =Y j,k+ej,k, ej,k ∼ N(0nj−1m, Inj−1
⊗Φj), k=1, . . . , Nj−1, j=1, . . . , J. (9)

The latent process model is

Y j,k = Xj,kB + U j,k, (10)

and the residual process model is

U1,1 ∼N(0n0m,H1 ⊗Σ1), (11)

U j,k = Aj,kUpa{j,k} + W j,k, W j,k ∼ N(0nj−1m,Hj ⊗Σj),

k = 1, . . . , Nj−1, j = 2, . . . , J, (12)

where B = ~β, Aj,k = Dj,k ⊗ Im and Dj,k is an nj−1 ×nj−2 matrix consisting of

1nj−1
in the ith column and 0nj−1

in the other columns if the scalar parent node

(j−1, k) is the ith node within the vector node pa{j, k}. Here W j,k are mutually
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independent and are independent of U pa{j,k}. Furthermore W j,k represents the
departure of U j,k from its parent U pa{j,k}.

2.3. Model properties

For the MMTSLM defined in (9)−(12), we now explore the mean, variance
and covariance structure of the variables in the model. For this purpose, we
denote the Nj−1 variables on a given jth resolution by Z j· ≡ (Z ′

j,1, . . . ,Z
′
j,Nj−1

)′,

Y j· ≡ (Y ′
j,1, . . . ,Y

′
j,Nj−1

)′, U j· ≡ (U ′
j,1, . . . ,U

′
j,Nj−1

)′ and W j· ≡ (W ′
j,1, . . .,

W ′
j,Nj−1

)′ for the response variables, the latent processes (original and residual),

and the error terms, respectively. Also let X j· ≡ [X ′
j,1, . . . ,X

′
j,Nj−1

]′ denote the
covariates on the jth resolution.

By (11) and (12), U j+1· = (INj
⊗ 1nj

⊗ Im)U j· + W j+1·, E(U j·) = 0Njm,
Var (U 1·) = H1 ⊗Σ1, and Var (U j+1·) = (INj

⊗1nj
⊗ Im)Var (U j·)(INj

⊗1nj
⊗

Im)′ + Var (W j+1·), where Var (W j+1·) = INj
⊗Hj+1 ⊗Σj+1; j = 1, . . . , J − 1.

A simplification of Var (U j·) gives

Var (U j·) = INj−1
⊗ Hj ⊗Σj + INj−2

⊗ Hj−1 ⊗ (1nj−1
1′

nj−1
) ⊗Σj−1

+ · · · + IN1
⊗ H2 ⊗ (1n2···nj−1

1′
n2···nj−1

) ⊗Σ2

+IN0
⊗ H1 ⊗ (1n1···nj−1

1′
n1···nj−1

) ⊗Σ1, j = 1, . . . , J. (13)

Further, Cov (U j·,U j′·) = Var (U j·)(INj
⊗1′

nj ···nj′−1
⊗ Im), 1 ≤ j < j′ ≤ J . The

mean, variance, and covariance f Y j· and Zj· follow directly.
The MMTSLM presented here is suitable for modeling observations that are

available at different resolutions, such as those that are collected from multiple
sources. However, in practice, there are usually only observations on one resolu-
tion, such as those that are collected from a single source. Here we focus on the
single-source case of MMTSLM, even though the MMTSLM is suitable for the
multi-source cases. We let θ ≡ (B ′,η′, ζ ′)′ denote the model parameters for the
MMTSLM, with the regression coefficients B, the parameters η for the among-
node correlation matrices {H j : j = 1, . . . , J}, and the parameters ζ for the
within-node variance matrices {Σj : j = 1, . . . , J}. To ensure identifiability, the
measurement error variance ΦJ is assumed to be known for the MMTSLM and
can oftentimes be estimated from external data (see, e.g., Zhu and Yue (2005)).
Note that when the measurement error variances increase, the predicted values
of {Y j,k} tend to be smoother; whereas when the measurement error variances
decrease, the predicted values of {Y j,k} tend to be closer to the original data.

2.4. Mass balance property

The mass-balance property introduced by Huang, Cressie and Gabrosek
(2002) and featured in Zhu and Yue (2005) can be readily included in the MMT-
SLM defined in (1)−(6) as a special case. A multiresolution tree structure is
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mass-balanced if the average of all the children’s values is equal to their parent’s

value. That is, n−1
j (1′

nj
ych(j,k)) = yj,k, where ych(j,k) ≡ [y′

ch(j,k,1), . . . ,y
′
ch(j,k,nj)

]′

is an nj ×m matrix that denotes the children processes of yj,k, j = 1, . . . , J − 1.

The mass-balance property ensures that the latent process is consistent when

aggregated across resolutions, which is a condition that most physical processes

satisfy. The following conditions are sufficient for an MMTSLM to have mass

balance:

n−1
j

(

1′
nj

uch(j,k)

)

= uj,k and n−1
j

(

1′
nj

xch(j,k)

)

= x′
j,k,

k = 1, . . . , Nj , j = 1, . . . , J − 1, (14)

where the rows of the matrix xch(j,k) ≡ [xch(j,k,1), . . . ,xch(j,k,nj)]
′ correspond to

the children covariates of xj,k. It follows from (4) and (14) that 1′
nj

ωch(j,k) = 0′
m.

If we assume that H j is compound symmetric, then we can obtain H1 = IN1

and Hj+1 = (nj/(nj − 1))(Inj
− 1nj

1′
nj
/nj), j = 1, . . . , J − 1, where IN1

is the

N1 ×N1 identity matrix. Further, we can simplify (13) to

Var (U j·)

=
nj−1

nj−1 − 1
INj

⊗Σj + INj−1
⊗ (1nj−1

1′
nj−1

) ⊗ (
nj−2

nj−2 − 1
Σj−1 −

1

nj−1 − 1
Σj)

+ · · · + IN2
⊗ (1n2···nj−1

1′
n2···nj−1

) ⊗ (
n1

n1 − 1
Σ2 −

1

n2 − 1
Σ3)

+IN1
⊗ (1n1···nj−1

1′
n1···nj−1

) ⊗ (Σ1 −
1

n1 − 1
Σ2), j = 1, . . . , J, (15)

and Cov (U j·,U j′·) = Var (U j·)(INj
⊗1′

nj ···nj′−1
⊗Im), 1 ≤ j < j′ ≤ J . When the

response variable is univariate with m = 1, (15) reduces to (9) of Zhu and Yue

(2005).

3. Generalized Change-of-Resolution Kalman Filter

In this section, we consider optimal prediction of the latent process in the

MMTSLM (9)−(12). First we consider prediction of the residual process U j,k.

It is well-known that the best linear unbiased predictor (BLUP) is the condi-

tional mean E(U j,k|Z) of the latent process U j,k given the observations Z. For

normal distributions, the BLUP is also the best unbiased predictor (see, e.g.,

Harvey (1989, Sec. 3.2.3)). Computing E(U j,k|Z) usually involves operations of

order O(n3) and can be computationally inefficient for large n. For a univariate

response variable, a change-of-resolution Kalman-filter algorithm has been de-

veloped to obtain the BLUP. It exploits the multiresolution tree structure and

involves operations of only order O(n) (see, e.g., Chou, Willsky and Nikoukhah
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(1994), Huang, Cressie and Gabrosek (2002) and Zhu and Yue (2005)). How-

ever, the existing BLUP theory and change-of-resolution Kalman-filter algorithm

for univariate MTSLM assume that any variance matrix involved is nonsingular

and thus invertible. For MMTSLM, however, a variance matrix can be singular,

and for a normal distribution it is said to be singular normal (see, e.g., Searl

(1997, Chap. 2.7)). An example would be when the m latent variables in U j,k

are subject to linear constraints. One approach to deal with the singular nor-

mal problem is to reduce the dimension of the residual process by transforming

the residual process to a new variable that has a nonsingular variance (see, e.g.,

Appendix D, Luettgen (1993)). The dimension-reduction approach can be cum-

bersome in the case of multiple response variables, because different problems

may require different ways of reducing the dimension. Thus it is unclear how to

extend the BLUP theory and the change-of-resolution Kalman-filter algorithm

from univariate MTSLM to MMTSLM. Here we develop a general theory of op-

timal prediction, based on which we derive a generalized change-of-resolution

Kalman-filter algorithm. Our approach bears similarity to Luettgen (1993) and

Luettgen and Willsky (1995), who also allow for singular variance matrices, but

our approach is more general because we allow for multiple response variables,

flexible mean and variance structures, and missing observations. Further, our

derivation of the change-of-resolution Kalman-filter algorithm is based on gen-

eral theory of optimal prediction and does not assume normal distributions, which

can be of independent interest in the Kalman filter literature. Related work in-

cludes Jørgensen, Lundbye-Christensen, Song and Sun (1999), which considered

optimal prediction theory for longitudinal data.

3.1. General optimal prediction theory

Following the notation in Chapter 2 of Brockwell and Davis (1991), we con-

sider the space L2(Ω,F , P ), which is the collection of random variables defined

on a probability space (Ω,F , P ) with finite second moments. Here we abbreviate

L2(Ω,F , P ) to L2. For y1, y2, y ∈ L2, define an inner product 〈y1, y2〉 ≡ E(y1y2)

and a norm (or distance) as ‖y‖ ≡ 〈y, y1/2〉 =
√

E(y2). Equipped with this

inner product, L2 is a real Hilbert space (Brockwell and Davis (1991, Example

2.2.2)). For z1, . . . , zn ∈ L2, define a closed subspace of L2 as sp{1, z1, . . . , zn} ≡

{µ + β1z1 + · · · + βnzn : µ ∈ IR, βi ∈ IR, i = 1, . . . , n}. For y ∈ L2, the

optimal linear predictor of y in term of {zi ∈ L2 : i = 1, . . . , n} is defined as

the element in sp{1, z1, . . . , zn} that has the smallest distance from y. Theorem

2.3.3 of Brockwell and Davis (1991) establishes the existence and uniqueness of

the optimal linear predictor. Now, we extend the definition of optimal linear

predictor to multivariate random vector Y = (y1, . . . , ym)′. We define the space

L2
m as the collection of m-dimensional random vectors whose elements belong to
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L2. For Y 1,Y 2,Y ∈ L2
m, define an inner product as 〈Y 1,Y 2〉 ≡ E(Y ′

1Y 2) and a

norm (or distance) as ‖Y ‖ ≡ 〈Y ,Y 12〉 =
√

E(Y ′Y ). It follows that L2
m is also a

real Hilbert space. For Z = (z1, . . . , zn)′ ∈ L2
n, define a closed subspace sp{Z}m

of L2
m as the collection of m-dimensional random vectors whose elements belong

to sp{1, z1, . . . , zn}. Then the optimal linear predictor of Y given Z is defined

as the element in sp{Z}m that has the smallest distance from Y . Adopting no-

tation from Jørgensen, Lundbye-Christensen, Song and Sun (1999), we denote

the optimal linear predictor of Y given Z and the corresponding mean-squared

prediction error (MSPE) as Y |Z ∼ [mY |Z ,CY |Z ], where mY |Z denotes the op-

timal linear predictor of Y given Z and CY |Z ≡ E[(Y − mY |Z)(Y − mY |Z)′] =

Var (Y −mY |Z) denotes the corresponding MSPE. For ease of notation, we some-

times write m(Y |Z) ≡ mY |Z and C(Y |Z) ≡ CY |Z .

For Y ∈ L2
m, we use Y ∼ [µY ,ΣY Y ] to denote that the mean of Y is µY

and the variance is ΣY Y . For
(Y
Z

)

∼

[

(µY
µZ

)

,

(

ΣY Y ΣY Z

ΣZY ΣZZ

)]

, we establish the

following results about optimal linear prediction.

Theorem 1. For Y = (y1, . . . , ym)′ ∈ L2
m and Z = (z1, . . . , zn)′ ∈ L2

n, the

optimal linear predictor of Y given Z exists and is unique with E(mY |Z) = µY

and Cov (Z,Y − mY |Z) = 0n×m.

Theorem 2. For Y = (y1, . . . , ym)′ ∈ L2
m and Z = (z1, . . . , zn)′ ∈ L2

n,

the optimal linear predictor Y |Z ∼ [mY |Z ,CY |Z ] is given by mY |Z = µY +

ΣY ZΣ+
ZZ(Z − µZ) and CY |Z = ΣY Y −ΣY ZΣ+

ZZΣZY where Σ+
ZZ is the unique

Moore-Penrose pseudo inverse of ΣZZ. If Y and Z have normal distributions,

then mY |Z = E(Y |Z) and CY |Z = Var (Y |Z).

The proof of Theorems 1 and 2 are given in Appendix I. Theorem 1 es-

tablishes the existence and uniqueness of the optimal linear predictor whereas

Theorem 2 gives the explicit forms of the optimal linear predictor and the cor-

responding MSPE. Although we restrict our attention to random variables with

finite second moments, the variance matrix does not need to be nonsingular. Fur-

ther, the results apply to but are not restricted to the case of normal distributions.

Finally the theorems provide us with an elegant way of deriving a generalized

change-of-resolution Kalman filter algorithm when the variance matrices are not

necessarily nonsingular.

