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Abstract: We consider Poisson, logistic and Cox regressions when some covariates

are not accurately ascertainable but contaminated with additive errors. Huang and

Wang (1999, 2000, 2001) showed that the slope parameters can be consistently esti-

mated via nonparametric correction, without imposing distributional assumptions

on both the underlying true covariates and the errors. However, certain instrumen-

tal variables, particularly replicated error-contaminated covariates, are required. In

this article, we discover that the error effect is additive in the limit on some properly

formulated estimating functions. This finding gives rise to a new nonparametric

correction technique that accommodates a broad variety of practically important,

internal and external error-assessment data. Simulations for Cox regression with

external reliability data are conducted, and the application to an AIDS study is

presented as an illustration.
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1. Introduction

Covariates of regression analysis are often measured with error in medical

research. Indeed, many measures are not even accurately ascertainable; ex-

amples include CD4 lymphocyte count in HIV/AIDS studies and blood pres-

sure in cardiovascular disease research. Both imperfect instrumentation and

biological fluctuation may contribute to the error. As is well known, naive

analysis by treating mismeasured covariates as the truth in conventional in-

ference procedures may result in substantial estimation bias; see, for example,

Carroll, Ruppert and Stefanski (1995).

Various methods exist to address nonlinear regression when some covari-

ates are contaminated with additive errors. Many of them can be found in

the monograph of Carroll, Ruppert and Stefanski (1995). Regression calibration

(e.g., Prentice (1982), Carroll and Stefanski (1990) and Gleser (1990)) and sim-

ulation extrapolation (Cook and Stefanski (1994), Stefanski and Cook (1995),
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and Carroll, Küchenhoff, Lombard and Stefanski (1996)) are two popular ap-

proaches in practice. However, they both yield approximate but inconsistent
estimation in general. For consistent estimation, methods have been developed

under either structural or functional modeling, i.e., with or without paramet-

ric distributional assumptions imposed on the true covariates (Carroll, Rup-

pert and Stefanski (1995, Sec. 1.2)). Whereas the maximum likelihood prin-
ciple may be employed under structural modeling, functional modeling demands

innovation. Two general functional modeling methods are the conditional score

(Stefanski and Carroll (1985)) and parametric correction (Nakamura (1990, 1992),

Stefanski (1989), Huang and Wang (2001)). Note that parametric distributional
assumptions are required on the measurement errors for the aforementioned ap-

proaches, structural and functional modeling alike.

In recent years, weakened assumptions on the error distribution have been

pursued under functional modeling. Buzas (1997) investigated errors with a sym-
metric distribution around zero. Most recently, Huang and Wang (1999, 2000,

2001) completely eliminated distributional assumptions, except for mild regu-

larity conditions, on both the true covariates and the errors. They proposed a
nonparametric correction technique which achieves consistent slope estimation

for several generalized linear models. The notion of nonparametric correction is

appealing for obvious reasons. However, this technique requires a second mis-

measured replicate for each error-prone covariate or, more generally, instrumental
variable, i.e., a measure related to the true covariate besides the mismeasured

one (cf., Carroll, Ruppert and Stefanski (1995, Chap. 5)). For covariate mea-

surement error analysis in general, one needs information about the measurement

error in addition to the primary data, i.e., those necessary for the naive analysis.
Additional data serving this purpose are termed error-assessment data in this

article, and the aforementioned instrumental variable is one form of such data.

Common types of error-assessment data that the technique of Huang and Wang

(1999, 2000, 2001) can not accommodate include
(i) Reliability data external to the primary data;

(ii) Reliability data internal to the primary data, with the complication that the

error-assessment subset may depend on the underlying true covariates and

the response.
To broaden the applicability of nonparametric correction, this article further

develops the methodology and proposes a new technique.

Focusing on widely employed Poisson, logistic and Cox regressions, we show

that the errors-in-covariates effect is additive in the limit for some properly for-
mulated estimating functions. This main finding gives rise to a new nonpara-

metric correction technique that accommodates various internal and external

error-assessment data. Section 2 presents the estimating functions and reveals

the additive errors-in-covariates effect. Nonparametric estimation of the additive
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effect using error-assessment data is dealt with in Section 3. As an illustration,

we present a nonparametric correction procedure in Section 4 for Cox regression

with external error-assessment data, along with simulation results and applica-

tion to an AIDS study. Section 5 concludes with discussion. Technical details

are deferred to the appendices.

