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Abstract: Two-stage tests may be defined in terms of a combination function for

the p-values of the separate stages, or alternatively by specifying a conditional error

function, i.e., the conditional probability for an erroneous rejection given the first

stage. Examples have been published suggesting that these two approaches are

essentially equivalent. We provide a formal link between them that yields a general

framework for two-stage tests. Our viewpoint leads to an overall p-value notion that

covers different previously proposed concepts, and it allows an easy construction of

new two-stage tests. One particular test is further characterized.
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tion, interim analysis, overall p-value, two-stage test.

1. Introduction

Armitage, McPherson and Rowe (1969) quantified the inflation of the type

I error in (naive) sequential testing. Since then numerous statistical proce-

dures have been proposed that adjust for this inflation, especially in the field

of clinical trials, seeking to maximize flexibility in trial conduct and to mini-

mize patient exposure or costs. The group sequential tests of Pocock (1977)

and O’Brien and Fleming (1979) were more practical than the purely sequen-

tial, in theory optimal, Sequential Probability Ratio Test of Wald (1945) (see

also Wald and Wolfowitz (1948)). Group sequential variants were provided by

DeMets and Ware (1980, 1982), Gould and Pecore (1982) and others. Wang

and Tsiatis (1987) and Pampallona and Tsiatis (1994) generalized these proce-

dures to the “∆-class” of group sequential boundaries. Lan and DeMets (1983)

introduced more flexibility with the alpha-spending function approach, setting

aside the need for prespecified stage sizes and allowing an arbitrary appor-

tionment of the type I error over the stages. Bauer (1989a) put forward the

principle of combining the p-values from separate stages. This principle per-

mits a wide range of data-driven design modifications, including an adaptive

choice of the sample size, the test statistic or even the null hypothesis. Two

prominent examples apply combination methods originally conceived for meta-

analyses to the context of adaptive trials. Bauer and Köhne (1994) suggested
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the use of Fisher’s product criterion (Fisher (1932), see also Bauer (1989a,

1989b)). Lehmacher and Wassmer (1999) put emphasis on the inverse nor-

mal method (Mosteller and Bush (1954), see also Bauer and Köhne (1994) and

Cui, Hung and Wang (1999)). Motivated by the wish to extend a study in

order to reach a certain conditional power (Lan, Simon and Halperin (1982)),

Proschan and Hunsberger (1995) proposed to define a two-stage test by a con-

ditional error function. This function specifies the conditional probability for an

erroneous rejection of the null hypothesis given the first stage. More recent works

include the “self-designing trials” of Fisher (1998) and Shen and Fisher (1999);

modifications of the Proschan-Hunsberger procedure by Liu and Chi (2001) and

Li, Shih, Xie and Lu (2002); adaptive multistage designs by Müller and Schäfer

(2001) and Brannath, Posch and Bauer (2002); and lately, an interesting geo-

metrical characterization of two-stage tests by Proschan (2003).

All these approaches are interrelated to a greater or lesser extent, as has

been pointed out by Posch and Bauer (1999), Wassmer (1999, 2000), Bauer,

Brannath and Posch (2001) and Jennison and Turnbull (2003) among others. In

the context of trials with only two stages, Posch and Bauer (1999) and Wassmer

(1999, 2000) presented examples that suggest a general correspondence between

a conditional error function and a function that combines two p-values in the

spirit of Bauer (1989a). The idea of this general correspondence is commonly

accepted, but its nature has not yet been thoroughly explored. This is the first

purpose of the present article. We show that a p-value combination function

corresponds in fact to a whole family of conditional error functions, specifying

level-α-tests for each level α between 0 and 1. Based on this link, our second

focus lies in defining overall p-values for two-stage tests. Overall p-values are of

interest as a “measure of certainty” and may be used to construct multistage tests

by recursive combination as presented by Brannath, Posch and Bauer (2002).

Previous definitions based on a p-value combination function (Brannath, Posch

and Bauer (2002)) or a family of conditional error functions (Liu and Chi (2001))

fit in our framework. Finally, and this is our third point, we illustrate that our

concept allows an easy construction of new two-stage tests and a more flexible

handling of known two-stage tests.

We hope to contribute to the understanding of two-stage tests by providing

a general, formally rigorous and geometrically intuitive framework that covers

several previously proposed concepts. The rest of this paper is organized as

follows. Section 2 recapitulates the p-value combination function approach and

the conditional error function approach. A formal link between these approaches

is provided in Section 3. Overall p-values are the subject of Section 4, followed by

an example in Section 5. Section 6 completes the article with a brief discussion.
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Technical details and key steps of proof are provided in three appendices. To

avoid problems with conflicting directional decisions, we assume one-sided testing

throughout. Integrals are taken over the unit interval unless otherwise specified.

2. Two Approaches

A two-stage procedure for testing a null hypothesis H0 may be defined in

terms of the overall level α, stopping bounds α1 and α0, a parameter α2 and a

function C( · , · ) to combine the p-values of the two stages. The bound α1 is the

local level of the test based on the first stage. The parameter α2 is the local level

of the test based on both stages, ignoring the two-stage nature of the design.