3.2. Generalized change-of-resolution Kalman filter

Using Theorems 1 and 2, we derive here a generalized change-of-resolution

Kalman filter algorithm based on the MMTSLM (9)−(12), which provides an ef-

ficient way of computing the optimal linear predictor {Û j,k : k = 1, . . . , Nj−1, j =

1, . . . , J} and involves two steps: a high-to-low-resolution filtering step followed
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by a low-to-high-resolution smoothing step. In the filtering step, the algorithm

moves from finer resolutions to coarser resolutions, recursively computing the

optimal predictor of the latent process based on the data on relevant higher res-

olutions. Once the coarsest resolution is reached, the algorithm goes back from

coarser resolutions to finer resolutions, recursively computing the optimal pre-

dictor of U j,k on each resolution based on all the data. In the final step of the

recursion, the optimal prediction of {U j,k}, given all the data, is achieved.

Denote {j ′, k′} ≺ {j, k} if {j ′, k′} is a descendant vector node of {j, k} and

let γj,k ≡ I{Zj,k is observed} denote whether all the observations at {j, k} are

observed. In the high-to-low-resolution filtering step, we start with the finest

resolution J and compute, for k = 1, . . . , NJ−1;

ÛJ,k|J,k ≡ m(UJ,k|Zde{J,k})=γJ,kV J,k(V J,k+InJ−1
⊗ΦJ)−1(ZJ,k−XJ,kB),(16)

V̂ J,k|J,k ≡ C(UJ,k|Zde{J,k})=V J,k − γJ,kV J,k(V J,k+InJ−1
⊗ΦJ)−1V J,k, (17)

where Zde{J,k}≡{γJ,kZJ,k}, and V J,k≡Var (UJ,k)=(1nJ−1
1′

nJ−1
) ⊗ (

∑J−1
j′=1 Σj′)

+HJ ⊗ ΣJ can be obtained from Var (U J ·) in (13). As we move from the

resolution j = J − 1 to the coarsest resolution j = 1, we compute, for a given

vector node {j, k},

Û j,k|ch{j,k,i} ≡ m(U j,k|Zde{ch{j,k,i}}) = Bch{j,k,i}Û ch{j,k,i}|ch{j,k,i}, (18)

V̂ j,k|ch{j,k,i} ≡ C(U j,k|Zde{ch{j,k,i}})

= Bch{j,k,i}V̂ ch{j,k,i}|ch{j,k,i}B
′
ch{j,k,i} + Rch{j,k,i}, (19)

where Zde{j,k} ≡ {Zj′,k′ : γj′,k′ = 1, {j′, k′} ≺ {j, k}} denotes the descendants

of Zj,k including Zj,k, ch{j, k, i} denotes the ith vector child node of {j, k},

Bch{j,k,i} ≡ V j,kA
′
ch{j,k,i}V

+
ch{j,k,i}, Rch{j,k,i} ≡ V j,k − V j,kA

′
ch{j,k,i}V

+
ch{j,k,i}

Ach{j,k,i}V j,k, i = 1, . . . , nj−1, and + denotes the Moore-Penrose pseudo inverse.

Here V j,k ≡ Var (U j,k) = (1nj−1
1′

nj−1
)⊗ (

∑j−1
j′=1 Σj′)+Hj ⊗Σj and V ch{j,k,i} ≡

Var (U ch{j,k,i}) = (1nj
1′

nj
) ⊗ (

∑j
j′=1 Σj′) + Hj+1 ⊗ Σj+1 can be obtained from

Var (U j·) and Var (U j+1·) as defined in (13). Further,

Û
∗
j,k|j,k ≡ m(U j,k|Z

∗
de{j,k}) = V̂

∗
j,k|j,k

(nj−1
∑

i=1

V̂
+
j,k|ch{j,k,i}Û j,k|ch{j,k,i}

)

, (20)

V̂
∗
j,k|j,k ≡ C(U j,k|Z

∗
de{j,k}) =

{

V +
j,k +

nj−1
∑

i=1

(V̂
+
j,k|ch{j,k,i} − V +

j,k)

}+

, (21)
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Û j,k|j,k ≡ m(U j,k|Zde{j,k})

= V̂ j,k|j,k

{

γj,k(Inj−1
⊗Φ−1

j )(Zj,k − Xj,kB) + (V̂
∗
j,k|j,k)

+Û
∗
j,k|j,k

}

, (22)

V̂ j,k|j,k ≡ C(U j,k|Zde{j,k})

= V̂
∗
j,k|j,k − γj,kV̂

∗
j,k|j,k(V̂

∗
j,k|j,k + Inj−1

⊗Φj)
−1V̂

∗
j,k|j,k, (23)

where Z∗
de{j,k} ≡ {Zj′,k′ : γj′,k′ = 1, {j′, k′} ≺ {j, k}, {j ′ , k′} 6= {j, k}} denotes

the descendants of Zj,k not including Zj,k. At the end of the filtering step, the

root vector node is reached and hence the BLUP for {1, 1} is

Û1,1 ≡ m(U 1,1|Z) = Û1,1|1,1, V̂ 1,1 ≡ C(U 1,1|Z) = V̂ 1,1|1,1, (24)

where Z ≡ {Zj,k : γj,k = 1, k = 1, . . . , Nj−1, j = 1, . . . , J} consists of all the

observations.

In the low-to-high-resolution smoothing step, we move from the coarsest

resolution j = 2 to the finest resolution j = J and compute for a given node

{j, k}, where k = 1, . . . , Nj−1,

Û j,k ≡ m(U j,k|Z) = Û j,k|j,k + J j,k(Ûpa{j,k} − Ûpa{j,k}|j,k), (25)

V̂ j,k ≡ C(U j,k|Z) = V̂ j,k|j,k + J j,k(V̂ pa{j,k} − V̂ pa{j,k}|j,k)J
′
j,k, (26)

where J j,k ≡ V̂ j,k|j,kB
′
j,kV̂

+
pa{j,k}|j,k and Bj,k ≡ V pa{j,k}A

′
j,kV

+
j,k.

In Appendix II, we prove (16)−(26) using Theorems 1 and 2.

3.3. Optimal Prediction of {Y j,k}

The optimal prediction of the latent processes {Y j,k} is achieved in two

steps. First we assume that the model parameters θ = (B ′,η′, ζ ′)′ are known

and combine the regression mean and the predicted residual process {Û j,k}:

mYj,k |Z; θ = Xj,kB+m(U j,k|Z; θ). Then we plug B̂ into the formula mYj,k|Z; θ

to obtain the predictor

Ŷ j,k = mYj,k|Z; B̂,η,ζ = Xj,kB̂ + mUj,k|Z; B̂,η,ζ , (27)

where B̂ ≡ [X ′Var (Z)−1X ]−1[X ′Var (Z)−1Z] is the generalized least squares

(GLS) estimate of B. By arguments similar to Harville (1985), the predictor

Ŷ j,k is the BLUP. The MSPE of the elements in Ŷ j,k can be obtained from the

diagonal elements of the matrix

C(U j,k|Z) + (Xj,k − V j,k,·,·DX) Var (B̂)(Xj,k − V j,k,·,·DX)′, (28)

where V j,k,·,· ≡ Cov (U j,k,Z), D ≡ (Var (Z))−1, and X ≡ [X ′
j,k : γj,k = 1]′.

Finally we plug the estimates of η̂, ζ̂ into (27)−(28) to obtain the empirical BLUP
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and the corresponding empirical MSPE. To compute the MSPE’s (28) efficiently,

we propose an algorithm based on the generalized change-of-resolution Kalman

filter as follows. First, we compute C(U j,k|Z) = V̂ j,k by the generalized change-

of-resolution Kalman filter. Then we obtain Var (B̂) using (34), to be shown in

Section 4. To compute (X j,k − V j,k,·,·DX), it suffices to compute V j,k,·,·DX

efficiently. We treat, for the moment, the covariates in X as observations and

process them using the generalized change-of-resolution Kalman filter. More

specifically, let X = [X (1), . . . ,X(pm)], where X(i) is the ith column of X. For

i = 1, . . . , pm, we assume

(

U j,k

X(i)

)

∼

[

(

0nj−1m

0N

)

,

(

V j,k V j,k,·,·

V ′
j,k,·,· V + Φ

)

]

,

where N ≡ m
∑

j,k γj,knj−1 is the dimension of Z, V ≡ Var (U), Φ ≡ Var (e),

U ≡ (U ′
j,k : γj,k = 1)′, e ≡ (e′

j,k : γj,k = 1)′. Since m(U j,k|X
(i)) = V j,k,·,·DX(i),

we can use the generalized change-of-resolution Kalman filter to compute

m(U j,k|X
(i)) as we do with m(U j,k|Z). Thus V j,k,·,·DX = [m(U j,k|X

(1)), . . .,

m(U j,k|X
(pm))] and the operations remain of order O(n). A similar approach

can be taken to compute the covariance of the BLUPs using an operation of order

O(n) (see Yue and Zhu (2005) for details).

4. Model Parameter Estimation and Inference

Here we consider both maximum likelihood (ML) and restricted maximum

likelihood (REML) estimation of the parameters in the MMTSLM (9)−(12). Let

Z ≡ (Z ′
j,k : γj,k = 1)′, X ≡ [X ′

j,k : γj,k = 1]′, U ≡ (U ′
j,k : γj,k = 1)′, and

e ≡ (e′
j,k : γj,k = 1)′ denote the vectorized observations, covariates, underlying

residual process, and measurement errors, respectively, and let V ≡ Var (U),Φ ≡

Var (e). Then Z ∼ N(XB,V + Φ), with log-likelihood function

logL(θ)=−
N

2
log(2π)−

1

2
log |V +Φ|−

1

2
(Z−XB)′(V +Φ)−1(Z−XB), (29)

where θ = (B′,η′, ζ ′)′ is the vector of model parameters, N = m
∑

j,k γj,knj−1

is the dimension of Z, and V + Φ is invertible by Lemma 3 (ii) in Appendix II.

The restricted log-likelihood function of Z is

logL∗(η, ζ) = −
N − pm

2
log(2π) +

1

2
log |X ′X| −

1

2
log |V + Φ|

−
1

2
log |X ′(V + Φ)−1X|

−
1

2
(Z − XB̂)′(V + Φ)−1(Z − XB̂), (30)
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where B̂ = [X ′(V +Φ)−1X]−1X ′(V +Φ)−1Z is the ML estimates (MLE) of B

(see, e.g., Smyth and Verbyla (1996)). Recall that REML estimates (REMLE)
of the variance parameters (η′, ζ ′)′ use a marginal likelihood function that does
not depend on the mean parameters B. Moreover, REMLEs and MLEs are
asymptotically equivalent under mild conditions (see, e.g., Richardson and Welsh
(1994)).

Direct computation of both the MLEs and the REMLEs may not be feasible
for a large data size. In Huang, Cressie and Gabrosek (2002) and Zhu and Yue
(2005), statistical inference is based on ML only, and the MLEs are obtained
using an EM algorithm where the latent process is treated as observable but
missing. While the EM algorithm is numerically stable, it often requires a large
number of iterations before convergence is achieved. Here we propose a direct
algorithm, which is of Newton-Raphson type and involves factorization of the
likelihood function according to an ordering of the nodes in the multiresolution
tree structure. Further, we consider the distributional properties of MLEs and
REMLEs, which have not been addressed before.

