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Abstract: Recurrent event data and gap times between recurrent events are often

the targets in the analysis of longitudinal follow-up or epidemiological studies. To

analyze the gap times, Huang and Chen (2003), among others, proposed to fit

the proportional hazards model. It is well-known, however, that the proportional

hazards model might not fit the data well. To provide an alternative, this paper

investigates the fit of the additive hazards model to gap time data, and an estimat-

ing equation approach is presented for inference about regression parameters. Both

asymptotic and finite sample properties of the proposed parameter estimates are

established. One major advantage of the use of the additive hazards model over the

proportional hazards model is that the resulting parameter estimator has a closed

form. The method is applied to a cancer study.
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1. Introduction

Consider a longitudinal study that involves n independent subjects, each

of which experiences recurrences of the same event (Chang and Wang (1999),

Cook, Lawless and Nadeau (1996) and Prentice, Williams and Peterson (1981)).

Here the event could be, for example, the occurrence of a certain disease, of

hospitalization, or of a tumor. Suppose that one is interested in the gap times

between recurrent events, and in making inference about effects of covariates

such as age and treatment on the gap times. For subject i, let Tij denote the

time from the (j − 1)th occurrence of the event to the jth occurrence of the

event, j = 1, 2, . . ., i = 1, . . . , n. That is, Ti1 + · · · + Tij is the time at which the

event occurs for the jth time. Also let Zi denote the vector of time-independent

covariates associated with subject i, and Ci the follow-up or censoring time.

Define Ni = {Tij : j = 1, 2, . . .}, and assume that {(Ni, Zi, Ci); i = 1, . . . n}

are n independent and identically distributed (i.i.d.) replicates of (N,Z,C). Also

assume that Ni is independent of Ci given Zi. Define Mi to be the number of
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observed gap times for subject i, the integer satisfying

Mi−1
∑

j=1

Tij ≤ Ci and

Mi
∑

j=1

Tij > Ci.

Then observed data are {Ti1, . . . , Ti,Mi−1, Ci, Zi}. That is, the first Mi − 1 gap

times are observed, but Ti,Mi
is censored at

T+
i,Mi

= Ci −

Mi−1
∑

j=1

Tij .

A number of authors have discussed the analysis of recurrent event data

in terms of the recurrence intensity or rate of the event (Cook and Lawless

(1996), Cook et al. (1996), Lin et al. (2000), Wang and Chen (2000) and Wang,

Qin and Chiang (2001)). In contrast, there exists limited research on recurrent

gap times. Huang and Chen (2003) and Schaubel and Cai (2004) discussed

regression analysis of recurrent gap times under the proportional hazards model.

It is well-known, however, that the proportional hazards model might not fit the

data well. To address this, in the following, we investigate the additive hazards

model defined as

λ(t|Zi) = λ0(t) + β′
0Zi (1)

for Tij given Zi (Lin and Ying (1994)). In the above, β0 denotes the vector

of unknown regression parameters and λ0(t) is an unspecified baseline hazard

function.

The additive hazards model describes a different aspect of the relationship

between survival time and covariates than does the proportional hazards model.

For the two-sample situation, for example, the additive hazards model addresses

the risk difference, while the proportional hazards model concerns the risk ra-

tio. Both models have sound biological and empirical bases, and which model

should be used for a particular situation usually depends on factors such as the

background, the quantity of interest and the availability of proper inference pro-

cedures. In tumorigenicity experiments that investigate the dose effect on tumor

risk, for example, an additive hazards model may be more reasonable or often

preferred since the excess risk is often the quantity of interest (Breslow and Day

(1987, Chap.6)).

In the next section, for inference about regression parameters and the cumu-

lative hazard function, an estimating equation approach is presented. It will be

seen that one major advantage of the use of the additive hazards model over the

proportional hazards model is that the resulting regression parameter estimator
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has a closed form. In addition, the asymptotic properties of the proposed esti-

mators are established. Section 3 reports some results from a simulation study

and Section 4 applies the proposed method to a bladder tumor study. Some

concluding remarks are given in Section 5.

2. Statistical Methods

This section considers inference procedures for β0 and the baseline cumula-

tive hazard function Λ0(t) =
∫ t
0 λ0(u)du. For the purpose, as in Huang and Chen

(2003), we assume that each individual recurrent event process is a renewal pro-

cess. That is, for a given i, {Tij , j = 1, 2 . . .} are i.i.d. For each i, define

∆i = I(Mi > 1), M∗
i = max(Mi − 1, 1) and

Xij =

{

Tij if ∆i = 1 ,

T+
ij if ∆i = 0 ,

j = 1, . . . ,M ∗
i .