The quantities α, α0 and α1 are subject to the condition 0 ≤ α1 ≤ α ≤ α0 ≤ 1,

and C must have some regularity properties that will be defined later. After

computing the p-value p1 of the first stage, the test stops with rejection of H0

if p1 ≤ α1, and it stops without rejection of H0 (“for futility”) if p1 > α0. If

α1 < p1 ≤ α0, the test proceeds, the p-value p2 of the second stage is computed,

and the “combination test” is carried out. H0 is then rejected if and only if

C(p1, p2) is not greater than some threshold c(α2) that is determined by the

local level α2 of this combination test. Given C, the choice of α0, α1 and c(α2) is

constrained by the desired overall level α for the two-stage procedure, assuming

that p1 and p2 are independent and uniformly distributed on [0, 1] under H0.

As Bauer (1989a) pointed out, however, this assumption is not necessary for

the level α to be kept. It suffices that under H0 the distribution of p1 and the

conditional distribution of p2 given p1 are stochastically not smaller than the

uniform distribution on [0, 1]. Brannath, Posch and Bauer (2002) called this

property p-clud. The rejection region of such a test can be visualized as the area

{p1 ≤ α1} ∪ ({C(p1, p2) ≤ c(α2)} ∩ {p1 ≤ α0})

in the unit square. Choosing α0 = α = α1 yields a single stage test as a special

case.

This idea of combining the p-values from separate stages was put forward by

Bauer (1989a). As an example, Bauer and Köhne (1994) and Bauer and Röhmel

(1995) proposed the choice of C(p1, p2) = p1p2, yielding c(α2) = exp(−χ2
4,α2

/2)

(Fisher (1932)) which is traditionally written as cα2
. By χ2

4,α2
we denote the

(1 − α2)-quantile of the central χ2-distribution with 4 degrees of freedom. Sup-

posing cα2
≤ α1, the parameters need to satisfy α1 + cα2

(lnα0 − lnα1) = α for

an overall test level of α. We refer to this test as Fisher’s combination test.

An alternative approach, originally posed by Proschan and Hunsberger

(1995), defines a two-stage test by specifying its conditional error function, i.e.,

the conditional probability for an erroneous rejection given the first stage. Fol-

lowing Wassmer (1999, 2000), we write this function as a function in p1. Any
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nonincreasing function ᾱ with values in [0, 1] may be used. For technical reasons

we additionally assume ᾱ to be left continuous. In this approach the same test-

ing procedure is implemented as in the p-value combination function approach,

with the combination test criterion C(p1, p2) ≤ c(α2) replaced by p2 ≤ ᾱ(p1).

That is, α, α0 and α1 are chosen to satisfy 0 ≤ α1 ≤ α ≤ α0 ≤ 1. If p1 ≤ α1

or p1 > α0, the test stops after the first stage, with or without rejection of H0,

respectively. Otherwise, H0 is rejected if and only if p2 ≤ ᾱ(p1). We can set

α2 =
∫

ᾱ(p1) dp1, and the interpretation of all parameters is the same as in the

p-value combination function approach. The choice of the parameters is con-

strained by α1 +
∫ α0

α1
ᾱ(p1) dp1 = α, and the rejection region in the unit square

is now

{p1 ≤ α1} ∪ ({p2 ≤ ᾱ(p1)} ∩ {p1 ≤ α0}).
Again, the constraining equation makes use of the assumption that p1 and

p2 are independent and uniformly distributed on [0, 1] under H0. The procedure

still keeps the level α if p1 and p2 are p-clud under H0. Note that α1 and α0 are

imposed on ᾱ rather than being part of it. In a common alternative notation,

max{p1; ᾱ(p1) = 1} and inf{p1; ᾱ(p1) = 0} take over the roles of α1 and α0,

respectively, and the choice of ᾱ is constrained by
∫

ᾱ(p1) dp1 = α. In our view,

however, this obscures the analogy between the two approaches.

For example, ᾱ(p1) = min{1, cα2
/p1} is a conditional error function that

depends on α2. Together with α, α0 and α1, constrained by α1 +
∫ α0

α1
ᾱ(p1) dp1 =

α1 + cα2
(lnα0 − lnα1) = α (and cα2

≤ α1), it specifies a two-stage test.

Clearly, this test is identical to Fisher’s combination test. This and other ex-

amples, first presented by Posch and Bauer (1999) and Wassmer (1999, 2000),

have led to the common understanding that the two approaches complement one

another. The next section investigates their relationship in a formal way in a

general setting.

3. A Formal Framework for Two-stage Tests

To motivate the definitions that follow, imagine p1 and p2 are combined by

some function C that is continuous and strictly increasing in both arguments. C

defines a “rising surface” over the unit square, and the null hypothesis is rejected

if C(p1, p2) does not exceed some prespecified height H = c(α2) (early stopping

not considered). The level curve {C(p1, p2) = H} may be thought of as the

boundary of the rejection region {C(p1, p2) ≤ H}. We can write this level curve

as a function ᾱH in p1. For a given value p1, the null hypothesis is then rejected

if p2 ≤ ᾱH(p1), due to the monotonicity properties of C. Figure 1 illustrates

this idea for Fisher’s combination test. Assuming p2 is uniformly distributed on

[0, 1], the conditional rejection probability given p1 is Pr(p2 ≤ ᾱH(p1)) = ᾱH(p1).

Thus, ᾱH is the conditional error function.
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Figure 1. Fisher’s combination test at the level 0.1 without early stopping.