4.1. Factorization and fast evaluation of the likelihood function

We order the NZ ≡
∑

γj,k vector nodes on the multiresolution tree structure
and let Z = (Z ′

1, . . . ,Z
′
NZ

)′ denote the response variables, where Z i is the vec-
torized observation corresponding to the ith vector node according to a particular
ordering. Then the likelihood function can be factorized to

L(θ) = f(Z1|θ)

NZ
∏

l=2

f(Zl|Z l−1, . . . ,Z1;θ),

where f(Z l|Z l−1, . . . ,Z1;θ) is the conditional probability density function of Z l

given Z l−1, . . . ,Z1, and θ, l = 2, . . . , NZ . For normal distribution, to evaluate
L, it suffices to determine the conditional mean E(Z l|Z l−1, . . . ,Z1;θ) and con-
ditional variance Var (Z l|Zl−1, . . . ,Z1;θ), l = 2, . . . , NZ . More specifically, we
define a function s : {j, k} 7→ s(j, k) where s(j, k) is the order of vector node {j, k}
and Zs

j,k ≡ {Zj′,k′ : γj′,k′ = 1, s(j′, k′) < s(j, k)}. There are different ways of
ordering the vector nodes so that an algorithm similar to the generalized change-
of-resolution Kalman filter in Section 3 can be devised. Here we use an ordering
developed by Luettgen (1993). Using the corresponding change-of-resolution
Kalman filter algorithm (see Yue and Zhu (2005) for details), we can obtain the
BLUP Û s

j,k ≡ m(U j,k|Z
s
j,k) and the corresponding MSPE V̂

s
j,k ≡ C(U j,k|Z

s
j,k),

k = 1, . . . , Nj−1, j = 1, . . . , J . Thus the conditional mean and conditional vari-
ance are

Ẑj,k ≡ E(Zj,k|Z
s
j,k) = m(Zj,k|Z

s
j,k) = Xj,kB + Û

s
j,k,

Λj,k ≡ Var (Zj,k|Z
s
j,k) = C(Zj,k|Z

s
j,k) = V̂

s
j,k + Inj−1

⊗Φj ,
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and the log-likelihood function can be factorized into

logL(θ) = −
N

2
log(2π) −

1

2

∑

γj,k=1

log |Λj,k|

−
1

2

∑

γj,k=1

(Zj,k − Xj,kB − Û
s
j,k)

′Λ−1
j,k(Zj,k − Xj,kB − Û

s
j,k), (31)

where Λj,k is invertible because of Lemma 3 (ii) in Appendix II. To compute the

restricted log-likelihood logL∗(η, ζ), we utilize the property that Λj,k and Û
s
j,k

do not depend on B. It is straightforward to show that,

logL∗(η, ζ) = −
1

2
(N − pm) log(2π) +

1

2
log |

∑

γj,k=1

X ′
j,kXj,k| −

1

2

∑

γj,k=1

log |Λj,k|

−
1

2
log |

∑

γj,k=1

X ′
j,kΛ

−1
j,kXj,k|

−
1

2

∑

γj,k=1

{

(Zj,k−Xj,kB̂−Û
s
j,k)

′Λ−1
j,k(Zj,k−Xj,kB̂−Û

s
j,k)
}

, (32)

where

B̂ =
[

∑

γj,k=1

X ′
j,kΛ

−1
j,kXj,k

]−1[ ∑

γj,k=1

X ′
j,kΛ

−1
j,kZj,k

]

. (33)

Moreover, we obtain

Var (B̂) =
[

X ′(V + Φ)−1X
]−1

=
[

∑

γj,k=1

X ′
j,kΛ

−1
j,kXj,k

]−1
. (34)

The factorization of the likelihood functions ensures a fast computation of the

log-likelihood and the restricted log-likelihood function. Thus we can obtain the

ML and REML estimators using numerical maximization. The variances of the

MLEs are approximated by the inverse of the observed information matrix I(θ) ≡

−∂2 logL(θ)/∂θ∂θ′ evaluated at the MLEs. For B, we use ∂2 logL(θ)/∂B∂B′ =

−
∑

γj,k=1{X
′
j,kΛ

−1
j,kXj,k} and, for the other elements of I(θ), we use numerical

differentiation. Similarly the variances of the REMLEs are approximated by the

inverse of I∗(θ) ≡ −∂2 logL∗(η, ζ)/∂(η ′, ζ ′)′∂(η, ζ) evaluated at the REMLEs.

4.2. Analytical results

For analytical results, we restrict our attention to single-source data without

any missing values. Thus the MMTSLM is Z = XB + U + e, where Z =

(Z ′
J,1, . . . ,Z

′
J,NJ−1

)′, U = (U ′
J,1, . . . ,U

′
J,NJ−1

)′, e = (e′
J,1, . . . , e

′
J,NJ−1

)′, X =
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[X ′
J,1, . . . ,X

′
J,NJ−1

]′ and B = ~β correspond to the response variables, the residual
process, the measurement errors, the covariates, and the regression coefficients,
respectively. That is, Z ∼ N(XB,Ω), where Ω ≡ V + Φ, V ≡ Var (U), Φ ≡
Var (e) = INJ

⊗ΦJ , and ΦJ is a full rankm×m diagonal matrix which is assumed
to be known or estimated from external data (see, e.g., Zhu and Yue (2005)).
Further, we restrict our attention to the case where Ω can be decomposed as

Ω =
J
∑

j=1

aj(Aj ⊗Ψj), (35)

where aj ≡ NJ/Nj = nj · · ·nJ−1, j = 0, . . . , J − 1, aJ ≡ 1, Aj ≡ [INj
⊗

(1aj
1′

aj
)]/aj is an NJ × NJ matrix with j = 0, . . . , J and Ψj is an m × m

semi-positive definite matrix with j = 1, . . . , J . Define

Dj ≡
J
∑

k=j

akΨk, j = 1, . . . , J.

Here we assume that Ω and Dj are invertible. For example, we consider two
special cases of (35). One case involves independence among the child nodes.
From (13) and Hj = Inj−1

, j = 1, . . . , J , we have Ω ≡ Var (Z) =
∑J

j=1 aj(Aj ⊗
Ψj), where Ψj = Σj , j = 1, . . . , J − 1 and ΨJ = ΣJ + ΦJ . The other case
involves mass balance. From (15), we have Ω ≡ Var (Z) =

∑J
j=1 aj(Aj ⊗ Ψj),

where Ψ1 = Σ1−(1/(n1 − 1))Σ2, Ψj = (nj−1/(nj−1 − 1))Σj−(1/(nj − 1))Σj+1,
j = 2, . . . , J − 1, and ΨJ = (nJ−1/(nJ−1 − 1))ΣJ + ΦJ .

We define the following m×m matrices of sum of squares

SS0(β) ≡ (z − xβ)′A0(z − xβ), (36)

SSj(β) ≡ (z − xβ)′[Aj − Aj−1](z − xβ), j = 1, . . . J, (37)

SST (β) ≡ (z − xβ)′AJ(z − xβ) = (z − xβ)′(z − xβ) =

J
∑

j=0

SSj(β), (38)

where, for ease of presentation, z = [z ′
J,1, . . . , z

′
J,NJ

]′, x = [xJ,1, . . . ,xJ,NJ
]′,

u = [u′
J,1, . . . ,u

′
J,NJ

]′, and ε = [ε′J,1, . . . , ε
′
J,NJ

]′ are written in matrix forms
based on the scalar nodes corresponding to the response variables, the covariates,
the residual process, and the measurement errors, respectively. It follows that
z = xβ + u + ε and Z = ~z, U = ~u, e = ~ε, X = x ⊗ Im, and B = ~β. Hence
from (29) and Lemmas 8 and 9 in Appendix III, we have

logL(θ) = −
NJm

2
log(2π) −

1

2

[

N1 log |D1| +

J
∑

j=2

(Nj −Nj−1) log |Dj |
]

−
1

2

[

tr[SS0(β)D−1
1 ] +

J
∑

j=1

tr[SSj(β)D−1
j ]
]

. (39)
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Similarly, from (30) and Lemmas 8 and 9 in Appendix III, we have

logL∗(η, ζ) = −
(NJ − p)m

2
log(2π) +

1

2
log |X ′X|

−
1

2

[

N1 log |D1| +

J
∑

j=2

(Nj −Nj−1) log |Dj|
]

−
1

2
log |X ′Ω−1X|

−
1

2

[

J
∑

j=1

tr[SSj(β̂)D−1
j ] + tr[SS0(β̂)D−1

1 ]
]

, (40)

where β̂ is obtained from vec(β̂) = B̂ = [X ′Ω−1X]−1[X ′Ω−1Z].

To obtain the MLEs and REMLEs, we differentiate the components of (39)

and (40) with respect to the parameters. Using Lemmas 10 (ii), 11 and 12 in

Appendix III, we differentiate logL(θ) in (29) with respect to B, and differentiate

logL(θ) in (39) and logL∗(η, ζ) in (40) with respect to D−1
j , j = 1, . . . , J , such

that

b ≡
∂ logL(θ)

∂B
= X ′Ω−1Z − X ′Ω−1XB, (41)

M j ≡
∂ logL(θ)

∂D−1
j

=







N1

2 D′
1 −

1
2 (SS1(β) + SS0(β))′ if j = 1,

Nj−Nj−1

2 D′
j −

1
2SSj(β)′ if j = 2, . . . , J ,

(42)

M ∗
j ≡

∂ logL∗(η, ζ)

∂D−1
j

=











N1

2 D′
1 −

1
2

[

tr[P (A1 ⊗ Qhi)]
]

hi
− 1

2(SS1(β̂) + SS0(β̂))′ if j = 1,

Nj−Nj−1

2 D′
j−

1
2

[

tr[P ((Aj−Aj−1) ⊗ Qhi)]
]

hi
− 1

2SSj(β̂)′ if j=2, . . . , J ,
(43)

where we use [g(h, i)]hi to denote a matrix whose (h, i)th element is g(h, i), P ≡

X
[

X ′Ω−1X
]−1

X ′, and Qhi is an m×m matrix with 1 for the (h, i)th element

and 0 otherwise. For an element θi ∈ (η′, ζ ′)′, by Lemma 10 (vi) in Appendix III

the score functions are

∂ logL(θ)

∂θi
= tr

[

(∂ logL(θ)

∂D−1
j

)′(∂D−1
j

∂θi

)

]

, (44)

∂ logL∗(η, ζ)

∂θi
= tr

[

(∂ logL∗(η, ζ)

∂D−1
j

)′(∂D−1
j

∂θi

)

]

. (45)

Theorem 3. For the MMTSLM (9)−(12), under (35), the score functions in
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(41), (44) and (45) are unbiased. That is,

E

(

∂ logL(θ)

∂B

)

= 0pm, E

(

∂ logL(θ)

∂θi

)

= 0, E

(

∂logL∗(η, ζ)

∂θi

)

= 0

for θi ∈ (η′, ζ ′)′. (46)

It is obvious that E(b) = 0pm. Lemma 13 given in Appendix III shows that

E(M j) = 0m×m and E(M ∗
j ) = 0m×m for j = 1, . . . , J . Thus Theorem 3 follows

from (44) and (45).

4.3. Special cases

Here we derive the explicit forms of MLEs and REMLEs when x = 1NJ
,

X = 1NJ
⊗Im, β = (µ1, . . . , µm) and B = (µ1, . . . , µm)′. That is, the MMTSLM

only has intercepts in the regression mean. Let â denote the MLE of a and ã

denote the REMLE of a. By (41)−(43) and Lemma 14 in Appendix III, we

obtain the estimates of β and D along with their expectations and variances,

β̂ = 1
NJ

1′
NJ

z, E(β̂) = β,

Var (β̂
′
) = [X ′Ω−1X]−1 = D1

NJ
,

D̂1 = 1
N1
SS1(β̂), E(D̂1) = N1−1

N1
D1,

Var (D̂1hi) = N1−1
N2

1

(D2
1hi + D1hhD1ii),

D̂j = 1
Nj−Nj−1SSj(β̂), E(D̂j) = Dj ,

Var (D̂jhi) = 1
Nj−Nj−1(D2

jhi + DjhhDjii), j = 2, . . . , J,

D̃j = 1
Nj−Nj−1

SSj(β̂) E(D̃j) = Dj ,

Var (D̃jhi) = 1
Nj−Nj−1(D2

jhi + DjhhDjii), j = 1, . . . , J,

(47)

where we note that D̂j = D̃j for j = 2, . . . , J , and Djhi is the (h, i)th element

of Dj, j = 1, . . . , J, h, i = 1, . . . ,m. That is, the estimates of β and Dj are all

unbiased except for the MLEs D̂1 on the coarsest resolution. Furthermore, we

obtain the exact distributions of the sums of squares SSj(·) as follows.

Theorem 4. For the MMTSLM (9)−(12) that has a constant mean for each

response variable, under (35), SS0(β̂) = 0m×m, SSj(β̂) ∼ Wm(Nj −Nj−1,Dj),

j = 1, . . . , J , where Wm(Nj −Nj−1,Dj) denotes an m-dimensional Wishart dis-

tribution with Nj − Nj−1 degrees of freedom and parameter Dj. Furthermore,

{SSj(β̂) : j = 1, . . . , J} are mutually independent and are independent of β̂.

The Wishart distribution is defined as in C.9 of Lauritzen (1996). The proof

of Theorem 4 is given in Lemma 15 of Appendix III. The results give the exact
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distributions of the sums of squares SSj(·), which are the building blocks for

Dj. The independence among these sums of squares is also a nice feature, and

facilitates the computation of variances in many cases. Even though the results

here are specifically for the MMTSLM, the techniques used for derivation could be

of interest in the linear model theory literature. For example, Rao and Heckler

(1998) showed analytical results for a multivariate one-way random effects model,

which can be viewed as a special case of MMTSLM with J = 2 resolutions.

4.3.1. Compound symmetry

When the matrices Ψj, j = 1, . . . , J , are further parameterized, more explicit

forms of the MLEs and REMLEs may be available. Here we consider the case

where Ψj has a compound symmetry structure with diagonal elements ψj1 and

off-diagonal elements ψj2, j = 1, . . . , J . Thus the m × m matrix Dj also has

a compound symmetry structure with diagonal elements dj1 and off-diagonal

element dj2, where dj1 =
∑J

k=j akψk1 and dj2 =
∑J

k=j akψk2, j = 1, . . . , J .