To present the inference procedure, note that given Ci, Mi and T+
i,Mi

, the

observed complete gap times {Tij , j = 1, . . . ,Mi − 1} are identically distributed

(Huang and Chen (2003)). Assume that {(Xij , j = 1, . . . ,M ∗
i ,∆i, Zi); i =

1, . . . , n} are n i.i.d. replicates of {X(j), j = 1, . . . ,M ∗,∆, Z}. Since the first gap

time is subject to independent censorship, the exchangeability of observed com-

plete gap times then suggests that the subset {(Xij , j = 1, . . . ,M ∗
i ,∆i, Zi); i =

1, . . . , n} can be treated as clustered survival data. Of course the cluster size is in-

formative, and the censored gap time needs to be removed for Mi > 1. Using this

fact and following the ideas used in Lin and Ying (1994) and Huang and Chen

(2003) we propose to use the estimating equation U(β) = 0 to estimate regression

parameters β0, where

U(β) =

∫ τ

0
Q(t)

[

Êij{Zi∆idI(Xij ≤ t)} −
Êij{ZiI(Xij ≥ t)}

Êij{I(Xij ≥ t)}
dÊij{∆iI(Xij ≤ t)}

−

(

Êij{Z
⊗2
i I(Xij ≥ t)} −

(Êij{ZiI(Xij ≥ t)})⊗2

Êij{I(Xij ≥ t)}

)

βdt

]

.

In the above, Q(t) is a weight process that may depend on data (see conditions

given below), τ (0 < τ <∞) is a prespecified constant such that P (X(1) ≥ τ) > 0,

v⊗2 = v′v for a column vector v, Êij = ÊiÊj , where Êi and Êj denote empirical

averages over i = 1, . . . , n and j = 1, . . . ,M ∗
i , respectively. In practice, τ is

usually taken as the longest follow-up time. In general, the choice of Q(t) gives

a class of estimates and in the numerical study and the example below, Q(t) = 1

is used; some comments follow.
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Note that an alternative, but less efficient approach to the above method is

to base the inference about β0 on {(Xi1,∆i, Zi); i = 1, . . . , n}, the data only on

the time to the first occurrence of the event. In this case, U(β) has the form

U1(β) =

∫ τ

0
Q(t)

[

Êi{Zi∆idI(Xi1 ≤ t)} −
Êi{ZiI(Xi1 ≥ t)}

Êi{I(Xi1 ≥ t)}
dÊi{∆iI(Xi1 ≤ t)}

−

(

Êi{Z
⊗2
i I(Xi1 ≥ t)} −

(Êi{ZiI(Xi1 ≥ t)})⊗2

Êi{I(Xi1 ≥ t)}

)

βdt

]

.

Define K̂(t) = Êij{∆iI(Xij ≤ t)}, Ĝ0(t) = Êij{I(Xij ≥ t)} and Ĝ1(t) =

Êij{ZiI(Xij ≥ t)}. Let β̂ denote the solution to U(β) = 0. Then

β̂ =

[

∫ τ

0
Q(t)

(

Êij{Z
⊗2
i I(Xij ≥ t)} −

(Êij{ZiI(Xij ≥ t)})⊗2

Êij{I(Xij ≥ t)}

)

dt

]−1

×

[

∫ τ

0
Q(t)

(

Êij{Zi∆idI(Xij ≤ t)}−
Êij{ZiI(Xij ≥ t)}

Êij{I(Xij ≥ t)}
dÊij{∆iI(Xij ≤ t)}

)]

.

It can be easily shown that β̂ is a consistent estimator for β0. For the asymptotic

distribution of β̂, it can be first shown that n1/2U(β0) is asymptotically nor-

mally distributed with mean zero and covariance matrix that can be consistently

estimated by Σ̂ = Êi[(Êj{φ̂(Xij ,∆i, Zi)})
⊗2], where

φ̂(Xij ,∆i, Zi) =

∫ τ

0
Q(t)

(

Zi −
Ĝ1(t)

Ĝ0(t)}

)[

∆idI(Xij ≤ t) −
I(Xij ≥ t)

Ĝ0(t)
dK̂(t)

−I(Xij ≥ t)β̂′

(

Zi −
Ĝ1(t)

Ĝ0(t)

)

dt

]

.