Left: surface of C(p1, p2) = p1p2 over the unit square, with the level curve

at height H = c0.1 = 0.0205. Right: the same level curve as a function ᾱH

in p1, with the rejection region shaded.

However, this reasoning is not always applicable in a straightforward way.

In Figure 1, for example, the level curve ᾱH is not defined over the entire unit

interval. In a more general situation, C may not be continuous, or it may have

constant regions, and the level sets {C(p1, p2) = H} can have unusual shapes.

Conversely, it is not clear how to find a combination function C that “corre-

sponds” to a given conditional error function. A generalization of the level curve

idea is needed. For this purpose we now develop the following framework.

We call any function C : (0, 1)2 → R a p-value combination function if

C( · , p2) is nondecreasing and left continuous for all p2 ∈ (0, 1), and C(p1, · )
is nondecreasing for all p1 ∈ (0, 1). By a conditional error function we mean

any nonincreasing and left continuous function ᾱ : (0, 1) → [0, 1]. The following

properties follow by elementary arguments.

Property 1. For any p-value combination function C, ᾱH(p1) = max{sup[p2 ∈
(0, 1); C(p1, p2) ≤ H], 0} defines a conditional error function for every H ∈ R.

(We use the convention sup(∅) = −∞.) If H ≤ H ′, then ᾱH ≤ ᾱH′

on (0, 1).

We have ᾱH ≤ ᾱH′

on (0, 1) if and only if
∫

ᾱH(p1) dp1 ≤
∫

ᾱH′

(p1) dp1, so

the family (ᾱH )H may be reparameterized as (ᾱh)h such that h =
∫

ᾱh(p1) dp1.

Here, ᾱh 6= ᾱh′ for any h 6= h′. The function ᾱ0 (ᾱ1) will exist if and only if C

is bounded from below (above); otherwise define ᾱ0 = 0 (ᾱ1 = 1) on (0, 1). The

entire mapping is denoted by α̃, (ᾱh)h = α̃(C).

Property 2. Let a = (ᾱh)h∈[0,1] be a family of conditional error functions

satisfying h =
∫

ᾱh(p1) dp1 for all h, and ᾱh ≤ ᾱh′ on (0, 1) for any h ≤ h′.
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Then C(p1, p2) = min{h ∈ [0, 1]; ᾱh(p1) ≥ p2} defines a p-value combination

function C. We denote this mapping by C̃, C = C̃(a).

Property 3. For any a as in Property 2, α̃(C̃(a)) = a.

Note that for any conditional error function ᾱ,
∫

ᾱ(p1) dp1 = 0 implies ᾱ = 0

on (0, 1), and
∫

ᾱ(p1) dp1 = 1 implies ᾱ = 1 on (0, 1). The function ᾱH defined

in Property 1 can be interpreted as the generalized level curve at height H of

the C(p1, p2)-surface over (0, 1)2, possibly completed by the bounds 0 and 1.

Details are given in Appendix A. In Property 3, the application of α̃ ◦ C̃ first

turns (ᾱh)h∈[0,1] into a family (ᾱH)H∈R, with ᾱH = ᾱH for H ∈ [0, 1], ᾱH =

1 for H > 1, and ᾱH = 0 for H < 0. By reparameterization, the ᾱH with

H /∈ [0, 1] are cut away again, and the ᾱH with H ∈ [0, 1] are left unchanged.

Vice versa, the application of C̃ ◦ α̃ to some p-value combination function C

would in general compress or stretch the C(p1, p2)-surface over the unit square

vertically. The reparameterization in Property 1 transforms the actual heights

H into “standardized heights” h that equal the integral over the respective level

curve. In the language of Section 2, H is c(α2) and h is α2. However, note that

the application of α̃ to C does not necessarily yield conditional error functions

ᾱh for every h ∈ [0, 1]. For example, a constant function C(p1, p2) induces only

ᾱ0 and ᾱ1. Those C that do induce ᾱh for every h ∈ [0, 1] are called regular

p-value combination functions.

Based on Properties 1−3, the correspondence between p-value combination

functions and families of conditional error functions can be formulated as in

Proposition 1.

Proposition 1. Let A denote the set of all families a = (ᾱh)h∈[0,1] of conditional

error functions as in Property 2, that is, satisfying h =
∫

ᾱh(p1) dp1 for all h, and

ᾱh ≤ ᾱh′ on (0, 1) for any h ≤ h′. Then α̃ as in Property 1 defines a surjective

mapping from the set of all regular p-value combination functions C onto A. This

mapping reduces to a bijection if we identify any C, C ′ with α̃(C) = α̃(C ′).

In simple terms, A provides special ways of filling the unit square, conve-

niently parameterized by the own integral. Figure 2 illustrates this for Fisher’s

combination test. The p-value combination function C(p1, p2) = p1p2 induces the

family (ᾱH)H∈R defined by ᾱH(p1) = max{0,min{1,H/p1}}. It can be reparam-

eterized as (ᾱα2
)α2∈[0,1], with ᾱα2

(p1) = min{1, cα2
/p1} for 0 < α2 < 1, ᾱ0 = 0,

and ᾱ1 = 1. The ᾱα2
describe the level curves of the p1p2-surface over the unit

square, completed by the upper bound 1. The parameter α2 equals the integral
∫

ᾱα2
(p1) dp1. Note that it is not required that every point in the unit square

lies on exactly one of the curves. Infinitely many curves pass through (p1, p2) if

p2 = 1. Or consider the family specified by ᾱh = 1[0,h], h ∈ [0, 1], where 1[0,h](p1)
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equals 1 if p1 ∈ [0, h], and 0 otherwise. Those (p1, p2) with p2 ∈ (0, 1) lie on none

of the curves.
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Figure 2. Filling the unit square with the family of level curves {C(p1, p2) =

H}H where C(p1, p2) = p1p2 (corresponding to Fisher’s combination test).