Equivalently, Dj = (dj1 − dj2)Im + dj21m1′
m, where j = 1, . . . , J . It is easy

to verify that D−1
j = (1/(dj1 − dj2))(Im − (dj2/(dj1 + (m− 1)dj2))1m1′

m) has

a compound symmetry structure with diagonal elements d∗j1 = 1/dj1 − dj2 −

dj2/(dj1 + (m− 1)dj2) and off-diagonal elements d∗j2 = −dj2/(dj1 + (m− 1)dj2),

j = 1, . . . , J . We have obtained ∂ logL(θ)/∂D−1
j and ∂ logL∗(η, ζ)/∂D−1

j in

(42)−(43). Now we compute ∂D−1
j /∂θi. Using (44)−(45), ∂D−1

j /∂d∗j1 = Im,

and ∂D−1
j /∂d∗j2 = 1m1′

m − Im, we obtain the MLE and REMLE of dj1, dj2:

d̂j1 =







1
N1m tr[SS1(β̂)] if j = 1,

1
(Nj−Nj−1)m tr[SSj(β̂)] if j = 2, . . . , J ,

(48)

d̂j2 =







1
N1m(m−1) tr[SS1(β̂)(1m1′

m − Im)] if j = 1,

1
(Nj−Nj−1)m(m−1) tr[SSj(β̂)(1m1′

m − Im)] if j = 2, . . . , J ,
(49)

d̃j1 =
1

(Nj −Nj−1)m
tr[SSj(β̂)] if j = 1, . . . , J , (50)

d̃j2 =
1

(Nj −Nj−1)m(m− 1)
tr[SSj(β̂)(1m1′

m − Im)] if j = 1, . . . , J , (51)

where we note that d̂ji = d̃ji for j = 2, . . . , J , i = 1, 2.

Using Lemmas 5 (vii), 15 (iii) and (v), and 16 in Appendix III, for j =
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1, . . . , J ,

E(tr[SSj(β̂)]) = (Nj −Nj−1)mdj1,

Var (tr[SSj(β̂)]) = 2(Nj −Nj−1)m(d2
j1 + (m− 1)d2

j2),

E(tr[SSj(β̂)](1m1′
m − Im)) = (Nj −Nj−1)m(m− 1)dj2,

Var (tr[SSj(β̂)](1m1′
m − Im)] = 2(Nj −Nj−1)m(m− 1)

×
[

d2
j1 + 2(m− 2)dj1dj2 + (m2 − 3m+ 3)d2

j2

]

.

Then the expectation and variance of the MLE and REMLE of dj1, dj2 are

E(d̂11) = N1−1
N1

d11, Var (d̂11) = 2(N1−1)
N2

1
m

(d2
11 + (m− 1)d2

12),

E(d̂j1) = dj1,

Var (d̂j1) = 2
(Nj−Nj−1)m(d2

j1 + (m− 1)d2
j2), j = 2, . . . , J,

E(d̂12) = N1−1
N1

d12,

Var (d̂12) = 2(N1−1)
N2

1
m(m−1)

[

d2
11 + 2(m− 2)d11d12 + (m2 − 3m+ 3)d2

12

]

,

E(d̂j2) = dj2,

Var (d̂j2) = 2
(Nj−Nj−1)m(m−1)

[

d2
j1 + 2(m− 2)dj1dj2 + (m2 − 3m+ 3)d2

j2

]

,

j = 2, . . . , J,

E(d̃j1) = dj1,

Var (d̃j1) = 2
(Nj−Nj−1)m(d2

j1 + (m− 1)d2
j2), j = 1, . . . , J,

E(d̃j2) = dj2,

Var (d̃j2) = 2
(Nj−Nj−1)m(m−1)

[

d2
j1 + 2(m− 2)dj1dj2 + (m2 − 3m+ 3)d2

j2

]

,

j = 1, . . . , J.

(52)

We note that the MLEs and REMLEs are all unbiased with the exception

of the MLEs on the coarsest resolution d̂11, d̂12. In fact, other than the coarsest

resolution, the MLEs and REMLEs of the parameters are the same in the case of

constant regression mean. Now we reconsider the two special cases: H j = Inj−1
,

j = 1, . . . , J , which we call the independence case, and H 1 = IN1
, Hj+1 =

(nj/(nj − 1))(Inj
−1nj

1′
nj
/nj), j = 1, . . . , J − 1, which we call the mass-balance

case.
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4.3.2. Independence case

Here Ω and Dj , j = 1, . . . , J are in fact invertible because of Lemma 3 (ii)

in Appendix II. It is easy to obtain Σj = Ψj = (Dj −Dj+1)/aj , j = 1, . . . , J−1,

and ΣJ = ΨJ −ΦJ = DJ −ΦJ . Using (47) and Lemma 15 in Appendix III, we

have the MLE and REMLE of Σj along with their expectations and variances,

Σ̂1 = 1
a1

(D̂1 − D̂2), E(Σ̂1) = Σ1 −
D1

NJ
,

Var (Σ̂1hi) = 1
a2

1

[Var (D̂1hi) + Var (D̂2hi)],

Σ̂j = 1
aj

(D̂j − D̂j+1), E(Σ̂j) = Σj,

Var (Σ̂jhi) = 1
a2

j

[Var (D̂jhi) + Var (D̂j+1hi)],

j = 2, . . . , J − 1,

Σ̂J = D̂J −ΦJ , E(Σ̂J) = ΣJ ,

Var (Σ̂Jhi) = 1
a2

J

Var (D̂Jhi),

Σ̃j = 1
aj

(D̃j − D̃j+1), E(Σ̃j) = Σj,

Var (Σ̃jhi) = 1
a2

j

[Var (D̃jhi) + Var (D̃j+1hi)],

j = 1, . . . , J − 1,

Σ̃J = D̃J −ΦJ , E(Σ̃J) = ΣJ ,

Var (Σ̃Jhi) = 1
a2

J

Var (D̃Jhi),

(53)

where we note that Σ̂j = Σ̃j for j = 2, . . . , J .

If Σj has a compound symmetry structure with diagonal element σj1 and off-

diagonal element σj2, j = 1, . . . , J , and ΦJ has a compound symmetry structure

with diagonal element φJ and off-diagonal element 0, then the m×mmatrices Dj

has a compound symmetry structure with diagonal element dj1 and off-diagonal

element dj2, where dj1 =
∑J

k=j akσk1 + φJ and dj2 =
∑J

k=j akσk2, j = 1, . . . , J .

Hence using (48)−(52), we have the MLE and REMLE of σj1, σj2 along with

their expectations and variances,

σ̂11 = 1
a1

(d̂11 − d̂21), E(σ̂11) = σ11 −
d11

NJ
,

Var (σ̂11) = 1
a2

1

[Var (d̂11) + Var (d̂21)],

σ̂j1 = 1
aj

(d̂j1 − d̂j+11), E(σ̂j1) = σj1,

Var (σ̂j1) = 1
a2

j

[Var (d̂j1) + Var (d̂j+1 1)], j = 2, . . . , J−1,

σ̂J1 = d̂J1 − φJ , E(σ̂J1) = σJ1, Var (σ̂J1) = Var (d̂J1),
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σ̂12 = 1
a1

(d̂12 − d̂22), E(σ̂12) = σ12 −
d12

NJ
,

Var (σ̂12) = 1
a2

1

[Var (d̂12) + Var (d̂22)],

σ̂j2 = 1
aj

(d̂j2 − d̂j+12), E(σ̂j2) = σj2,

Var (σ̂j2) = 1
a2

j

[Var (d̂j2) + Var (d̂j+1 2)], j = 2, . . . , J−1,

σ̂J2 = d̂J2, E(σ̂J2) = σJ2, Var (σ̂J2) = Var (d̂J2),

σ̃j1 = 1
aj

(d̃j1 − d̃j+11), E(σ̃j1) = σj1,

Var (σ̃j1) = 1
a2

j

[Var (d̃j1) + Var (d̃j+1 1)], j = 1, . . . , J−1,

σ̃J1 = d̃J1 − φJ , E(σ̃J1) = σJ1, Var (σ̃J1) = Var (d̃J1),

σ̃j2 = 1
aj

(d̃j2 − d̃j+12), E(σ̃j2) = σj2,

Var (σ̃j2) = 1
a2

j

[Var (d̃j2) + Var (d̃j+1 2)], j = 1, . . . , J−1,

σ̃J2 = d̃J2, E(σ̃J2) = σJ2, Var (σ̃J2) = Var (d̃J2),

(54)

where we note that σ̂ji = σ̃ji for j = 2, . . . , J , i = 1, 2.

4.3.3. Mass-balance case

Here Ω and Dj , j = 1, . . . , J , are in fact invertible because of Lemma 3 (ii)

in Appendix II. Moreover

Dj ≡

J
∑

k=j

akΨk =

{

a1Σ1 + ΦJ if j = 1,

aj−1

nj−1−1Σj + ΦJ if j = 2, . . . , J .
(55)

Hence using (47), we have the MLE and REMLE of Σj along with their expec-

tations and variances:

Σ̂1 = 1
a1

(D̂1 −ΦJ), E(Σ̂1) = Σ1 −
D1

NJ
, Var (Σ̂1hi) = 1

a2

1

Var (D̂1hi),

Σ̂j =
nj−1−1

aj−1
(D̂j −ΦJ), E(Σ̂j) = Σj ,

Var (Σ̂jhi) =
(nj−1−1)2

a2

j−1

Var (D̂jhi), j = 2, . . . , J,

Σ̃1 = 1
a1

(D̃1 −ΦJ), E(Σ̃1) = Σ1, Var (Σ̃1hi) = 1
a2

1

Var (D̃1hi),

Σ̃j =
nj−1−1

aj−1
(D̃j −ΦJ), E(Σ̃j) = Σj ,

Var (Σ̃jhi) =
(nj−1−1)2

a2

j−1

Var (D̃jhi), j = 2, . . . , J,

(56)

where we note that Σ̂j = Σ̃j for j = 2, . . . , J .
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If we assume Σj has a compound symmetry structure with diagonal ele-

ment σj1 and off-diagonal element σj2, j = 1, . . . , J , and ΦJ has a compound

symmetry structure with diagonal element φJ and off-diagonal element 0, then

the m ×m matrices Dj has a compound symmetry structure with diagonal el-

ement dj1 and off-diagonal element dj2 where d11 = a1σ11 + φJ , d12 = a1σ12,

dj1 = (aj−1/(nj−1 − 1))σj1 + φJ , and dj2 = (aj−1/(nj−1 − 1))σj2, j = 2, . . . , J .

Hence using (48)−(52), we have the MLE and REMLE of σj1, σj2 along with

their expectations and variances,

σ̂11 = 1
a1

(d̂11 − φJ), E(σ̂11) = σ11 −
d11

NJ
, Var (σ̂11) = 1

a2

1

Var (d̂11),

σ̂j1 =
nj−1−1

aj−1
(d̂j1 − φJ), E(σ̂j1) = σj1,

Var (σ̂j1) =
(nj−1−1)2

a2

j−1

Var (d̂j1), j = 2, . . . , J,

σ̂12 = 1
a1
d̂12, E(σ̂12) = σ12 −

d12

NJ
, Var (σ̂12) = 1

a2

1

Var (d̂12),

σ̂j2 =
nj−1−1

aj−1
d̂j2, E(σ̂j2) = σj2,

Var (σ̂j2) =
(nj−1−1)2

a2

j−1

Var (d̂j2), j = 2, . . . , J,

σ̃11 = 1
a1

(d̃11 − φJ)), E(σ̃11) = σ11, Var (σ̃11) = 1
a2

1

Var (d̃11),

σ̃j1 =
nj−1−1

aj−1
(d̃j1 − φJ), E(σ̃j1) = σj1,

Var (σ̃j1) =
(nj−1−1)2

a2

j−1

Var (d̃j1), j = 2, . . . , J,

σ̃12 = 1
a1
d̃12, E(σ̃12) = σ12, Var (σ̃12) = 1

a2

1

Var (d̃12),

σ̃j2 =
nj−1−1

aj−1
d̃j2, E(σ̃j2) = σj2,

Var (σ̃j2) =
(nj−1−1)2

a2

j−1

Var (d̃j2), j = 2, . . . , J,

(57)

where we note that σ̂ji = σ̃ji for j = 2, . . . , J , i = 1, 2.

5. Simulation Study

Here we conduct a Monte Carlo simulation to evaluate the theory and meth-

ods concerning the ML and REML estimators in Section 4. For the multireso-

lution tree structure, we focus on a 4-resolution quad-tree (i.e., J = 4, nj ≡ 4,

j = 1, 2, 3). For the MMTSLM, we consider the case of single-source 3-variable

data without missing values, but with mass balance and compound symmetry

in the variance structure (i.e., m = 3, H 1 = I,Hj are compound symmetric,

j = 2, 3, 4, and Σj are compound symmetric, j = 1, . . . , 4). The parameters

associated with Σj are the diagonal entries σj1 and off-diagonal entries σj2,

j = 1, . . . , 4. The value used for the variance of measurement error is set at

φJ = 50.
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By varying the number of root nodes on the coarsest resolution (N1), we

vary the size of the data (N). Here we consider N1 = 16, 64, which correspond

to data size N = 1, 024, 4, 096. For each data size, we consider two MMTSLMs,

one with constant and the other with regression means for the response variables.

In the case of constant means the parameters are β = (β11, β12, β13), which are

the intercepts for the 3 response variables. In the case of regression means, the

parameters are β =









β11 β12 β13

β21 β22 β23

β31 β32 β33

β41 β42 β43









. The true parameter values are shown in

Tables 1−4.