Then it follows from the Taylor series expansion of U(β) that n1/2(β̂ − β0) has

an asymptotic normal distribution with zero mean and covariance matrix that

can be consistently estimated by Ω̂F = Â−1Σ̂Â−1, where

Â =

∫ τ

0
Q(t)

[

Êij{Z
⊗2
i I(Xij ≥ t)} −

Ĝ1(t)
⊗2

Ĝ0(t)

]

dt.

The proofs of the above results are sketched in Appendix A. Note that the

variance estimator Ω̂F is model-free. Alternatively the asymptotic variance of

n1/2(β̂ − β0) can be estimated by Ω̂B = Â−1(B̂1 − B̂2)Â
−1, where

B̂1 = Êij

[

∫ τ

0
Q(t)

(

Zi −
Ĝ1(t)

Ĝ0(t)

)⊗2
∆idI(Xij ≤ t)

]

,
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B̂2 = Êi[Êj{φ̂(Xij ,∆i, Zi) − Êjφ̂(Xij ,∆i, Zi)}
⊗2] .

In contrast to Ω̂F , the validity of Ω̂B depends on (1). Let β̂1 denote the solution

to U1(β) = 0. It is shown in Appendix B that the asymptotic variance of β̂ is

smaller than that of β̂1. That is, β̂ is more efficient than β̂1.

Sometimes one may be also interested in estimation of the baseline cumula-

tive hazard function Λ0(t) =
∫ t
0 λ0(u)du. Following the same idea, and using the

connection between gap data and clustered data discussed above, we propose the

estimator

Λ̂0(t; β̂) =

∫ t

0

dÊij{∆iI(Xij ≤ u)} − Êij{I(Xij ≤ u)β̂′Zi}du

Êij{I(Xij ≥ u)}

for Λ0(t). Note that this estimator may not always be monotone in t and, in

this case, simple modifications as those discussed in Lin and Ying (1994) can

be made to ensure monotonicity while preserving asymptotic properties. If one

uses only the data about the time to the first occurrence of the event, the above

estimator reduces to

Λ̂
(1)
0 (t; β̂1) =

∫ t

0

∑n
i=1[∆idI(Xi1 ≤ u) − I(Xi1 ≥ u)β̂′1Zidu]

∑n
k=1 I(Xk1 ≥ u)

=

∫ t

0

dÊi{∆iI(Xi1 ≤ u)} − Êi{I(Xi1 ≤ u)β̂′1Zi}du

Êi{I(Xi1 ≥ u)}
.

As for β̂, it can be shown that Λ̂0(t; β̂) is consistent or, more specifically,

sup0≤t≤τ |Λ̂0(t; β̂) − Λ0(t)| → 0 almost surely. Furthermore, we can show that

n1/2(Λ̂0(t; β̂) − Λ0(t)) converges weakly to a zero-mean Gaussian process whose

covariance function at (s, t) can be consistently estimated by

Γ̂(s, t) = Êi[Êj{ψ̂(s;Xij ,∆i, Zi)}Êj{ψ̂(t;Xij ,∆i, Zi)}] , (2)

where

ψ̂(t;Xij ,∆i, Zi) =

∫ t

0

[

∆idI(Xij ≤ u) − I(Xij ≥ u)β̂′Zidu

Ĝ0(u)

−
I(Xij ≥ u)dK̂(u) − I(Xij ≥ u)β̂′Ĝ1(u)du

Ĝ0(u)2

]

−Ĉ ′(t)Â−1φ̂(Xij ,∆i, Zi)

and Ĉ(t) =
∫ t
0 Ĝ1(u)du/Ĝ0(u). The sketch of the proof is given in Appendix C.

Also similar to β̂, Λ̂(t; β̂) is generally more efficient than Λ̂
(1)
0 (t; β̂1).
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Given Λ̂(t; β̂), one may also be interested in constructing confidence bands

for Λ0(t). It can be seen by checking Γ̂(s, t) that the limiting Gaussian process of

Λ̂(t; β̂) does not have independent increments, which makes the construction diffi-

cult. Corresponding to this, we propose to use the simulation approach discussed

in Lin, Fleming and Wei (1994). The basic idea of the approach is to approx-

imate Êj{ψ̂(t;Xij ,∆i, Zi)} by RiÊj{ψ̂(t;Xij ,∆i, Zi)}, where {Ri , i = 1, . . . , n}

are i.i.d. standard normal random variables independent of the observed data.