When completed by the upper bound 1, these curves can be written as a

family of conditional error functions (ᾱα2
)α2

, with ᾱα2
(p1) = min{1, cα2

/p1},
and cα2

= exp(−χ2

4,α2
/2). Supposing α1 = 0.0845 and α0 = 0.5, the overall

p-value for (p1, p2) = (0.2, 0.15) is 0.1378 (see Section 4). This is the area of

the shaded region.

It is important to realize that it does not matter whether the way the unit

square is filled stems from a p-value combination function or not. Based on any

a = (ᾱh)h∈[0,1] ∈ A, a two-stage test is implemented as follows.

Method 1. Select α, α0, α1 and α2 ∈ [0, 1] that satisfy 0 ≤ α1 ≤ α ≤ α0 ≤ 1

and the level condition α1 +
∫ α0

α1
ᾱα2

(p1) dp1 = α. Observe the first stage. If

p1 ≤ α1 or p1 > α0, then stop with or without rejection of the null hypothesis,

respectively. Otherwise conduct the second stage, and reject the null hypothesis

if and only if p2 ≤ ᾱα2
(p1).

This is the conditional error function approach introduced in the previous

section, with ᾱ = ᾱα2
. The test keeps the level α if p1 and p2 are p-clud under

the null hypothesis, and it has exact level α if p1 and p2 are independent and

uniformly distributed on [0, 1] under the null hypothesis. In particular, a two-

stage test with an arbitrarily chosen level α ∈ [0, 1] can always be constructed.

Finally, consider the case that the underlying a ∈ A has been induced by a p-

value combination function C. Then, by Appendix A(1), we can replace the

condition p2 ≤ ᾱα2
(p1) in Method 1 by C(p1, p2) ≤ c(α2), provided that C(p1, · )
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is left continuous for all p1. This completes the connection between the two

approaches.

Chi and Liu (1999) proposed the same idea of filling the unit square by some

suitable family of conditional error functions. They used this concept to design

mid-trial sample size re-estimation in case of a misspecified anticipated treatment

effect, rather than being motivated by a connection to the p-value combination

function approach. The properties required for their conditional error function

families differ from those proposed here. In particular, for Fisher’s combination

test, they concluded that a way their requirements would be “simultaneously

satisfied is not readily apparent” (Liu and Chi (2001)). In our framework the

corresponding family is easily specified, as sketched after Proposition 1 and il-

lustrated in Figures 1 and 2.

The inverse normal method (Lehmacher and Wassmer (1999), see also Posch

and Bauer (1999) and Wassmer (1999, 2000)) serves as another example. In our

notation it is represented by

CINM(p1, p2) =
Φ−1(p1) + Φ−1(p2)√

2
,

ᾱINM
α2

(p1) =















0 if α2 = 0,

Φ
(√

2 Φ−1(α2) − Φ−1(p1)
)

if 0 < α2 < 1,

1 if α2 = 1,

where Φ denotes the distribution function of the standard normal distribution,

and cINM(α2) = Φ−1(α2). Note that, according to Method 1, for a fixed level α

the three design parameters α0, α1 and α2 interact due to the level condition,

but there is no interdependence of just two of them. For example, we may want

to fix α1 (and α). Then we are still free to manipulate α0 and α2. This is not

possible in the classical formulation of the inverse normal method, where α1 and

α2 are directly linked (Li, Shih, Xie and Lu (2002) pointed out the same for

their procedure). Thus, Method 1 can not only be used to define new two-stage

tests, but also to make known two-stage tests more flexible.

4. Overall p-values for Two-stage Tests

If overall p-values are available for two-stage tests, then multistage tests can

be constructed by recursive combination. Brannath, Posch and Bauer (2002)

presented this idea. In a two-stage test, the p-value p2 of the second stage

may itself be the overall p-value of another two-stage test. The second stage

of this latter test may again be performed in two stages, and so on. Brannath,

Posch and Bauer defined an overall p-value function based on the combination
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function C. They also noted that other p-value functions can be used, and alluded

to a proposal by Liu and Chi (2001) that is based on a family of conditional

error functions. Here, the idea of Liu and Chi will be used to define overall

p-values within the framework of the previous section; the notion of Brannath,

Posch and Bauer may be viewed as a special case. The concept is similar to

what Fairbanks and Madsen (1982) proposed in the group sequential setting,

and the sample space ordering in the sense of Tsiatis, Rosner and Mehta (1984)

is respected.