Table 1. Maximum likelihood estimates (MLE) and restricted maximum like-

lihood estimates (REML) for a multivariate multiresolution tree-structured
spatial linear model (MMTSLM) with a 16-root, 4-resolution, quad-tree

structure and with constant means. Reported are the true parameters, rel-

ative bias (R-bias), variance, and mean squared error (MSE) based on both
theory and 1,000 MLE and REML estimates computed by analytical formu-

las and numerical maximization.

Theory Formula Maximization

MLE Truth R-Bias Variance MSE R-Bias Variance MSE R-Bias Variance MSE

σ11 200.0 -0.06 1605.98 1763.45 -0.07 1440.07 1616.07 -0.24 1128.06 3366.98

σ12 -20.0 -0.06 653.94 655.51 -0.14 652.55 659.94 -0.36 373.24 424.17

σ21 100.0 0.00 148.25 148.25 0.01 152.29 152.66 0.01 280.61 281.32

σ22 -10.0 0.00 60.61 60.61 -0.09 61.02 61.72 -0.04 95.01 95.06

σ31 50.0 0.00 12.42 12.42 0.01 12.93 13.02 0.01 19.43 19.73

σ32 5.0 0.00 7.28 7.28 -0.01 6.85 6.84 -0.04 20.35 20.37

σ41 25.0 0.00 3.40 3.40 0.01 3.58 3.63 0.01 5.60 5.65

σ42 2.5 0.00 1.84 1.84 -0.02 1.77 1.77 -0.01 1.78 1.78

β11 40.0 0.00 12.55 12.55 0.00 12.81 12.80 0.00 12.88 12.87

β12 20.0 0.00 12.55 12.55 -0.02 13.46 13.46 -0.01 13.48 13.48

β13 10.0 0.00 12.55 12.55 -0.01 13.07 13.07 -0.01 13.12 13.12

REML Truth R-Bias Variance MSE R-Bias Variance MSE R-Bias Variance MSE

σ11 200.0 0.00 1827.25 1827.25 -0.00 1638.47 1637.51 -0.23 1180.49 3289.35

σ12 -20.0 0.00 744.04 744.04 -0.09 742.46 744.58 -0.36 397.03 447.71

σ21 100.0 0.00 148.25 148.25 0.01 152.29 152.66 0.02 271.95 274.32

σ22 -10.0 0.00 60.61 60.61 -0.09 61.02 61.72 -0.05 96.15 96.28

σ31 50.0 0.00 12.42 12.42 0.01 12.93 13.02 0.02 21.40 22.19

σ32 5.0 0.00 7.28 7.28 -0.01 6.85 6.84 -0.05 26.40 26.45

σ41 25.0 0.00 3.40 3.40 0.01 3.58 3.63 0.01 5.63 5.66

σ42 2.5 0.00 1.84 1.84 -0.02 1.77 1.77 -0.03 2.69 2.69

β11 40.0 0.00 12.55 12.55 0.00 12.81 12.80 0.00 12.85 12.84

β12 20.0 0.00 12.55 12.55 -0.01 13.46 13.46 -0.01 13.48 13.47

β13 10.0 0.00 12.55 12.55 -0.01 13.07 13.07 -0.01 13.11 13.11
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Table 2. Maximum likelihood estimates (MLE) and restricted maximum like-

lihood estimates (REML) for a multivariate multiresolution tree-structured
spatial linear model (MMTSLM) with a 16-root, 4-resolution, quad-tree

structure and with a regression mean. Reported are the true parameters,

relative bias (R-bias), variance, and mean squared error (MSE) based on

1,000 MLE and REML estimates computed by numerical maximization.

MLE REML

Truth R-Bias Variance MSE R-Bias Variance MSE

σ11 200.0 -0.36 987.63 6290.50 -0.37 979.96 6357.72

σ12 -20.0 -0.60 358.16 500.70 -0.58 366.44 502.28

σ21 100.0 0.02 209.56 214.16 0.03 227.42 235.52
σ22 -10.0 -0.05 123.01 123.11 -0.04 107.64 107.72

σ31 50.0 0.06 30.92 39.26 0.07 27.12 40.96

σ32 5.0 -0.03 22.37 22.36 -0.05 38.89 38.91

σ41 25.0 0.02 24.90 25.25 0.02 12.38 12.59
σ42 2.5 -0.04 29.10 29.08 0.04 8.72 8.72

β11 100.0 0.00 20.69 20.72 0.00 20.56 20.58
β12 50.0 0.00 21.20 21.18 0.00 21.11 21.09

β13 25.0 -0.01 21.61 21.70 -0.01 21.38 21.47

β21 40.0 0.00 0.00 0.00 0.00 0.00 0.00

β22 10.0 0.00 0.00 0.00 0.00 0.00 0.00
β23 20.0 0.00 0.00 0.00 0.00 0.00 0.00

β31 20.0 0.00 0.00 0.00 0.00 0.00 0.00

β32 40.0 0.00 0.00 0.00 0.00 0.00 0.00

β33 10.0 0.00 0.00 0.00 0.00 0.00 0.00

β41 10.0 0.00 2.17 2.17 0.00 2.17 2.17
β42 20.0 0.00 1.94 1.94 0.00 1.92 1.92

β43 40.0 0.00 2.10 2.09 0.00 2.07 2.07

For each of the four cases (two sample sizes and two types of regression

means), we simulate S = 1, 000 data sets based on the corresponding MMTSLM

evaluated at the true parameter values. For each data set, we compute the ML

and REML estimates using numerical maximization. In addition, in the case of

constant means, we have the explicit formulas (57) for the ML and REML esti-

mates. Based on S = 1, 000 ML and REML estimates, we compute an estimate

of the mean and variance of the ML and REML estimates. Using these mean and

variance estimates, we obtain an estimate of the relative bias (R-bias), variance,

and mean squared error (MSE) of the ML and REML estimates. Again in the

case of constant means, we have the explicit formulas (57) for the R-bias, vari-

ance, and MSE for the ML and REML estimates. Here the empirical relative bias

is defined as the average estimates minus the true parameter value and divided

by the true parameter value.
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For the constant-mean MMTSLM, the results are shown in Tables 1 and 3.
First, the results suggest that our analytical results are correct, as the ML and
REML estimates using the explicit formulas match well with the empirical R-bias,
variance, and MSE. Second, the theoretical and empirical results match quite
well with the ML and REML estimates obtained from numerical maximization,
except for some of the variance parameters on the coarser resolutions. Thus
the maximization procedure works reasonably well and so does the change-of-
resolution Kalman filter algorithm we use to evaluate the loglikelihood functions.
We suspect that the under-performance of the variance estimates on the coarser
resolutions is due to the smaller number of nodes on these resolutions. Finally,
as the data size increases, there is a decrease in the R-bias, variance, and MSE,
as one would expect.

Table 3. Maximum likelihood estimates (MLE) and restricted maximum like-
lihood estimates (REML) for a multivariate multiresolution tree-structured
spatial linear model (MMTSLM) with a 64-root, 4-resolution, quad-tree
structure and with constant means. Reported are the true parameters, rel-
ative bias (R-bias), variance, and mean squared error (MSE) based on both
theory and 1,000 MLE and REML estimates computed by analytical formu-
las and numerical maximization.

Theory Formula Maximization

MLE Truth R-Bias Variance MSE R-Bias Variance MSE R-Bias Variance MSE

σ11 200.0 -0.02 421.57 431.41 -0.03 420.37 465.73 -0.12 609.82 1176.96

σ12 -20.0 -0.02 171.66 171.76 -0.01 197.42 197.26 -0.16 156.26 166.04

σ21 100.0 0.00 37.06 37.06 0.00 40.20 40.16 0.00 131.07 130.94

σ22 -10.0 0.00 15.15 15.15 0.00 15.15 15.14 0.01 18.33 18.31

σ31 50.0 0.00 3.10 3.10 -0.00 3.46 3.45 0.00 5.24 5.24

σ32 5.0 0.00 1.82 1.82 0.03 1.91 1.92 0.03 1.96 1.98

σ41 25.0 0.00 0.85 0.85 0.00 0.83 0.83 0.00 1.10 1.10

σ42 2.5 0.00 0.46 0.46 -0.01 0.49 0.49 -0.01 0.50 0.50

β11 40.0 0.00 3.14 3.14 0.00 3.45 3.45 0.00 3.48 3.48

β12 20.0 0.00 3.14 3.14 -0.01 3.50 3.52 -0.01 3.52 3.53

β13 10.0 0.00 3.14 3.14 0.00 3.44 3.44 0.00 3.42 3.42

REML Truth R-Bias Variance MSE R-Bias Variance MSE R-Bias Variance MSE

σ11 200.0 0.00 435.06 435.06 -0.02 433.83 446.98 -0.12 599.62 1208.84

σ12 -20.0 0.00 177.15 177.16 0.01 203.74 203.55 -0.17 155.13 165.99

σ21 100.0 0.00 37.06 37.06 0.00 40.20 40.16 0.00 133.49 133.39

σ22 -10.0 0.00 15.15 15.15 0.00 15.15 15.14 0.01 18.62 18.62

σ31 50.0 0.00 3.10 3.10 -0.00 3.46 3.45 0.00 5.07 5.09

σ32 5.0 0.00 1.82 1.82 0.03 1.91 1.92 0.03 2.03 2.06

σ41 25.0 0.00 0.85 0.85 0.00 0.83 0.83 0.00 1.13 1.13

σ42 2.5 0.00 0.46 0.46 -0.01 0.49 0.49 -0.00 0.50 0.50

β11 40.0 0.00 3.14 3.14 0.00 3.45 3.45 0.00 3.48 3.48

β12 20.0 0.00 3.14 3.14 -0.01 3.50 3.52 -0.01 3.52 3.53

β13 10.0 0.00 3.14 3.14 0.00 3.44 3.44 0.00 3.42 3.42
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Table 4. Maximum likelihood estimates (MLE) and restricted maximum like-

lihood estimates (REML) for a multivariate multiresolution tree-structured

spatial linear model (MMTSLM) with a 64-root, 4-resolution, quad-tree

structure and with a regression mean. Reported are the true parameters,

relative bias (R-bias), variance, and mean squared error (MSE) based on

1,000 MLE and REML estimates computed by numerical maximization.

MLE REML

Truth R-Bias Variance MSE R-Bias Variance MSE

σ11 200.0 -0.14 614.92 1386.45 -0.13 617.42 1329.76

σ12 -20.0 -0.18 169.45 182.24 -0.18 168.55 180.58

σ21 100.0 0.01 142.16 142.91 0.01 143.88 145.00
σ22 -10.0 0.02 26.42 26.46 0.02 22.01 22.02

σ31 50.0 0.01 6.35 6.80 0.02 4.70 5.38

σ32 5.0 0.03 5.51 5.53 0.02 2.39 2.40

σ41 25.0 0.00 1.12 1.13 0.00 1.04 1.04

σ42 2.5 0.00 0.56 0.56 0.01 0.56 0.56

β11 100.0 0.00 4.84 4.88 0.00 4.86 4.89
β12 50.0 0.00 4.82 4.82 0.00 4.78 4.77

β13 25.0 0.00 4.75 4.74 0.00 4.75 4.74

β21 40.0 0.00 0.00 0.00 0.00 0.00 0.00

β22 10.0 0.00 0.00 0.00 0.00 0.00 0.00

β23 20.0 0.00 0.00 0.00 0.00 0.00 0.00
β31 20.0 0.00 0.00 0.00 0.00 0.00 0.00

β32 40.0 0.00 0.00 0.00 0.00 0.00 0.00

β33 10.0 0.00 0.00 0.00 0.00 0.00 0.00

β41 10.0 0.00 0.33 0.33 0.00 0.33 0.33
β42 20.0 0.00 0.30 0.30 0.00 0.31 0.30

β43 40.0 0.00 0.33 0.33 0.00 0.33 0.33

For the regression-mean MMTSLM, the results are shown in Tables 2 and 4.

Here we do not have theoretical results to compare to, but we can still evaluate

the performance of the ML and REML estimates. Overall the ML and REML

estimates have small R-bias, except for the coarsest resolution. Again as the

data size increases, there is a decrease in the R-bias, variance, and MSE. Our

experience suggests that the bias in estimating σ12 is a consequence of a relatively

large bias in the estimate of σ11. Finally, there seems very little difference between

the MLE and REML estimates for the two sample sizes under consideration.
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Appendix I. General Optimal Prediction Theory

For
(Y
Z

)

∼

[

(µY
µZ

)

,

(

ΣY Y ΣY Z

ΣZY ΣZZ

)]

, we obtain mY |Z by minimizing ‖Y −Z0‖

for all Z0 ∈ sp{Z}m, where Z0 = µ+βZ with µ ∈ IRm, β = [β1, . . . ,βm]′, and

βi ∈ IRn, i = 1, . . . ,m. It is straightforward to show that f(µ,β) ≡ ‖Y −Z 0‖
2 =

µ′
Y µY − 2µ′µY +µ′µ+2µ′βµZ +tr{−2βµZµ′

Y +βµZµ′
Zβ′ +ΣY Y − 2βΣZY +

βΣZZβ′}. We minimize f(µ,β) by taking the first-order partial derivatives with

respect to µ and β using Lemma 1 Harville (1997, Chap. 15).