Thus the construction of the simultaneous confidence bands for Λ0(t) can be

carried out by repeatedly generating normal random samples {Ri , i = 1, . . . , n}

given the observed data. Note that since Λ0(t) is non-negative, one may first

want to construct confidence bands for log {Λ0(t)} using the above approach and

then to transform them back to the confidence bands for Λ0(t). Specifically,

define

Ŵ (t) =
n−

1

2

∑n
i=1RiÊj{ψ̂(t;Xij ,∆i, Zi)}

Λ̂0(t; β̂)
.

Then by the functional delta-method, one can show that n1/2(log{Λ̂0(t; β̂)} −

log{Λ0(t)}) is asymptotically equivalent to Ŵ (t). Let qα be the boundary value

given by P{maxt1≤t≤t2 |Ŵ (t)| > qα} = α based on simulated Ŵ (t) for given

observed data, where 0 ≤ t1 ≤ t2 ≤ τ . Then an approximate 1 − α confidence

band for Λ0(t) over [t1, t2] is given by

[Λ̂0(t; β̂) exp(−n−
1

2 qα) , Λ̂0(t; β̂) exp(n−
1

2 qα)] .

3. Simulation Results

This section reports some of the simulation results obtained from a study

conducted for investigating the finite sample performance of the statistical meth-

ods proposed in the previous section, with focus on covariate effects. To generate

gap times, heterogeneous mixture renewal processes were used with the addi-

tive hazards model defined in (1). Specifically, in the simulation, the baseline

gap time T
(0)
ij was assumed to follow the standard exponential distribution, and

given by − ln{1 − Φ(Ai + Bij)} where Ai and Bij are independent normal ran-

dom variables with mean zeros and variances ρ and 1 − ρ, respectively. Note

that here ρ represents the heterogeneity among subjects and 1 − ρ controls the

heterogeneity among gap times for a given subject. Given the baseline gap times,

general gap times were calculated as Tij = T
(0)
ij /(1 + β0 Zi) with Zi assumed to

follow the uniform distribution over (0, 1).

In the simulation, we considered different configurations in terms of the het-

erogeneity characterized by ρ, different sample sizes, true values of β0 and cen-

soring distributions. Table 1 presents the means (BIAS) of the biases of point
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estimates β̂1 and β̂ and their sample standard deviations (SSE) over 10,000 repli-

cations for the case of β0 = 0.5, n = 100 or 200, and ρ = 0.25, 0.50 or 0.75,

respectively. Note that β̂1 relies only on the first gap time and does not depend

on ρ. The table also gives the average of observed gap times (M̄), the means of

two estimated standard deviations given by Ω̂F (SEEF ) and Ω̂B (SEEB) and

the estimated 95% empirical converge probabilities corresponding to Ω̂F (CPF )

and Ω̂B (CPB), respectively. The top part of the table is for the case where the

censoring time C is U(0, 1), while the bottom part is for the case where C is

U(0, 2).

Table 1. Summary of the simulation study.