2. Estimating Functions and Errors-in-Covariates Effects

For Poisson, logistic, or Cox regression, let X be the true covariate vector

and Y the response. We first formulate estimating functions for each regression

with an iid sample of {X, Y }. The errors-in-covariates effect on these estimating

functions is then investigated when X is replaced by its surrogate W. Specifically,

the error contamination of X follows the classical additive model:

W = X + εεε,

εεε ⊥ {X, Y },

}
(1)

where εεε is the error vector and ⊥ denotes independence. Neither the distribution

of X nor that of εεε is specified. The error εεε may not have a mean of zero, may

not be symmetrically distributed, and its components can be correlated. In case

some covariates are accurately measured, the corresponding components of εεε are

zeros.

2.1. Poisson regression

Poisson regression is widely applied in the analysis of count data. Write E

as expectation. Response Y is a frequency measure and the model postulates

E(Y
∣∣ X) = exp(α + βββTX), (2)

where α is the intercept and βββ the slope vector. The standard estimation proce-

dure for (α,βββT )T is to solve the (normalized) score function in terms of (a,bT )T :

Ê

[
{Y − exp(a + bTX)}

(
1
X

)]
,

where Ê represents the empirical sample average. In this article, we treat α as

a nuisance parameter, for two reasons. First, typically α is not of as much in-

terest as βββ in practice. Second, for generalized linear measurement-error models,

even with replicated mismeasured covariates, α is not identifiable unless certain

distributional assumptions are imposed on εεε (see Huang and Wang (1999; 2001,

Sec. 4.1)). Incidentally, one assumption sufficient for identifiability is that εεε is

symmetrically distributed around 0. Therefore, we algebraically reduce the above
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estimating function to the following one for βββ only:

Ψ̃ΨΨ
P
(b) = Ê [{X − Ê(X)}Y ] − Ê(Y )

[
Ê{X exp(bTX)}

Ê{exp(bTX)}
− Ê(X)

]

≡ Ê [{X − Ê(X)}Y ] − Ê(Y )φ̂φφ1(b;X), (3)

where

φ̂φφH(b;G) ≡
Ê{HG exp(bT G)}

Ê{H exp(bT G)}
− Ê(G) (4)

for random vector G and non-negative random variable H.

2.2. Logistic regression

Logistic regression is popular given Bernoulli outcomes. With binary re-
sponse Y , the model postulates

Pr(Y = 1
∣∣ X) =

exp(α + βββTX)

1 + exp(α + βββTX)
. (5)

Again, α is considered as a nuisance and βββ is the parameter of interest. Given
that the score function is not correction-amenable (Stefanski (1989)), Huang and
Wang (2001) suggested a pair of weighted score functions for (α,βββT )T :

Ê

[
{Y − 1 + Y exp(−a − bTX)}

(
1
X

)]
,

Ê

[
{Y + (Y − 1) exp(a + bTX)}

(
1
X

)]
.

These reduce to estimating functions for βββ:

Ψ̃ΨΨ
L

−(b) = Ê [{X − Ê(X)}(Y − 1)] − Ê(Y − 1)φ̂φφY (−b;X),

Ψ̃ΨΨ
L

+(b) = Ê [{X − Ê(X)}Y ] − Ê(Y )φ̂φφY −1(b;X),



 (6)

as being the basis to form a class of consistent estimators. The approach of
Huang and Wang (2001) can be used to obtain an efficient estimator in this
class.

2.3. Cox regression

The proportional hazards model (Cox (1972)) is one of the most widely
applied models for censored survival data. Of interest is the relationship between
survival time T 0 and covariate vector X, but T 0 is subject to censoring by time
C and thus is not fully observed. The response Y consists of observed variables
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T ≡ T 0∧C and ∆ ≡ I(T 0 ≤ C), i.e., Y ≡ {T,∆}, where ∧ denotes minimum and
I(·) is the indicator function. The model postulates a semiparametric formulation

of the cumulative hazard function Λ(·
∣∣ X) of T 0 given X, and a conditional

independence censorship:

Λ(dt
∣∣ X) = Λ(dt) exp(βββTX),

T 0 ⊥ C
∣∣ X,

}
(7)

where βββ is the parameter of interest and Λ(·) an unspecified baseline cumulative
hazard function. In fact, Λ(·) is analogous to the intercept in the Poisson- and

logistic-regression models. Thus, not surprisingly, in the presence of covariate
measurement error it may not be identifiable even when replicated mismeasured

covariates are available (Huang and Wang (2000)). With the functional repre-
sentation of Huang and Wang (2000), the (normalized) partial-score function

can be written as

Ψ̃ΨΨ
C
(b) = Ê [{X − Ê(X)}∆I(T ≤ τ)] −

∫ τ

0
φ̂φφI(T≥t)(b;X) dÊ{∆I(T ≤ t)} (8)

with time limit τ satisfying Pr(T ≥ τ) > 0.