Lemma 1. For an m-dimensional column vector µ, an m× n matrix β, and a

conformable matrix A that does not depend on µ and β:

(i)
∂µ′A

∂µ
=A; (ii)

∂µ′Aµ

∂µ
=(A + A′)µ; (iii)

∂ tr(Aβ′)

∂β
=
∂ tr(βA′)

∂β
= A;

(iv)
∂ tr(βAβ′)

∂β
=β(A + A′).

Proof of Theorem 1. By Lemma 1, we have

∂f(µ,β)

∂µ
= 2(µ − µY + βµZ),

∂f(µ,β)

∂β
= 2(µ − µY + βµZ)µ′

Z − 2ΣY Z + 2βΣZZ .

Setting the partial derivatives to zero, we obtain the normal equations and their

equivalence:

µ = µY − βµZ , ΣZZβ′ = ΣZY , (58)

µ = µY − βµZ , ΣZZβi = ΣZyi
, i = 1, . . . ,m. (59)

For any optimal linear predictor mY |Z = µ̂ + β̂Z, µ̂ and β̂ must satisfy the

normal equations (58). Then E(mY |Z) = E(µ̂ + β̂Z) = E(µY − β̂µZ + β̂Z) =

µY + β̂E(Z −µZ) = µY and Cov (Z, Y −mY |Z) = Cov (Z, Y −µY + β̂µZ −

β̂Z) = ΣZY −ΣZZβ̂
′
= 0n×m where the last equality holds because of (58).

Suppose there exists another optimal linear predictor m̃Y |Z of Y given Z,

then let Y = mY |Z +e and Y = m̃Y |Z +ẽ. We have E(mY |Z) = E(m̃Y |Z) = µY

and Cov (mY |Z − m̃Y |Z , e − ẽ) = 0m×m because mY |Z − m̃Y |Z ∈ sp{Z}m and

Cov (Z, e − ẽ) = 0n×m. Then 0m×m = Var (Y − Y ) = Var [(mY |Z − m̃Y |Z) +
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(e − ẽ)] = Var (mY |Z − m̃Y |Z) + Var (e − ẽ). Comparing the diagonal elements

of both sides, since the variance of any random variable in L2 is non-negative, we

obtain Var (myi|Z−m̃yi|Z) = 0 for i = 1, . . . ,m which implies that myi|Z = m̃yi|Z ,

or, mY |Z = m̃Y |Z . Hence the optimal linear predictor of Y given Z is unique.

The following lemma establishes the consistency of the the normal equations

(59).

Lemma 2. The normal equations ΣZZβi = ΣZyi
are consistent, where ΣZyi

≡

Cov (Z, yi) for i = 1, . . . ,m.

Proof. To show that the normal equations are consistent, it suffices to show

that for any α ∈ IRn, if α′ΣZZ = 0n, then α′ΣZyi
= 0. Suppose for α ∈ IRn,

α′ΣZZ = 0n, then Var (α′Z) = α′ΣZZα = 0, which implies that α′Z = α′µZ .

Hence α′ΣZyi
= α′ Cov (Z, yi) = Cov (α′Z, yi) = Cov (α′µZ , yi) = 0.

Now recall (Searle (1997, Chap. 1.3)) that the Moore-Penrose pseudo in-

verse of a matrix Σ is the unique matrix Σ+ which satisfies the following four

conditions:

ΣΣ+Σ = Σ, Σ+ΣΣ+ = Σ+, (Σ+Σ)′ = Σ+Σ and (ΣΣ+)′ = ΣΣ+. (60)

Furthermore, by transposing both sides of the four conditions in (60), we obtain

(Σ′)+ = (Σ+)′. (61)

Proof of Theorem 2. Since the normal equations (59) are consistent, from

Theorem 1 of Chapter 1.6 of Searl (1997), one of the solutions of the normal

equations and its equivalence is

µ̂ = µY − β̂
′
µZ , β̂i = Σ+

ZZΣZyi
,

µ̂ = µY − β̂
′
µZ , β̂ = (Σ+

ZZΣZY )′.
(62)

Then we have mY |Z = µ̂ + β̂Z = µY + β̂(Z − µZ) and

CY |Z = E[(Y − mY |Z)(Y − mY |Z)′] = Var (Y − β̂Z) = ΣY Y −ΣY Z β̂
′
,

due to (58).

Since ΣZZ is symmetric, using (61) and the uniqueness of Moore-Penrose

pseudo inverse, we have (Σ+
ZZ)′ = Σ+

ZZ , i.e., Σ+
ZZ is symmetric. Then we obtain

mY |Z = µY + ΣY ZΣ+
ZZ(Z − µZ) and CY |Z = ΣY Y − ΣY ZΣ+

ZZΣZY . When Y
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and Z are normally distributed, mY |Z and CY |Z are the conditional mean and

conditional variance respectively (Lauritzen (1996, Proposition C.5)).

Appendix II. Generalized Change-of-Resolution Kalman Filter

First, we recall and introduce some notation. Write {j ′, k′} ≺ {j, k} if {j ′, k′}

is a descendant vector node of {j, k}. Here a node is assumed to be a descendant

of itself. Further,

γj,k ≡ I{Zj,k is observed} =

{

1; if Zj,k is observed,

0; otherwise,

Z ≡ {Zj,k : γj,k = 1},

Zde{j,k} ≡
{

Zj′,k′ : γj′,k′ = 1, {j′, k′} ≺ {j, k}
}

,

Z∗
de{j,k} ≡

{

Zj′,k′ : γj′,k′ = 1, {j′, k′} ≺ {j, k}, {j ′ , k′} 6= {j, k}
}

,

Zc
de{j,k} ≡ Z \ Zde{j,k},

U j,k|Zde{j′,k′} ∼ [Û j,k|j′,k′, V̂ j,k|j′,k′ ],

U j,k|Z
∗
de{j′,k′} ∼ [Û

∗
j,k|j′,k′, V̂

∗
j,k|j′,k′ ],

U j,k|Z ∼ [Û j,k, V̂ j,k],

V j,k ≡ Var (U j,k),

V j,k,j′,k′ ≡ Cov (U j,k,U j′,k′),

Bj,k ≡ V pa{j,k}A
′
j,kV

+
j,k,

Rj,k ≡ V pa{j,k} − V pa{j,k}A
′
j,kV

+
j,kAj,kV pa{j,k},

J j,k ≡ V̂ j,k|j,kB
′
j,kV̂

+
pa{j,k}|j,k.

Before deriving the generalized change-of-resolution Kalman filter algorithm,

we present some useful results about matrix operations and Moore-Penrose

pseudo inverse in the following lemma.

Lemma 3. For matrices A and B:

(i) If A is an n × n symmetric positive semi-definite matrix, then there exists

an n × m matrix L with full column rank such that A = LL′, where m =

Rank(A).

(ii) If A is an n × n positive semi-definite matrix and B is an n × n positive

definite matrix, then A + B is invertible.

(iii) If A is an m× n matrix, B is an n×m matrix, and In + BA is invertible,

then (Im + AB)−1 = Im − A(In + BA)−1B.

(iv) If A is an n ×m matrix with full column rank and B is an m × n matrix

with full row rank, then (AB)+ = B+A+.
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(v) If A is an n × m matrix, then A+A = P A′ and AA+ = P A, where

P A′ ≡ A′(AA′)−A and P A ≡ A(A′A)−A′ are the projections matrices

corresponding to A′ and A, where (A′A)− denotes the generalized inverse

of A′A. Moreover P AA = A, A′P A = A′, A+AA′ = A′AA+ = A′ and

(A′)+ = (A+)′. For matrix B, if Col(A) = Col(B), then P A = P B where

Col(A) denotes the column space of A.

(vi) If Z = XB + MU + e, U ∼ [0,V ], e ∼ [0,P ], where X, B and M

are deterministic matrices, U and e are uncorrelated , and P is invertible,

then CU |Z = L(I + L′M ′P−1ML)−1L′, mU |Z = CU |ZM ′P−1(Z − XB),

C+
U |ZmU |Z = (L′)+L′M ′P−1(Z − XB), and CU |ZC+

U |ZmU |Z = mU |Z

where V = LL′ and L has full column rank.

Proof. See details in Yue and Zhu (2005).

In the high-to-low-resolution filtering step, we start with the finest resolu-

tion J .

Proof of (16)−(17). For a leaf node {J, k}, k = 1, . . . , NJ−1, if γJ,k = 1, we

have
(

UJ,k

ZJ,k

)

∼

[(

0nJ−1m

XJ,kB

)

,

(

V J,k V J,k

V J,k V J,k + InJ−1
⊗ΦJ

)]

.

From Theorem 2, we have optimal linear predictor U J,k|ZJ,k ∼ [V J,k(V J,k +

InJ−1
⊗ ΦJ)−1(ZJ,k − XJ,kB),V J,k − V J,k(V J,k + InJ−1

⊗ ΦJ)−1V J,k], where

(V J,k + InJ−1
⊗ ΦJ) is invertible because of Lemma 3 (ii). If γJ,k = 0, we have

ÛJ,k = 0 and V̂ J,k|J,k = V J,k. Hence for a leaf node {J, k},

ÛJ,k|J,k = γJ,kV J,k(V J,k + InJ−1
⊗ΦJ)−1(ZJ,k − XJ,kB),

V̂ J,k|J,k = V J,k − γJ,kV J,k(V J,k + InJ−1
⊗ΦJ)−1V J,k.

Now we move from the resolution j = J − 1 to the coarsest resolution j = 1.

Proof of (18)−(19). From (12), we have

(

Upa{j,k}

U j,k

)

∼

[(

0nj−2m

0nj−1
m

)

,

(

V pa{j,k} V pa{j,k}A
′
j,k

Aj,kV pa{j,k} V j,k

)]

.

Then Upa{j,k}|U j,k ∼ [Bj,kU j,k,Rj,k]. Hence we have U pa{j,k} = Bj,kU j,k + ξj,k

where ξj,k = Upa{j,k} − Bj,kU j,k and Var (ξj,k) = Rj,k. From Theorem 1, for

any vector node {j, k}, ξj,k is uncorrelated with U j,k and is also uncorrelated

with {U j′,k′ : {j′, k′} ≺ j, k} ∪ Zde{j,k}, whose elements can be written as U j,k

plus error terms and measurement errors that are independent of ξj,k. Similarly,
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we have U j,k = Bch{j,k,i}U ch{j,k,i} + ξch{j,k,i} and ξch{j,k,i} is uncorrelated with

Zde{ch{j,k,i}}. Then

Û j,k|ch{j,k,i} = Bch{j,k,i}Û ch{j,k,i}|ch{j,k,i},

V̂ j,k|ch{j,k,i} = Bch{j,k,i}V̂ ch{j,k,i}|ch{j,k,i}B
′
ch{j,k,i} + Rch{j,k,i},

because ξch{j,k,i} is uncorrelated with Zde{ch{j,k,i}}.

Next we compute Û
∗
j,k|j,k and V̂

∗
j,k|j,k.

Proof of (20)−(21). From (9)−(12), Zde{ch{j,k,i}} = Xde{ch{j,k,i}}B+

Mde{ch{j,k,i}}U j,k +ede{ch{j,k,i}} where Xde{ch{j,k,i}} depends on {X j′,k′ : {j′, k′}

∈ Tj,k}, Mde{ch{j,k,i}} is a deterministic matrix depending on {Aj′,k′ : {j′, k′} ∈

Tj,k}, ede{ch{j,k,i}} is a random vector depending on {W j′,k′ : {j′, k′} ∈ Tj,k} and

{εj′,k′ : {j′, k′} ∈ Tj,k}, and Tj,k ≡ {{j′, k′} : γj′,k′ = 1, {j′, k′} ≺ {j, k}}.

We have Z∗
de{j,k} = X∗

de{j,k}B + M∗
de{j,k}U j,k + e∗

de{j,k}, where Z∗
de{j,k} =

(Z ′
de{ch{j,k,1}}, . . . ,Z

′
de{ch{j,k,nj−1}}

)′, X∗
de{j,k}=[X ′

de{ch{j,k,1}}, . . .,

X ′
de{ch{j,k,nj−1}}

]′, M ∗
de{j,k} = [M ′

de{ch{j,k,1}}, . . . ,M
′
de{ch{j,k,nj−1}}

]′ and e∗
de{j,k}

= (e′
de{ch{j,k,1}}, . . ., e′

de{ch{j,k,nj−1}}
)′. Define P de{ch{j,k,i}} ≡ Var (ede{ch{j,k,i}})

and P ∗
de{j,k} ≡ Var (e∗

de{j,k}). Then

P ∗
de{j,k} =







P de{ch{j,k,1}} . . . 0
...

. . .
...

0 . . . P de{ch{j,k,nj−1}}






.