Censoring time ∼ U(0, 1)
n ρ M̄ BIAS SSE SEEF SEEB CPF CPB

β̂1 100 1.0000 0.0055 0.6944 0.6636 0.6791 0.9420 0.9522

β̂ 0.25 1.3104 0.0142 0.6778 0.6579 0.6743 0.9422 0.9554

0.50 1.5311 0.0110 0.6866 0.6598 0.6762 0.9396 0.9515

0.75 1.9991 0.0054 0.6924 0.6625 0.6773 0.9427 0.9516

β̂1 200 1.0000 -0.0017 0.4816 0.4666 0.4734 0.9429 0.9488

β̂ 0.25 1.3097 0.0001 0.4711 0.4631 0.4702 0.9450 0.9506

0.50 1.5319 0.0136 0.4791 0.4649 0.4717 0.9423 0.9491

0.75 1.9996 -0.0010 0.4810 0.4656 0.4721 0.9425 0.9494

Censoring time ∼ U(0, 2)
n ρ M̄ BIAS SSE SEEF SEEB CPF CPB

β̂1 100 1.0000 0.0067 0.5685 0.5400 0.5629 0.9318 0.9524

β̂ 0.25 1.8846 0.0123 0.5543 0.5210 0.5467 0.9266 0.9527

0.50 2.3677 0.0156 0.5567 0.5276 0.5528 0.9320 0.9549

0.75 3.2360 0.0081 0.5638 0.5333 0.5566 0.9278 0.9496

β̂1 200 1.0000 0.0053 0.3989 0.3810 0.3922 0.9368 0.9491

β̂ 0.25 1.8871 0.0055 0.3843 0.3685 0.3809 0.9374 0.9514

0.50 2.3744 0.0062 0.3895 0.3720 0.3834 0.9352 0.9498

0.75 3.2424 0.0052 0.3948 0.3763 0.3876 0.9360 0.9501

It can be seen from the table that both estimators β̂1 and β̂ are approximately

unbiased. As expected, β̂ is more efficient than β̂1 and, when ρ is close to 1,

the variances of the two estimators approach each other. Also as expected, the

variances decrease when sample size increases and the follow-up period is longer.

In terms of the two variance estimators, the model-based estimator Ω̂B seems

better. These conclusions are similar to those obtained in Huang and Chen

(2003) under the proportional hazards model. Other configurations gave similar
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results. For both the simulation here and the example in the next section, Fortran

was used for programming.

4. An Application

In this section we apply the proposed methodology to a bladder cancer

study conducted by the Veterans Administration Cooperative Urological Re-

search Group (Andrews and Herzberg (1985), Byar (1980) and Wei, Lin and

Weissfeld (1989)). The study consisted of 118 patients with superficial bladder

tumors, a number of whom experienced recurrences of the tumors. The patients

were randomly allocated to one of three treatments, placebo (48), pyridoxine

(32) and thiotepa (38). In addition, for each patient, there were two potentially

important baseline covariates: the number of initial tumors and the size of the

largest initial tumor. The goal here is to assess the treatment effects on the gap

time between recurrent tumors as well as baseline covariate effects. As mentioned

in Huang and Chen (2003), the renewal process assumption seems reasonable.

To apply the method, define Zi1 = 1 if patient i received the pyridoxine

treatment and 0 otherwise, Zi2 = 1 if patient i was given thiotepa and 0 otherwise,

and Zi3 and Zi4 be the number of initial tumors and the size of the largest initial

tumor, respectively. The results obtained by the application of the approach are

given in Table 2, where the estimated standard errors are from the model-based

method. For comparison, β̂1 and its estimated standard errors were also obtained

and are presented in the table. The results suggest that the thiotepa treatment

had a significant effect on delaying the recurrence of the bladder tumor, and a

larger number of initial tumors implies a significantly shorter gap time. On the

other hand, the gap time did not seem to be related to pyridoxine and the size

of the largest initial tumor. The results based on model-free variance estimation

are similar.

Table 2. Analysis results of the bladder cancer study.

Pyridoxine Thiotepa Initial number Initial size

β̂ Estimate 0.0010 -0.0174 0.0084 -0.0029

SEEB 0.0072 0.0063 0.0033 0.0025

β̂1 Estimate 0.0010 -0.0167 0.0071 -0.0020

SEEB 0.0074 0.0066 0.0033 0.0025

Note that the above results were obtained under the additive hazards model

(1). Huang and Chen (2003) gave similar conclusions using the proportional

hazards model. To see graphically which model gives a better fit to the problem,
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we obtained separate estimators of the cumulative hazard functions correspond-
ing to the three treatments. Figure 1 presents the differences of the three estima-
tors in log scale, and Figure 2 gives the differences themselves. Note that under
the proportional hazards model, one would expect the differences in log scale
to be roughly a straight line with slope zero, while under the additive hazards
model, the differences themselves would resemble a straight line with slope zero.
It seems from Figures 1−2 that the additive hazards model fits a little better
than the proportional hazards model.

Figure 1. Differences of estimated cumulative hazard functions in log scale.

Figure 2. Differences of estimated cumulative hazard functions.
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5. Concluding Remarks

An alternative to the proposed estimate β̂ of the covariate effect is β̂1 based

only on the time to the first occurrence of the event. Although the derivation

of β̂1 may seem easier, it is always less efficient than β̂ as proved in Appendix

B and by the simulation for situations considered here. In general, however,

this may not be true and needs more research. Another alternative is to replace

{Xi1 , i = 1, . . . , n} in U1(β) by each of
∏n

i=1 M
∗
i different sets of individual gap

times and to base the inference on the sum of the resulting estimating functions.