Cox regression can accommodate time-varying covariates as well, with proper
generalizations of (7) and (8). Then, in the presence of measurement error,

the error is a time-indexed process and the measurement error model (1) can
be generalized accordingly. This would pose little additional difficulty for the

development in this article except for notation. To focus on main ideas, we
restrict our attention to the case of time-independent covariates.

2.4. Errors-in-covariates effects

A normalized estimating function is root-consistent if its limit has a unique
zero-crossing at the parameter of interest. This is the case with a standard es-

timating function with X observed. When X is prone to error contamination,
the naive estimating function, i.e., with X replaced by W, has its limit with a

shifted zero-crossing in general, resulting in bias. To pursue consistent estima-
tion, both parametric correction (Nakamura (1990) and Stefanski (1989)) and

the nonparametric correction technique of Huang and Wang (1999, 2000, 2001)
take the strategy of constructing an estimating function to achieve the same limit,
or at least the same limiting zero-crossing, as the one in the absence of measure-

ment error. In the literature, the assessment of an errors-in-covariates effect on
the limit of an estimating function is mostly qualitative due to mathematical

intractability. Here we discover that a quantitative assessment becomes possible
for estimating functions (3), (6) and (8), thanks to their proper formulation, and

can be effectively exploited to develop a new nonparametric correction technique.
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Consider a sample with contaminated covariates consisting of iid replicates

of {W, Y }. The limits of estimating functions (3), (6) and (8) can be easily de-

termined given that they all are functionals of empirical processes. Even though

Poisson, logistic, and Cox regressions deal with different outcomes, their estimat-

ing functions for βββ are surprisingly similar in that all components but φ̂φφ·(·; ·) are

invariant in the limit when X is replaced by W. We can thus focus our investi-

gation on the limiting behavior of φ̂φφ·(·; ·). From (4), φ̂φφH(b;G) is a functional of

empirical processes. Under mild regularity conditions, its limit is

φφφH(b;G) ≡
E{HG exp(bTG)}

E{H exp(bTG)}
− E(G). (9)

Useful properties of φφφ·(·; ·) are summarized in Appendix A. In particular, Prop-

erty 1 states that the errors-in-covariates effect on component φ̂φφ·(·; ·) in estimating

functions (3), (6) and (8) is additive in the limit. Specifically,

φφφ·(b;W) = φφφ·(b;X) + φφφ1(b;εεε). (10)

Apparently, these naive estimating functions are no longer root-consistent in

general. Most importantly, it is implied that they can be corrected once φφφ1(b;εεε)

is consistently estimated.

3. Nonparametric Estimation of φφφ1(b;εεε)

Findings in Section 2 naturally motivate correction methods and the key is to

estimate φφφ1(b;εεε). This can be readily achieved if the distribution of εεε is assumed,

or consistently estimated with validation dard; the former results in parametric

correction (Nakamura (1990) and Stefanski (1989)). However, we are concerned

with nonparametric correction and with accurate covariates unascertainable. In

the following, we first reduce the estimation problem according to error clustering,

then identify a structure in various realistic error-assessment data, and finally

present consistent estimators for φφφ1(b;εεε).

3.1. Error clustering

Estimation of φφφ1(b;εεε) may take advantage of the independence structure in εεε,

if it exists. Such a structure often results from independent error-contamination

mechanisms for different covariates. Take cardiovascular disease research as an

example: The measurement errors associated with low-density lipoprotein choles-

terol and high-density lipoprotein cholesterol might be correlated, but they are

likely independent of the error associated with systolic blood pressure. Suppose

that εεε = (εεεT
0 , . . . , εεεT

K)T with K + 1 mutually independent clusters. Furthermore,

all the errors with zero variance, if any, are grouped into εεε0, corresponding to
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those covariates either accurately measured or contaminated by a constant. Cor-

respondingly, write b = (bT
0 , . . . ,bT

K)T . From Properties 2 and 3 in Appendix A,

we then have φφφ1(b;εεε) = {0T ,φφφ1(b1;εεε1)
T , . . . ,φφφ1(bK ;εεεK)T }T . Thus, the estima-

tion of φφφ1(b;εεε) reduces to that of φφφ1(bk;εεεk) for k = 1, . . . ,K.