Suppose V j,k = Lj,kL
′
j,k where Lj,k is a matrix with full column rank. From

Lemma 3 (iv), we have

V̂
∗+
j,k|j,k = (L′

j,k)
+
[

I + L′
j,kM

∗′

de{j,k}P
∗−1
de{j,k}

M ∗
de{j,k}Lj,k

]

L+
j,k

= (L′
j,k)

+
[

I+L′
j,k(

nj−1
∑

i=1

M ∗′

de{ch{j,k,i}}P
∗−1
de{ch{j,k,i}}M

∗
de{ch{j,k,i}})Lj,k

]

L+
j,k

= (L′
j,k)

+L+
j,k +

nj−1
∑

i=1

[

V̂
+
j,k|ch{j,k,i} − (L′

j,k)
+L+

j,k

]

= V +
j,k +

nj−1
∑

i=1

[

V̂
+
j,k|ch{j,k,i} − V +

j,k

]

,

where the third equality holds because of Lemma 3 (vi). Hence

V̂
∗
j,k|j,k =

{

V +
j,k +

[

nj−1
∑

i=1

V̂
+
j,k|ch{j,k,i} − V +

j,k

]}+
.
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From Lemma 3 (vi),

V̂
∗+
j,k|j,kÛ

∗
j,k|j,k

= (L′
j,k)

+L′
j,kM

∗′

de{j,k}P
∗−1
de{j,k}(Z

∗
de{j,k} − X∗

de{j,k}B)

= (L′
j,k)

+L′
j,k

[

nj−1
∑

i=1

M∗′

de{ch{j,k,i}}P
∗−1
de{ch{j,k,i}}(Zde{ch{j,k,i}}−Xde{ch{j,k,i}}B)

]

=

nj−1
∑

i=1

V̂ j,k|ch{j,k,i}Û j,k|ch{j,k,i}.

Then from Lemma 3 (vi),

Û
∗
j,k|j,k = V̂

∗
j,k|j,kV̂

∗+
j,k|j,kÛ

∗
j,k|j,k = V̂

∗
j,k|j,k

{nj−1
∑

i=1

V̂ j,k|ch{j,k,i}Û j,k|ch{j,k,i}

}

.

The final step in each update is to compute Û j,k|j,k and V̂ j,k|j,k.

Proof of (22)−(23). If γj,k = 0, then U j,k|j,k = U∗
j,k|j,k and V̂ j,k|j,k = V̂

∗
j,k|j,k.

If γj,k = 1, we define Xde{j,k} ≡ [X ′
j,k,X

∗′

de{j,k}]
′, Mde{j,k} ≡ [Inj−1m,M

∗′

de{j,k}]
′,

ede{j,k} ≡ (e′
j,k, e

∗′

de{j,k})
′, and P de{j,k} = diag(Inj−1

⊗ Φj,k,P
∗
de{j,k}). Then

Zde{j,k} = (Z ′
j,k,Z

∗′

de{j,k})
′ = Xde{j,k}B + M de{j,k}U j,k + ede{j,k}. Hence from

Lemma 3 (vi),

V̂
+
j,k|j,k = (L′

j,k)
+(I + L′

j,kM
′
j,kP

−1
j,kLj,k)L

+
j,k

= (L′
j,k)

+
[

I + L′
j,kM

∗′

j,kP
∗−1
j,k Lj,k + L′

j,k(Inj−1
⊗Φ−1

j,k)Lj,k

]

L+
j,k

= V̂
∗
j,k|j,k + (L′

j,k)
+L′

j,k(Inj−1
⊗Φ−1

j,k)Lj,kL
+
j,k.

Suppose V̂
∗
j,k|j,k = Qj,kQ

′
j,k where Qj,k has full column rank. Then

{

V̂
∗
j,k|j,k − V̂

∗
j,k|j,k(V̂

∗
j,k|j,k + Inj−1

⊗Φj)
−1V̂

∗
j,k|j,k

}+

=
{

Qj,k[Inj−1m − Q′
j,k(Qj,kQ

′
j,k + Inj−1

⊗Φj)
−1Qj,k]Q

′
j,k

}+

=
{

Qj,k[Inj−1m + Q′
j,k(Inj−1

⊗Φ−1
j )Qj,k]

−1Q′
j,k

}+

= (Q′
j,k)

+[Inj−1m + Q′
j,k(Inj−1

⊗Φ−1
j )Qj,k]Q

+
j,k

= (Q′
j,k)

+Q+
j,k + (Q′

j,k)
+Q′

j,k(Inj−1
⊗Φ−1

j )Qj,kQ
+
j,k
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= V̂
∗+
j,k|j,k + P Qj,k

(Inj−1
⊗Φ−1

j )P Qj,k

= V̂
∗+
j,k|j,k + P Lj,k

(Inj−1
⊗Φ−1

j )P Lj,k

= V̂
∗+
j,k|j,k + (L′

j,k)
+L′

j,k(Inj−1
⊗Φ−1

j,k)Lj,kL
+
j,k

= V̂
+
j,k|j,k,

where the second, third and fifth equality hold because of Lemma 3 (iii), (iv)

and (v) respectively. Since V̂
∗
j,k|j,k = Lj,k(I + L′

j,kM
∗′

j,kP
∗−1
j,k Lj,k)

−1L′
j,k, we

have Col(V̂
∗
j,k|j,k) ⊆ Col(Lj,k). Since Rank(V̂

∗
j,k|j,k) = Rank(Lj,k), we have

Col(V̂
∗
j,k|j,k) = Col(Lj,k). Similarly, we have Col(V̂

∗
j,k|j,k) = Col(Qj,k). From

Lemma 3 (v), we have P Qj,k
= P V̂ ∗

j,k|j,k

= P Lj,k
. Hence

V̂ j,k|j,k = V̂
∗
j,k|j,k − V̂

∗
j,k|j,k(V̂

∗
j,k|j,k + Inj−1

⊗Φj)
−1V̂

∗
j,k|j,k.

From Lemma 3 (vi),

V̂
+
j,k|j,kÛ j,k|j,k = (L′

j,k)
+L′

j,kM
′

de{j,k}P
−1
de{j,k}(Zde{j,k} − Xde{j,k}B)

= (L′
j,k)

+L′
j,k

[

M∗′

de{j,k,}P
∗−1
de{j,k}(Z

∗
de{j,k} − X∗

de{j,k,}B)

+(Inj−1
⊗Φ−1

j,k)(Zj,k − Xj,kB)
]

= V̂
∗+
j,k|j,kÛ

∗
j,k|j,k + (L′

j,k)
+L′

j,k(Inj−1
⊗Φ−1

j,k)(Zj,k − Xj,kB),

where the last equality holds because of Lemma 3 (vi). Then from Lemma 3 (vi),

Û j,k|j,k=V̂ j,k|j,kV̂
+
j,k|j,kÛ j,k|j,k

=V̂ j,k|j,kV̂
∗+
j,k|j,kÛ

∗
j,k|j,k+V̂ j,k|j,k(L

′
j,k)

+L′
j,k(Inj−1

⊗Φ−1
j,k)(Zj,k−Xj,kB)

=V̂ j,k|j,k

{

(Inj−1
⊗Φ−1

j )(Zj,k−Xj,kB)+(V̂
∗
j,k|j,k)

+Û
∗
j,k|j,k

}

,

where the last equality holds because from Lemma 3 (vi),

V̂ j,k|j,k(L
′
j,k)

+L′
j,k

= (L′
j,k)

+
[

Inj−1m + L′
j,kM

′
de{j,k}P

−1
de{j,k}Mde{j,k}Lj,k

]−1
L′

j,k(L
′
j,k)

+L′
j,k

= (L′
j,k)

+
[

Inj−1m + L′
j,kM

′
de{j,k}P

−1
de{j,k}Mde{j,k}Lj,k

]−1
L′

j,k

= V̂ j,k|j,k.

At the end of the filtering step, the root nodes are reached and hence the

BLUP’s for {1, 1} are

Û1,1 ≡ mU1,1|Z = Û1,1|1,1, V̂ 1,1 ≡ CU1,1|Z = V̂ 1,1|1,1,
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where Z ≡ {Zj,k : γj,k = 1, k = 1, . . . , Nj−1, j = 1, . . . , J} consists of all the

observations.

In the low-to-high-resolution smoothing step, we move from the coarsest

resolution j = 2 to the finest resolution j = J and compute for a given node

{j, k}, where k = 1, . . . , Nj−1. We start with the following Lemma.

Lemma 4. m(Ũ j,k|j,k|νj,k|j,k) = J j,km(Ũpa{j,k}|j,k|νj,k|j,k), where νj,k|j,k ≡

Zc
de{j,k} − m(Zc

de{j,k}|Zde{j,k}) and J j,k ≡ V̂ j,k|j,kB
′
j,kV̂

+
pa{j,k}|j,k.

Proof. See details in Yue and Zhu (2005).

Proof of (25)−(26). νj,k|j,k ≡ Zc
de{j,k} − m(Zc

de{j,k}|Zde{j,k}) is the infor-

mation provided by the observations Zc
de{j,k} given Zde{j,k}. From Theorem

1, νj,k|j,k and Zde{j,k} are uncorrelated. Since sp{Z}mnj−1 = sp{Zde{j,k} ∪

Zc
de{j,k}}

mnj−1 = sp{Zde{j,k} ∪ νde{j,k}}
mnj−1 and νj,k|j,k and Zde{j,k} are un-

correlated, we have Û j,k = m(U j,k|Z) = m(U j,k|Zde{j,k}) + m(U j,k|νj,k|j,k) =

Û j,k|j,k + m(U j,k|νj,k|j,k). Define Ũ j,k|j,k ≡ U j,k − Û j,k|j,k. Then Ũ j,k|j,k is

uncorrelated with Û j,k|j,k, and U j,k = Û j,k|j,k + Ũ j,k|j,k. Hence

Û j,k = Û j,k|j,k + m(U j,k|νj,k|j,k)

= Û j,k|j,k + m(Û j,k + Ũ j,k|νj,k|j,k)

= Û j,k|j,k + m(Û j,k|j,k|νj,k|j,k) + m(Ũ j,k|j,k|νj,k|j,k)

= Û j,k|j,k + m(Ũ j,k|j,k|νj,k|j,k), (63)

where in the third equality, m(Û j,k|j,k|νj,k|j,k) = 0mnj−1
because Û j,k|j,k and

νj,k|j,k are uncorrelated. Similarly,

Ûpa{j,k} = Ûpa{j,k}|j,k + m(Ũ pa{j,k}|j,k|νj,k|j,k) (64)

where Ũpa{j,k}|j,k ≡ Upa{j,k} − Ûpa{j,k}|j,k.

From Lemma 4, we have m(Ũ j,k|j,k|νj,k|j,k) = J j,km(Ũ pa{j,k}|j,k|νj,k|j,k).

Combining (63) and (64), we have Û j,k = Û j,k|j,k + J j,k[Û pa{j,k} − Ûpa{j,k}|j,k].

Then Ũ j,k ≡ U j,k − Û j,k = U j,k − Û j,k|j,k − J j,k[Û pa{j,k} − Ûpa{j,k}|j,k]. Hence

Ũ j,k + J j,kÛpa{j,k} = Ũ j,k|j,k + J j,kÛpa{j,k}|j,k. (65)

Now we compute the variances of both sides of (65):

Var (Ũ j,k + J j,kÛpa{j,k}) = Var (Ũ j,k) + Var (J j,kÛpa{j,k})

= Var (U j,k − Û j,k) + J j,kVar (Û pa{j,k})J
′
j,k

= V̂ j,k + J j,k(V pa{j,k} − V̂ pa{j,k})J
′
j,k, (66)
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where the first equality holds because Ũ j,k is uncorrelated with Z and Ûpa{j,k}∈

sp{Z}mnj−2 , and the last equality holds because Var (U j,k−Û j,k) = C(U j,k|Z) =

V̂ j,k and V pa{j,k} = Var (U pa{j,k}) = Var (Û pa{j,k}+Ũpa{j,k}) = Var (Û pa{j,k})+

Var (Ũ pa{j,k}) = Var (Û pa{j,k}) + Var (U pa{j,k} − Ûpa{j,k}) = Var (Û pa{j,k}) +

V̂ pa{j,k}. Similarly,

Var (Ũ j,k|j,k + J j,kÛpa{j,k}|j,k) = Var (Ũ j,k|j,k) + J j,kVar (Û pa{j,k}|j,k)J
′
j,k

= V̂ j,k|j,k+J j,k(V pa{j,k}−V̂ pa{j,k}|j,k)J
′
j,k, (67)

where the first equality holds because Ũ j,k|j,k is uncorrelated with Zde{j,k} and

Ûpa{j,k}|j,k ∈ sp{Zde{j,k}}
mnj−2 . From formula (66) and (67), we obtain V̂ j,k =

V̂ j,k|j,k + J j,k(V̂ pa{j,k} − V̂ pa{j,k}|j,k)J
′
j,k.

For single-source data, the change-of-resolution Kalman-filter algorithm re-

mains the same, except that γj,k = 0 whenever j < J .

Appendix III. ML and REML Estimators

Lemma 5 gives some useful matrix results. Lemmas 6 and 8 give the in-

verse and the determinant of the matrix Ω, whereas Lemma 7 gives auxil-

iary results about Aj and Ω and Lemma 9 provides a useful decomposition of

(Z−XB)′Ω−1(Z−XB). To establish Theorem 3, we use Lemmas 10, 11 and 12,

which give the differentiation of (Z−XB)′Ω−1(Z−XB) and log |X ′Ω−1X| with

respect to D−1
j . Lemma 13 gives the expectation of the sums of squares SSj(·).