Specifically, let ji ∈ {1, . . . ,M ∗
i } and

U (j1,...,jn)(β)

=

∫ τ

0
Q(t)

[

Êi{Zi∆idI(Xiji
≤ t)} −

Êi{ZiI(Xiji
≥ t)}

Êi{I(Xiji
≥ t)}

dÊi{∆iI(Xiji
≤ t)}

−

(

Êi{Z
⊗2
i I(Xiji

≥ t)} −
(Êi{ZiI(Xiji

≥ t)})⊗2

Êi{I(Xiji
≥ t)}

)

βdt

]

.

Then one could use the estimating function

U2(β) =

M∗

1
∑

j1=1

· · ·

M∗

n
∑

jn=1

U (j1,...,jn)(β) = 0 .

This approach may be more efficient, but it may be computationally overwhelm-

ing when n is large.

It should be noted that here we considered only time-independent covariates

and that the proposed inference approach relies on the assumption that the ob-

served complete gap times are identically distributed. In other words, we have the

exchangeability of the gap times. For the case of time-dependent covariates, the

proposed inference approach is still applicable as long as covariate effects are the

same across gaps, which assures the exchangeability of the gap times. More dis-

cussions about the exchangeability can be found in Huang and Chen (2003) and

Wang and Chang (1999), and recently Chen, Wang and Huang (2004) consid-

ered a situation where exchangeability is no longer available under the stratified

proportional reverse-time hazards model.

A problem for future research is the development of appropriate tools for

choosing a model that gives a good fit to a given problem. One approach is to use

graphical tools as done in the last section, but they are often nonconclusive. Some

procedures have been developed for the goodness-of-fit test for the proportional

hazards model and the additive hazards model if regular right-censored failure

time data are available. It seems, however, that there does not exist a formal
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procedure for either model for the situation considered here. Another problem

that needs further study, but is beyond the scope of the current paper, is the

selection of a weight process Q(t) that gives the most efficient estimate of β for

a particular situation. For the simulation study, in addition to Q(t) = 1, we also

studied the process Q(t) = n−1
∑n

i=1 I(Ci ≥ t) and obtained similar results.

However, as in many situations, it is difficult to develop a guideline about the

general selection of the weight process.

Appendix A. Asymptotic Properties of U(β0) and β̂

Define K(t) = E{∆I(X(1) ≤ t)}, G0(t) = E{I(X(1) ≥ t)}, and G1(t) =

E{ZI(X(1) ≥ t)}. To establish the asymptotic properties of U(β0) and β̂, we

need the following regularity conditions:

(C1) Q(t) has bounded variation and converges almost surely to a deterministic

function q(t) uniformly over t ∈ [0, τ ];

(C2) E‖Z‖2 <∞;

(C3) A =
∫ τ
0 q(t)

[

E{Z⊗2I(X(1) ≥ t)} −G1(t)
⊗2/G0(t)

]

dt > 0.

We first show the asymptotic normality of U(β0). Under (C1) and (C2), using

the Functional Central Limit Theorem (Pollard (1990, p.53)) and the functional

version of the Taylor expansion for the mapping, we have

n
1

2U(β0) = n
1

2

∫ τ

0
q(t)

[

Êij{Zi∆idI(Xij ≤ t)} −
G1(t)

G0(t)
dK̂(t) −

Ĝ1(t)

G0(t)
dK(t)

+
G1(t)Ĝ0(t)

G0(t)2
dK(t) − Êij{Z

⊗2
i I(Xij ≥ t)}β0dt

+

(

Ĝ1(t)G
′
1(t)

G0(t)
+
G1(t)Ĝ

′
1(t)

G0(t)
−
G1(t)

⊗2Ĝ0(t)

G0(t)2

)

β0dt

]

+ op(1)

= n−
1

2

n
∑

i=1

Êj{φ(Xij ,∆i, Zi)} + op(1), (A.1)

where

φ(Xij ,∆i, Zi)} =

∫ τ

0
q(t)

(

Zi −
G1(t)

G0(t)

)[

∆idI(Xij ≤ t) −
I(Xij ≥ t)

G0(t)
dK(t)

−I(Xij ≥ t)β′
0

(

Zi −
G1(t)

G0(t)

)

dt

]

.