3.2. Error-assessment data

Suppose that an error-assessment data set is available for each error cluster,

consisting of iid observations. We allow the data set to be internal, external, or

even a combination of the two, relative to the primary set that is used to construct

the naive estimating function given in Section 2. Just like their relationship with

the primary set, the K error-assessment sets themselves may or may not be

external to each other.

Focus on the kth error-assessment set, i.e., specific to εεεk. Denote the un-

derlying measure by Z, which is not accurately ascertainable but is subject to

the same error-contamination mechanism as the kth cluster of X in the primary

set. To understand the data set, there are two typical approaches to error as-

sessment:

(i) One involves a reliability study. That is, possibly random and even Z-

dependent R (≥ 2) copies of Z + εεεk are available for each individual and

they are independent of each other given Z.

(ii) The other is to take a second measure through a new measurement mech-

anism. Most often, the intention is to validate the first measure, i.e., to

accurately measure Z. Since this is not achievable in our case, we merely

require that the second measure is independent of the first one given Z.

We recognize a data structure common to the above two types of error-

assessment data and possibly others. That is, a pair of error-contaminated mea-

sures {U,V} are observed from each individual in the sample, following

U = Z + εεεk,

V = Z + ηηη,

εεεk ⊥ ηηη ⊥ Z.





(11)

Here, Z is subject to error contamination by εεεk in U, and the error contami-

nation ηηη of Z in V may or may not have the same distribution. In the case of

aforementioned reliability study, any random select of two copies of Z + εεεk can

serve as {U,V} and there are R(R − 1) such combinations.

3.3. Consistent estimation

First, consider the kth error cluster. Reciprocally, εεεk is contaminated by Z

in U and by −ηηη in U−V = εεεk −ηηη. Since Z and −ηηη are independent, Property 4
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in Appendix A suggests two consistent estimators for φφφ1(bk;εεεk):

ϕ̂ϕϕa(bk) =
ÊA{(U −V) exp(bT

k U)}

ÊA{exp(bT
k U)}

− ÊA(U−V), (12)

ϕ̂ϕϕb(bk) =
ÊA[U exp{bT

k (U −V)}]

ÊA[exp{bT
k (U −V)}]

− ÊA(U). (13)

In the above expressions, A is the operator that averages over the R(R − 1)

combinations of {U,V} within an individual in the case of reliability study, and
it is otherwise unnecessary. This technique to handle replicated measures was

used in Huang and Wang (1999, 2000, 2001).
Now, write ϕ̂ϕϕa(b)={0T , ϕ̂ϕϕa(b1)

T , . . . , ϕ̂ϕϕa(bK)T }T and ϕ̂ϕϕb(b)={0T , ϕ̂ϕϕb(b1)
T ,

. . . , ϕ̂ϕϕb(bK)T }T . Subject to regularity conditions, every weighted average of them
is consistent for φφφ1(b;εεε). Among all the possible weights, one can derive an op-

timal one for the (asymptotically) efficient estimation of βββ in the class. The
corrected estimating function evaluated at βββ achieves the minimum asymptotic

variance with this weight. Thus, this weight depends on not only the error-
assessment sets but also the primary set unless the former are external to the

latter. This optimization is straightforward and will be addressed in later sec-
tions.

4. Nonparametric Correction: Cox Regression with External Error

Assessment

We illustrate the proposed nonparametric correction technique through Cox

regression with external error assessment. Simulation results are presented for

the setup of external reliability data, and the procedure is applied to an AIDS

study.

4.1. The inference procedure

The primary data set consists of iid replicates of {W, T,∆}, independent of

the error-assessment data described in Section 3. For any weighted average ϕ̂ϕϕ(b)

of ϕ̂ϕϕa(b) and ϕ̂ϕϕb(b), nonparametric correction of the naive estimating function

gives:

Ψ̂ΨΨ
C
(b) = Ê [{W − Ê(W)}∆I(T ≤ τ)] −

∫ τ

0
φ̂φφI(T≥t)(b;W) dÊ{∆I(T ≤ t)}

+ϕ̂ϕϕ(b)Ê{∆I(T ≤ τ)}. (14)

As shown in Appendix B, asymptotically a zero-crossing, β̂ββ say, exists and any

zero-crossing is consistent and asymptotically normal subject to mild regularity

conditions.