Lacking a general formal definition, p-values are commonly conceived to

represent one of two things (or both): the probability under the null hypothesis

of getting observations at least as extreme as the ones actually observed, or the

lowest level at which a selected test still rejects the null hypothesis. The latter

concept presupposes the availability of a test for each possible level. The former

concept requires—in the context of two-stage tests—the specification of what is

“at least as extreme” as an observed (p1, p2) in the unit square. Is it any (p′1, p
′
2)

with p′1 + p′2 ≤ p1 + p2, or maybe p′1p
′
2 ≤ p1p2? A more general approach would

be to fill the unit square by a family of conditional error functions, to select the

function that passes through (p1, p2), and to call the area below (and including)

this function “at least as extreme”. In other words, both concepts require an

element (ᾱh)h∈[0,1] of A. On (ᾱh)h∈[0,1] we additionally impose early stopping

bounds α0 and α1 that are, unlike in Method 1, assumed to be the same for all

ᾱh. More formally:

Definition 1. For a = (ᾱh)h∈[0,1] ∈ A and 0 ≤ α1 ≤ α0 ≤ 1, the function

p : [0, 1]2 → [0, 1],

p(p1, p2) =











p1 if p1 ≤ α1 or p1 > α0,

α1 +

∫ α0

α1

ᾱh?(x) dx otherwise,

with h? = C̃(a)(p1, p2) = min{h ∈ [0, 1]; ᾱh(p1) ≥ p2} as defined in Property 2,

is called the overall p-value (function).

Note that if α1 = 0 and α0 = 1, then p = C̃(a) on (0, 1)2. By Property 3,

any a ∈ A may thus be interpreted as the family of level curves of its own overall

p-value function.

Fisher’s combination test, as depicted in Figure 2, again serves as an il-

lustration. Suppose α1 = 0.0845 and α0 = 0.5 (yielding an overall test level

of α = 0.1 if α2 = 0.05). If p1 = 0.2 and p2 = 0.15, then h for which

ᾱh(p1) ≥ p2 barely occurs is h? =
∫

ᾱ0.03(x) dx, and the overall p-value is

0.0845 +
∫ 0.5
0.0845 ᾱ0.03(x) dx = 0.0845 + 0.03{ln(0.5) − ln(0.0845)} = 0.1378.
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Definition 1 is inspired by Liu and Chi (2001), but it remains sensible when

there is no ᾱh passing through (p1, p2), and also when there is more than one

such ᾱh. Presupposing the availability of a two-stage test for each possible level,

Liu and Chi proved that a two-stage level α test is equivalent to checking whether

its overall p-value is not greater than α, and that by this property, the overall

p-value is unique. In our terms, this is because the presupposed tests and the

definition of the overall p-value are both based on the same choice of how to fill

the unit square, i.e., the same choice of a ∈ A. This is formulated more precisely

in the following lemma.

Lemma 1. Let (ᾱh)h∈[0,1] ∈ A, 0 ≤ α1 ≤ α0 ≤ 1, α ∈ [0, 1] and (p1, p2) ∈
[0, 1]2.

(1) If α /∈ [α1, α0], or α ∈ [α1, α0] and p1 /∈ (α1, α0], then p(p1, p2) ≤ α if and

only if p1 ≤ α.

(2) If α ∈ [α1, α0] and p1 ∈ (α1, α0], then p(p1, p2) ≤ α if and only if p2 ≤
ᾱα2

(p1), where α2 is arbitrary in [0, 1] with α1 +
∫ α0

α1
ᾱα2

(x) dx = α. An

α2 satisfying this condition always exists, and for any two such α2 and α′
2,

ᾱα2
= ᾱα′

2
on (α1, α0].

Therefore, assuming α ∈ [α1, α0], Method 1 is equivalent to rejecting the

null hypothesis if and only if p(p1, p2) ≤ α. The case α /∈ [α1, α0] is included in

Lemma 1 with regard to Proposition 2.

Proposition 2. If p1 and p2 are independent and uniformly distributed on [0, 1],

then p(p1, p2) is uniformly distributed on [0, 1]. If p1 and p2 are p-clud, then the

distribution of p(p1, p2) is stochastically not smaller than the uniform distribution

on [0, 1].

Proposition 2 has an important implication. The recursive combination prin-

ciple of Brannath, Posch and Bauer (2002) is applicable, and multistage tests

can be constructed.

The overall p-value function proposed by the same authors was based on the

combination function C. Property 4 shows that it coincides with our notion in a

special case.

Property 4. Let a ∈ A be induced by a p-value combination function C such

that C(p1, · ) is left continuous for all p1 ∈ (0, 1). The overall p-value can then

be written as

p(p1, p2) =











p1 if p1 ≤ α1 or p1 > α0,

α1 +

∫ α0

α1

∫ 1

0
1{C(x,y)≤C(p1 ,p2)} dy dx otherwise,
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where 1{C(x,y)≤C(p1 ,p2)} equals 1 if C(x, y) ≤ C(p1, p2), and 0 otherwise.

5. Example

We emphasize the idea of viewing a two-stage test as a family of conditional

error functions that fills the unit square. According to Proposition 1, a (regu-

lar) p-value combination function C contains “too much” information: only the

(generalized) level curves of the C(p1, p2)-surface are of interest. On the other

hand, a single conditional error function ᾱ is obviously “not enough”. Only a

family a ∈ A provides the means to construct two-stage tests to any level, and

to define overall p-values for two-stage tests.