Note that Êj{φ(Xij ,∆i, Zi)} (i = 1, . . . , n) are i.i.d. zero-mean random

vectors. By utilizing the Multivariate Central Limit Theorem, n1/2U(β0)
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is asymptotically normal with mean zero and covariance matrix Σ = E

[(Êj{φ(Xij ,∆i, Zi)})
⊗2], which can be consistently estimated by Σ̂. Now we

consider the asymptotic properties of β̂. By applying the Uniform Strong Law

of Large Numbers (Pollard (1990, p.41)), it can be first shown that Â → A

and Û(β0) → 0 almost surely. The strong consistency of β̂ thus follows from

β̂ − β0 = Â−1U(β0) and A > 0. The asymptotic normality of β̂ directly follows

from the asymptotic normality of U(β0) and

n
1

2 (β̂ − β0) = A−1n
1

2U(β0) + op(1). (A.2)

That is, n1/2(β̂ − β0) is asymptotically normal with zero mean and covariance

matrix A−1ΣA−1, which can be consistently estimated by Ω̂.

Appendix B. Comparison of Asymptotic Variances of β̂ and β̂1

For β̂, note that

Σ = E{φ(X(1),∆, Z)⊗2} −E[Êj{φ(X(j),∆, Z) − Êjφ(X(j),∆, Z)}⊗2] . (A.3)

Under the conditions (C1)−(C3), it can be shown that the asymptotic variance

of β̂1 is given by

A−1E{φ(X(1),∆, Z)⊗2}A−1.

This, together with (A.3), shows that the asymptotic variance of β̂ is smaller

than or equal to that of β̂1.

Appendix C. Asymptotic Properties of Λ̂0

First note that under model (1), we have

Λ0(t) =

∫ t

0

dK(u) − β′
0G1(u)du

G0(u)
, (A.4)

Λ̂0(t; β̂) =

∫ t

0

dK̂(u) − β̂′Ĝ1(u)du

Ĝ0(u)
. (A.5)

The uniform strong consistency of Λ̂0(t; β̂) thus follows directly from (A.4), (A.5),

the Uniform Strong Law of Large Numbers and the strong consistency of β̂. We

now consider the asymptotic normality of Λ̂0(t; β̂). In view of (A.1)−(A.2) and

(A.4)−(A.5), using the Functional Central Limit Theorem and the functional
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version of the Taylor expansion for the mapping, we can show that

n
1

2 (Λ̂0(t; β̂) − Λ0(t))

= n
1

2

∫ t

0

[

dK̂(u) − β′
0Ĝ1(u)du

G0(u)
−
Ĝ0(u)dK(u) − β ′

0G1(u)Ĝ0(u)du

G0(u)2

]

−

∫ t

0

G′
1(u)du

G0(u)
(β̂ − β0) + op(1)

= n−
1

2

n
∑

i=1

Êj{ψ(t;Xij ,∆i, Zi)} + op(1), (A.6)

where

ψ(t;Xij ,∆i, Zi) =

∫ t

0

∆idI(Xij ≤ u) − I(Xij ≥ u)β′
0Zidu

G0(u)

−

∫ t

0

I(Xij ≥ u)dK(u) − I(Xij ≥ u)β′
0G1(u)du

G0(u)2

−C ′(t)A−1φ(Xij ,∆i, Zi)

and C(t) =
∫ t
0 G1(u)du/G0(u). Thus, the finite-dimensional normality of Λ̂0(t; β̂)

follows from the Multivariate Central Limit Theorem. Note that Zi = max{Zi, 0}

−max{−Zi, 0}. Then
∫ t
0 [∆idI(Xij ≤ u)−I(Xij ≥ u)β′

0Zdu]/G0(u) and
∫ t
0 [I(Xij

≥ u)dK(u) − I(Xij ≥ u)β′
0G1(u)du]/G0(u)

2 can be written as summations of

monotone processes over [0, τ ] and are therefore manageable (Pollard (1990,

p.38)). It then follows from the Functional Central Limit Theorem that

n1/2(Λ̂0(t; β̂) − Λ0(t)) is tight and converges weakly to a zero-mean Gaussian

process whose covariance function at (s, t) is given by E{Êjψ(s;X(j),∆, Z)Êj

ψ(t;X(j),∆, Z)}, which can be consistently estimated by (2).
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