Finally, we consider explicit formulas for the MLEs and REMLEs under the as-

sumption of a constant regression mean. Lemma 14 gives an intermediate step

and Lemma 15 establishes the distributional properties of the sums of squares

SSj(·). In deriving the results assuming a compound symmetry structure for the

covariance matrix, we use the auxiliary Lemma 16. To save space, we present only

the proof of Lemma 15, deferring all the other proofs to Yue and Zhu (2005).

Lemma 5. For matrices A, B, C and D,

(i) E(Z ′AZ) = tr(AΩ)+µ′Aµ, where A is an deterministic square matrix and

Z ∼ N(µ,Ω).

(ii) tr(AQhi) = aih, where A is an m×n matrix, Qhi is an n×m matrix whose

(h, i)th element is one and zero otherwise, and aih is the (i, h)th element of

matrix A.

(iii) tr(AB) = tr(BA), where A is an m× n matrix and B is an n×m matrix.

(iv) tr(A ⊗ B) = tr(A) tr(B), (A ⊗ B)′ = A′ ⊗ B′, and (A ⊗ B)(C ⊗ D) =

(AC) ⊗ (BD).
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(v) ~z′(A ⊗ B)~z = 〈~z, (A ⊗ B)~z〉 = tr[z′AzB], where z is an m× n matrix, A

is an m×m matrix and B is an n× n matrix.

(vi) For m×m matrices A and B, n×n matrices C and D, |A⊗C +B⊗D| =

|C ⊗A+D⊗B|, where |A| denotes the determinant of matrix A. Moreover

|A ⊗ In + B ⊗ (1n1
′
n)| = |A|n−1|A + nB| and |A ⊗ C| = |A|n|C|m.

(vii)For an n × n symmetric matrix A, if z ∼ Wm(n,Σ), then Var (tr[Az]) =

2n tr[AΣAΣ], where Wm(n,Σ) denotes a Wishart distribution with n degrees

of freedom and parameter Σ (Definition C.9 of Lauritzen (1996)).

Lemma 6. Ω−1 =
∑J

j=1 −Aj⊗Cj =
∑J

j=1(Aj−Aj−1)⊗D−1
j +A0⊗D−1

1 , where

CJ ≡ −D−1
J and Cj ≡ D−1

j+1 − D−1
j , j = 1, . . . , J − 1. Moreover,

∑J
k=j Ck =

−D−1
j , j = 1, . . . , J , and ΨJ = DJ and Ψj = (Dj −Dj+1)/aj , j = 1, . . . , J − 1.

Lemma 7. Properties of {Aj : j = 0, 1, . . . , J} and Ω are the following.

(i) AjAk = Amin(j,k) and A2
j = Aj = A′

j, where j, k = 0, 1, . . . , J .

(ii) (Aj − Ak)
2 = Aj − Ak, 0 ≤ k ≤ j ≤ J .

(iii) Aj1NJ
= 1NJ

, j = 0, . . . , J.

(iv) Rank(Aj) = tr(Aj) = Nj , j = 0, 1, . . . , J .

(v) Rank(Aj − Aj−1) = tr(Aj − Aj−1) = Nj −Nj−1, j = 1, . . . , J .

(vi) Ω[(Aj−Aj−1) ⊗ C]=(Aj−Aj−1)⊗(DjC), where C is any m×m matrix.

(vii) Ω(1NJ
⊗ Im) = 1NJ

⊗ D1 and (1NJ
⊗ Im)′Ω(1NJ

⊗ Im) = NJD1.

(viii) Ω−1(1NJ
⊗ Im)=1NJ

⊗ D−1
1 and (1NJ

⊗ Im)′Ω−1(1NJ
⊗ Im)=NJD−1

1 .

Lemma 8. |Ω| = |DJ |
NJ−NJ−1 |DJ−1|

NJ−1−NJ−2 · · · |D2|
N2−N1 |D1|

N1 .

Lemma 9. (Z−XB)′Ω−1(Z−XB) =
∑J

j=1 tr[SSj(β)D−1
j ]+tr[SS0(β)D−1

1 ].

Lemma 10.

(i) ∂ tr(AXB)/∂X = A′B, where A, B, and X are conformable matrices.

(ii) ∂ log |X |/∂X = (X−1)′, where X is an m×m invertible matrix.

(iii)∂FG/∂xi = F (∂G/∂xi)+(∂F /∂xi)G and ∂ tr(FG)/∂xi = tr[F (∂G/∂xi)]+

tr[(∂F /∂xi)G], where F and G are conformable matrices that depend on

x = (x1, . . . , xn)′.

(iv) ∂F−1/∂xi = −F−1(∂F /∂xi)F
−1, where F is an invertible matrix that de-

pends on x = (x1, . . . , xn)′.

(v) ∂ log |AF −1B|/∂xi = − tr[F−1B(AF−1B)−1AF−1(∂F /∂xi)], where A, B

and F are conformable matrices and only F depends on x = (x1, . . . , xn)′.

(vi) ∂f/∂xi = tr[(∂g/∂H)′(∂H/∂xi)], where f(x) = g(H(x)), g is a function

that depends on the elements of H and H is a matrix that depends on x =

(x1, . . . , xn)′.
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Lemma 11. For SS(B) ≡ (Z − XB)′Ω−1(Z − XB),

∂SS(B̂)

∂D−1
1

= [SS1(β̂) + SS0(β̂)]′ and
∂SS(B̂)

∂D−1
j

= [SSj(β̂)]′, j = 2, . . . , J,

where B̂ = [X ′Ω−1X]−1[X ′Ω−1Z].

Lemma 12. Let Djhi denote the (h, i)th element of D−1
j ,

∂ log |X ′Ω−1X|

∂D−1
jhi

=







tr[P (Aj ⊗ Qhi)] if j = 1,

tr
[

P [(Aj − Aj−1) ⊗ Qhi]
]

if j = 2, . . . , J ,

where P ≡ X[X ′Ω−1X]−1X ′ and Qhi is an m×m matrix with 1 for the (h, i)th

element and 0 otherwise.

Lemma 13.

E(SSj(β)) =

{

D1 if j = 0,

(Nj −Nj−1)Dj if j = 1, . . . , J ,

E(SSj(β̂) =







N0D1 −
[

tr[P (A0 ⊗ Qhi)]
]

ih
if j=0,

(Nj−Nj−1)Dj−
[

tr[P ((Aj−Aj−1) ⊗ Qhi)]
]

ih
if j=1, . . . , J .

Lemma 14. tr
[

P [(Aj−Aj−1)⊗Qhi]
]

= 0, j = 1, . . . , J , and tr
[

P [A0⊗Qhi]
]

=

D1ih.

Lemma 15. With X = 1NJ
⊗ Im,

(i) B̂ = (1′
NJ

z)′/NJ and β̂ = (1′
NJ

z)NJ do not depend on {Ψj : j = 1, . . . , J}.

(ii) SS0(β̂) = 0m×m.

(iii)SSj(β̂) ∼ Wm(Nj − Nj−1,Dj), j = 1, . . . , J , where Wm(Nj − Nj−1,Dj) is

the m-dimensional Wishart distribution with Nj − Nj−1 degrees of freedom

and parameter Dj.

(iv) {SSj(β̂) : j = 1, . . . , J} are mutually independent and independent of β̂.

(v) E[SSj(β̂)]=(Nj−Nj−1)Dj, Var (SSjhi(β̂)) = (Nj−Nj−1)(D
2
jhi+DjhhDjii),

and Cov (SSjhi(β̂), SSjh′i′ β̂)) = (Nj−Nj−1)(Djhi′Djh′i+Djhh′Djii′), where

j = 1, . . . , J , SSjhi is the (h, i)th element of SSj(β̂) and Djhi is the (h, i)th

element of Dj.

Proof.

(i) B̂ = [X ′Ω−1X]−1X ′Ω−1Z = [NJD−1
1 ]−1[1NJ

⊗ D−1
1 ]′Z = (1/NJ )(I1 ⊗

D1)(1
′
NJ

⊗ D−1
1 )Z = (1/NJ )(1′

NJ
⊗ Im)Z = vec((1/NJ )1′

NJ
z), where the

first equality holds because of Lemma 7 (viii). Since B̂ and β̂ only depend

on z, they do not depend on {Ψj : j = 1, . . . , J}.
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(ii) Since xβ̂ = 1NJ
((1/NJ )1′

NJ
)z = A0z, we have SS0(β̂) = (z − xβ̂)′A0(z −

xβ̂) = z′(INJ
− A0)

′A0(INJ
− A0)z = 0m×m, where the last equality holds

because A0(INJ
− A0) = A0 − A2

0 = 0NJ×NJ
.

(iii) For j = 1, . . . , J , SSj(β̂) = (z − xβ̂)′(Aj − Aj−1)(z − xβ̂) = z′(INJ
−

A0)
′(Aj − Aj−1)(INJ

− A0)z = z′(Aj − Aj−1)z, where the last equality

holds because of Lemma 7 (i). vec((Aj −Aj−1)z) = [(Aj −Aj−1)⊗ Im]Z ∼

N([(Aj − Aj−1) ⊗ Im]XB, [(Aj − Aj−1) ⊗ Im]′Ω[(Aj − Aj−1) ⊗ Im]) ∼

N(0NJm, (Aj − Aj−1) ⊗ Dj), where the first equality holds because of (8),

the first ∼ holds because of Z ∼ N(XB,Ω), and the second ∼ holds because

we can use Lemma 7 (iii) and (vi) to obtain [(Aj −Aj−1)⊗Im]XB = [(Aj −

Aj−1)⊗ Im](1NJ
⊗ Im)B =

{[

(Aj − Aj−1)1NJ

]

⊗ Im

}

B = {[1NJ
−1NJ

]⊗

Im}B = 0NJm and [(Aj−Aj−1)⊗Im]′Ω[(Aj−Aj−1)⊗Im] = [(Aj−Aj−1)⊗

Im][(Aj − Aj−1) ⊗ Dj] = [(Aj − Aj−1)
2] ⊗ (ImDj) = (Aj − Aj−1) ⊗ Dj.

Then (Aj − Aj−1)z ∼ NNJ×m(0NJ×m, (Aj − Aj−1) ⊗ Dj) (Appendix C,

Lauritzen (1996)). Since Aj − Aj−1 is an idempotent matrix which is a

generalized inverse of itself, from Proposition C.13 of Lauritzen (1996) and

Lemma 7 (v), we have SSj(β̂) = z′(Aj − Aj−1)z = [(Aj − Aj−1)z]′(Aj −

Aj−1)
−[(Aj −Aj−1)z] ∼Wm(Nj −Nj−1,Dj), where (Aj −Aj−1)

− denotes

a generalized inverse of (Aj − Aj−1).

(iv) In the proof of part (iii), we showed that for j = 1, . . . , J , SSj(β̂) is a function

of (Aj−Aj−1)z. Hence it suffices to show that {(Aj−Aj−1)z : j = 1, . . . , J}

are mutually independent and independent of β̂. For 1 ≤ j < k ≤ J ,

Cov
(

vec((Aj − Aj−1)z), vec((Ak − Ak−1)z)
)

= Cov
(

[(Aj − Aj−1) ⊗ Im]Z, [(Ak − Ak−1) ⊗ Im]Z
)

= [(Aj − Aj−1) ⊗ Im]′Ω[(Ak − Ak−1) ⊗ Im]

= [(Aj − Aj−1) ⊗ Im][(Ak − Ak−1) ⊗ Dk]

= [(Aj − Aj−1)(Ak − Ak−1)] ⊗ [ImDk]

= 0NJ×NJ
⊗ Dk

= 0NJm×NJm,

where the first equality holds because of (8), the third equality holds because

of Lemma 7 (vi), and the fourth equality holds because (Aj − Aj−1)(Ak −

Ak−1) = 0NJ×NJ
. Hence {SSj(β̂) : j = 1, . . . , J} are mutually independent.

Since β̂ = 1′
NJ

z/NJ , to show SSj(β̂) and β̂ are independent, it suffices to
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show that (Aj − Aj−1)z and 1′
NJ

z are independent.

Cov
(

vec((Aj − Aj−1)z), vec(1′
NJ

z)
)

= Cov
(

[(Aj − Aj−1) ⊗ Im]Z, [1′
NJ

⊗ Im]Z)
)

= [(Aj − Aj−1) ⊗ Im]′Ω[1NJ
⊗ Im]

= [(Aj − Aj−1) ⊗ Dj][1NJ
⊗ Im]

= [(Aj − Aj−1)1NJ
] ⊗ [DjIm]

= 0NJ×NJ
⊗ [DjIm]

= 0NJm×NJm,

where the first equality holds because of (8), the third equality holds because

of Lemma 7 (vi), and the fifth equality holds because of Lemma 7 (iii).

(v) Use the formulas for the Wishart distribution from Appendix C.2 of Lauritzen

(1996).

Lemma 16. For j = 1, . . . , J and Dj = (dj1 − dj2)Im + dj21m1′
m,

tr[D2
j ] =m(d2

j1 + (m− 1)d2
j2)

tr
[

[Dj(1m1′
m − Im)]2

]

=m(m− 1)
[

d2
j1 + 2(m− 2)dj1dj2 + (m2 − 3m+ 3)d2

j2

]

.
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