Clearly, there are many ways to specify such a family. For instance, the most

prominent conditional error functions, such as for Fisher’s combination test or the

inverse normal method, are already given as families. Alternatively, we may want

to “extend” a single conditional error function ᾱ to a family. This can be done

in numerous ways, but it might be reasonable to pick an extension method that

mimics the structure of a well-established test in some sense. As regards Fisher’s

combination test, this is particularly easy: define ᾱr(x) = (ᾱ(xr))1/r for r > 0.

When reparameterized by their integrals and completed by the constants ᾱ0 = 0

and ᾱ1 = 1, these functions form an element a of A (except if ᾱ = 0 or ᾱ = 1).

In this context, however, it is more convenient to stick with the parameterization

by r > 0. Indeed, Fisher’s combination test is closed under this transformation.

Starting with any conditional error function ᾱ(x) = min{1, cα2
/x} to a particular

level α2, the whole family is restored by ᾱr(x) = min{1, c1/r
α2

/x}, r > 0.

If the initial function ᾱ is not given, we are free to choose it as well. Following

Adcock (1960), we may want the p-values of the two stages to cancel out in a

symmetric fashion if early stopping is not considered: p2 = 1 − p1 should result

in an overall p-value of 0.5. Thus, we apply the above transformation to the

diagonal y = 1 − x. This yields the functions ᾱr(x) = (1 − xr)1/r, r > 0. A

two-stage test based on this family is implemented according to Method 1, with

the condition p2 ≤ ᾱα2
(p1) written as p

r(α2)
1 +p

r(α2)
2 ≤ 1, and r(α2) > 0 such that

∫

(1 − xr(α2))1/r(α2) dx = α2. Table 1 compares this new procedure to Fisher’s

combination test and the inverse normal method. It shows α1 depending on α0,

and on the apportionment of α over the stages to satisfy the level condition in

Method 1 for the level α = 0.05. The case α0 = 0.5 corresponds to stopping for

futility after the first stage if the observed effect shows in the wrong direction.

The case α0 = 1 prohibits any stopping for futility. If α2 = α, the full level is

used after the final stage; if α2 = α1, the same local level is used after both stages

(this is the “Pocock-type”).
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Table 1. Comparison of three two-stage tests. The table shows α1 for α0 =

0.5 or α0 = 1, and for the full level after the final stage (α2 = α) or the

Pocock-type (α2 = α1), assuming α = 0.05. FCT: Fisher’s combination

test. INM: inverse normal method. New: based on the family of conditional

error functions ᾱr(x) = (1 − xr)1/r, r > 0.

FCT INM New

α2 = α α0 = 0.5 0.0233 0.0044 0.0032

α0 = 1 0.0087 0 0

α2 = α1 α0 = 0.5 0.0349 0.0307 0.0304

α0 = 1 0.0323 0.0304 0.0302

PSfrag replacements
0

0

0

0

0

0

1

1

1

1

1

1
FCT INM New

Figure 3. Three families of conditional error functions. FCT: Fisher’s com-

bination test. INM: inverse normal method. New: ᾱr(x) = (1 − xr)1/r ,

r > 0.

Note the similarity between the inverse normal method and the new test,

especially for the Pocock-type. Indeed, the underlying families of conditional

error functions look almost identical, as shown in Figure 3. If the full level α is

used after the second stage and no stopping for futility is allowed (α2 = α and

α0 = 1), these two tests never stop after the first stage. In the same situation,

Fisher’s combination test always rejects the null hypothesis when p1 ≤ 0.0087,

and, strictly speaking, 0.0087 is just an upper bound (but of course a sensible

choice) for α1.

Tables 2 and 3 provide α1 for the new test in a wider range of situations. The

case α1 = α = α0 = 0.1 is a single stage test. Particularly in the Pocock-type,

α0 matters only when small. This is because the area under the conditional error

function becomes very small towards the right side of the unit square.
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Table 2. Two-stage test based on the family of conditional error functions
ᾱr(x) = (1−xr)1/r, r > 0, with the full level after the final stage. The table
shows α1 for different choices of α and α0, under the condition α2 = α.

PSfrag replacements

0

1

α 0.1 0.05 0.025 0.01

α0

α1

0.1 0.1000 0.0365 0.0129 0.0031

0.2 0.0652 0.0205 0.0062 0.0012

0.3 0.0422 0.0115 0.0030 0.0005

0.4 0.0264 0.0063 0.0014 0.0002

0.5 0.0156 0.0032 0.0006 < 0.0001
0.6 0.0084 0.0015 0.0002 < 0.0001

0.7 0.0039 0.0006 < 0.0001 < 0.0001

0.8 0.0014 0.0002 < 0.0001 < 0.0001

0.9 0.0002 < 0.0001 < 0.0001 < 0.0001
1 0 0 0 0

Table 3. Two-stage test based on the family of conditional error functions
ᾱr(x) = (1 − xr)1/r, r > 0, with the same local level after both stages.
The table shows α1 for different choices of α and α0, under the condition
α2 = α1.

PSfrag replacements

0

1

α 0.1 0.05 0.025 0.01
α0

α1

0.1 0.1000 0.0399 0.0174 0.0062

0.2 0.0767 0.0335 0.0154 0.0058

0.3 0.0690 0.0315 0.0149 0.0057

0.4 0.0657 0.0307 0.0147 0.0057
0.5 0.0642 0.0304 0.0146 0.0056

0.6 0.0635 0.0302 0.0146 0.0056

0.7 0.0632 0.0302 0.0146 0.0056

0.8 0.0631 0.0302 0.0146 0.0056

0.9 0.0631 0.0302 0.0146 0.0056
1 0.0631 0.0302 0.0146 0.0056

6. Discussion

Adaptive tests offer great flexibility in the planning and conduct of, for exam-

ple, clinical trials. In recent times, procedures have been developed that do not

even require a full prespecification of the test statistic or of the null hypothesis.

While desirable in theory, such flexibility may be dangerous in practice. It does

not open the door to total arbitrariness, but actually requires even more careful
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study planning. The issue to be answered by the study should be thoroughly

formulated. Still, when responsibly used, adaptive tests are a very versatile and

practical tool.

The current article provides a formal link between two approaches to adap-

tive two-stage tests, namely, the p-value combination function approach and the

conditional error function approach, in a general framework. The main idea is

to view a two-stage test as a family of conditional error functions that fills the

unit square. This family is used to define overall p-values in a way that covers

previously given definitions based on either of the two approaches. In addition,

new two-stage tests can be specified based on the same reasoning. The con-

struction of multistage tests is possible by recursive combination as described by

Brannath, Posch and Bauer (2002). These authors also outline the principles to

construct point estimates and confidence intervals.

It is understood that the properties of a two-stage test and the meaning-

fulness of an overall p-value are highly dependent on the choice of the underly-

ing family of conditional error functions. This family can have a vast variety of

shapes. It remains to be explored which choices are advantageous from a practical

perspective (see Brannath and Bauer (2004) for an investigation on “optimal”

conditional error functions).
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Appendix A. Generalized Level Curves

The following points provide an insight into the relationship between a p-

value combination function C and the corresponding conditional error functions

ᾱH , H ∈ R, as defined in Property 1.

(1) C(p1, p2) ≤ H implies p2 ≤ ᾱH(p1). The converse is true if C(p1, · ) is left

continuous.

(2) C(p1, p2) ≥ H implies p2 ≥ ᾱH(p1) if C(p1, · ) is strictly increasing. The

converse is true if C(p1, · ) is right continuous.

(3) If C(p1, · ) is continuous and strictly increasing, then

ᾱH(p1) =























0 if C(p1, p2) > H for all p2 ∈ (0, 1),

p2 if there is a p2 ∈ (0, 1) with C(p1, p2) = H

(any p2 satisfying this condition is unique),

1 if C(p1, p2) < H for all p2 ∈ (0, 1).
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Appendix B. The Boundary of the Unit Square

Technical difficulties can arise for p1 ∈ {0, 1} or p2 ∈ {0, 1}. For example,

Method 1 does not cover the case p1 = α0 = 1 since the ᾱh are defined only on

(0, 1). Similar problems appear in the context of overall p-values in Section 4. In

many cases these difficulties can be avoided by defining C on [0, 1]2 or ᾱ on [0, 1].

We have settled for the smaller domains because this yields the link between

the p-value combination function approach and the conditional error function

approach in the most general form. It also covers such examples as the inverse

normal method, where C tends to infinity towards the boundary of the unit

square. In most applications this type of problem occurs only with probability 0.

Appendix C. Proofs

We write xn ↑ x (xn ↓ x) if a sequence (xn)n is nondecreasing (nonincreasing)

and convergent with limit x.

C.1. Proof of Property 1

The function ᾱH is nonincreasing since C( · , p2) is nondecreasing for all p2.

To show that ᾱH is left continuous, take a sequence pn ↑ p1. Then ᾱH(p1) ≤
lim ᾱH(pn). If ᾱH(p1) < lim ᾱH(pn), there would be some p2 such that ᾱH(p1) <

p2 < ᾱH(pn), and thus C(p1, p2) > H and C(pn, p2) ≤ H, for all n. This,

however, cannot be since C( · , p2) is left continuous.

If H ≤ H ′, then clearly ᾱH ≤ ᾱH′

. We finally show that
∫

ᾱH(p1) dp1 ≤
∫

ᾱH′

(p1) dp1 implies ᾱH ≤ ᾱH′

; the converse is obvious. Take p such that

ᾱH′

(p) < ᾱH(p), and let ε = (ᾱH(p)− ᾱH′

(p))/2. Necessarily H ′ ≤ H and ᾱH′ ≤
ᾱH . Since ᾱH′

is left continuous, there exists p′ < p such that ᾱH′

(p1) < ᾱH(p)−ε

for all p1 ∈ [p′, p]. Thus,
∫ p
p′ ᾱ

H′

(p1) dp1 < ᾱH(p)(p − p′) ≤
∫ p
p′ ᾱ

H(p1) dp1, and

therefore
∫

ᾱH′

(p1) dp1 <
∫

ᾱH(p1) dp1.

The remark about existence of ᾱ0 or ᾱ1 is straightforward to prove.

C.2. Proof of Property 2

Let C(p1, p2) = inf{h ∈ [0, 1]; ᾱh(p1) ≥ p2}. It is easily seen that C cannot

be infinite, and that it is nondecreasing in both arguments. To show that C( · , p2)

is left continuous, take a sequence pn ↑ p1. Then limC(pn, p2) ≤ C(p1, p2). If

limC(pn, p2) < C(p1, p2), there would be some h such that C(pn, p2) < h <

C(p1, p2), and thus ᾱh(pn) ≥ p2 and ᾱh(p1) < p2, for all n. But this cannot be

since ᾱh is left continuous.

Using the left continuity of the ᾱh, it can be shown that ᾱh(p1) is a right con-

tinuous function in h for fixed p1. Therefore, C(p1, p2) = min{h ∈ [0, 1]; ᾱh(p1) ≥
p2}.
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C.3. Proof of Property 3

For a = (ᾱh)h and C = C̃(a) as in Property 2, we show ᾱh(p1) = max{sup[p2

∈ (0, 1); C(p1, p2) ≤ h], 0}. Suppose ᾱh(p1) ∈ (0, 1); the case ᾱh(p1) ∈ {0, 1} can

be treated in a similar way. Clearly C(p1, ᾱh(p1)) ≤ h, and therefore ᾱh(p1) ≤
max{sup[p2 ∈ (0, 1); C(p1, p2) ≤ h], 0}. Assume ᾱh(p1) < max{sup[p2 ∈ (0, 1);

C(p1, p2) ≤ h], 0}. Then there would exist p2 > ᾱh(p1) such that C(p1, p2) ≤ h.

This, however, would yield ᾱh(p1) ≥ ᾱC(p1,p2)(p1) ≥ p2.

C.4. Proof of Proposition 1

Proposition 1 follows directly from Properties 1−3.

C.5. Proof of Lemma 1

Only the case α /∈ [α1, α0] and p1 ∈ (α1, α0] needs to be considered in (1).

If α < α1, then both p(p1, p2) and p1 are greater than α. If α > α0, then both

p(p1, p2) and p1 are smaller than α.

To prove the existence of α2 in (2), let γ = inf(A) and γ ′ = sup(B) for

A = {h ∈ [0, 1]; α1 +
∫ α0

α1
ᾱh(x) dx ≥ α}, B = {h ∈ [0, 1]; α1 +

∫ α0

α1
ᾱh(x) dx ≤ α}.

It is not difficult to show γ ∈ A and γ ′ ∈ B. Clearly, γ ≤ γ ′. If γ < γ′, then

α − α1 ≤
∫ α0

α1
ᾱγ(x) dx ≤

∫ α0

α1
ᾱγ′(x) dx ≤ α − α1, so γ and γ ′ both satisfy the

condition required for α2. The case γ = γ ′ is obvious. The uniqueness of ᾱα2
on

(α1, α0] can be shown by arguments similar to those at the end of the proof of

Property 1.

Now assume p2 ≤ ᾱα2
(p1) with α2 such that α1 +

∫ α0

α1
ᾱα2

(x) dx = α, and let

h? = min{h ∈ [0, 1]; ᾱh(p1) ≥ p2} as in Definition 1. Then obviously h? ≤ α2,

and thus α1 +
∫ α0

α1
ᾱh?(x) dx ≤ α1 +

∫ α0

α1
ᾱα2

(x) dx = α. We omit the details for

the converse.

C.6. Proof of Proposition 2

Suppose p1 and p2 are independent and uniformly distributed on [0, 1]. If

α /∈ [α1, α0], then Pr(p(p1, p2) ≤ α) = α by Lemma 1(1). If α ∈ [α1, α0], there

is α2 such that α1 +
∫ α0

α1
ᾱα2

(x) dx = α. By Lemma 1(1) and (2), Pr(p(p1, p2) ≤
α) = Pr(p1 ≤ α1)+Pr({p1 ∈ (α1, α0)}∩{p2 ≤ ᾱα2

(p1)}) = α1 +
∫ α0

α1
ᾱα2

(x) dx =

α. If p1 and p2 are p-clud, Pr(p(p1, p2) ≤ α) ≤ α by a similar argument.

C.7. Proof of Property 4

Let h? = min{h ∈ [0, 1]; ᾱh(p1) ≥ p2} and H = C(p1, p2). By Appendix
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A(1) it can be shown that h? =
∫

ᾱH(x) dx, and for p1 ∈ (α1, α0],

p(p1, p2) = α1 +

∫ α0

α1

ᾱh?(x) dx

= α1 +

∫ α0

α1

ᾱH(x) dx

= α1 +

∫ α0

α1

∫ 1

0
1{y≤ᾱH(x)} dy dx

= α1 +

∫ α0

α1

∫ 1

0
1{C(x,y)≤H} dy dx.

C.8. Proof of Appendix A.

To show (1), note that C(p1, p2) ≤ H implies p2 ≤ ᾱH(p1) by the definition

of ᾱH . Now let C(p1, · ) be left continuous, and suppose p2 ≤ ᾱH(p1). If p2 <

ᾱH(p1), there is some p′2 > p2 with C(p1, p
′
2) ≤ H, so C(p1, p2) ≤ C(p1, p

′
2) ≤ H.

If p2 = ᾱH(p1), take a sequence pn ↑ p2 with C(p1, pn) ≤ H for all n. Since

C(p1, · ) is left continuous, C(p1, p2) ≤ H. (2) can be shown similarly. If C(p1, · )
is continuous and strictly increasing, then p2 = ᾱH(p1) ⇔ C(p1, p2) = H due to

(1) and (2). This proves (3).
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