ERRORS-IN-COVARIATES EFFECT ON ESTIMATING FUNCTIONS 869

These nonparametric-correction estimators of βββ form a class. For an asymp-

totically efficient one in this class, the optimal weight for the corresponding ϕ̂ϕϕ(b)

is such that ϕ̂ϕϕ(βββ) achieves the minimum asymptotic variance among all weighted

averages of ϕ̂ϕϕa(βββ) and ϕ̂ϕϕb(βββ), since the error assessment is external. Write the

asymptotic variance of {ϕ̂ϕϕa(βββ)T , ϕ̂ϕϕb(βββ)T }T as ΣΣΣ. Elementary linear algebra then

gives the optimal weight as a function of ΣΣΣ. Given that ΣΣΣ is unknown, Ap-

pendix C presents a consistent estimate, and using it instead yields an equally

efficient β̂ββ. We refer to this estimator as NC. To differentiate, nonparametric-

correction estimators of βββ using ϕ̂ϕϕa(b) and ϕ̂ϕϕb(b) are labeled NCa and NCb,

respectively.

For interval estimation, the sandwich variance estimate can be constructed,

with the formulas given in Appendix C.

4.2. Simulations with reliability data

The performance of the nonparametric-correction estimators was investi-

gated through systematic numerical experiments with the setup of external reli-

ability data. For comparison, the naive (NV), regression calibration (RC), and

parametric-correction (PC) estimators are also constructed. The naive and re-

gression calibration approaches use mismeasured W and an estimate of E(X
∣∣W),

respectively, in place of X in (8). For the estimation of E(X
∣∣ W), the formulas

given in Carroll, Ruppert and Stefanski (1995, Sec. 3.4.2) are adapted to this

setup. Note that we now use the external reliability data to obtain an estimate

v̂ar(εεε) of the error variance. The parametric-correction estimator is obtained

under a normal error assumption, in which case φφφ1(b;εεε) = var(εεε)b. Thus, the

parametrically corrected estimating function is

Ê [{W − Ê(W)}∆I(T ≤ τ)] −

∫ τ

0
φ̂φφI(T≥t)(b;W) dÊ{∆I(T ≤ t)}

+ v̂ar(εεε)bÊ{∆I(T ≤ τ)},

which essentially coincides with the basic one of the two asymptotically equivalent

proposals in Nakamura (1992). For interval estimation, the sandwich variance

estimates are formulated in the same fashion as those for the nonparametric-

correction estimators.

All these estimating functions involve the time limit τ . As is customary,

it is set to be large enough to cover all follow-up times for a specific data set.

With a correction approach, parametric and nonparametric alike, the corrected

estimating function is not guaranteed to have a zero-crossing (Huang and Wang

(2000) and Nakamura (1992)). In such a case, we define the estimator as the
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zero-crossing of the tangent plane at b = 0. This is a finite-sample issue, and

asymptotically a zero-crossing exists.

We first considered Cox regression with a single and error-contaminated co-

variate. For the primary set, we specified the unit exponential baseline survival

time and standard normal true covariate with β = 1. Independent of the sur-

vival time and covariate, the censoring time was uniformly distributed on [0,7];

the censoring rate was 20%. The external reliability set was constructed with

the standard normal underlying true measure and with two copies of the error-

contaminated measures for each individual. The sample sizes for the primary

and reliability sets were set to be the same. Table 1 reports the summary statis-

tics from 1,000 iterations for each combination of sample sizes 400 and 800,

normal and uniform error distributions, and error standard deviation σε from

0.25 to 0.75. As shown, both the naive and regression calibration estimators

exhibit notable bias and poor confidence interval coverage; these problems are

especially serious for the naive estimator. The parametric-correction estimator

performs well when the distributional assumption of the error holds. However, it

may suffer otherwise from serious root-finding failure and from bias. In contrast,

the nonparametric-correction estimators have reasonably small bias and accurate

confidence interval coverage. The efficiency advantage of NC over NCa and NCb

becomes apparent with increasing error contamination. Meanwhile, we notice

that the root-finding failure rate increases for both parametric and nonparamet-

ric correction approaches as the error contamination becomes more serious and

the sample size decreases. In addition, the distributions of these estimators be-

come more skewed, which might explain the increasing discrepancy between their

standard deviations and standard errors. This suggests that moderate sample

size might be necessary for the correction approaches in the presence of serious

error contamination.

Multiple covariates were also studied. Table 2 presents a study with one

covariate error-prone and the other accurately measured. In the primary set,

the baseline survival time followed the unit exponential distribution, and the two

underlying true covariates followed the standard bivariate normal distribution

with correlation coefficient ρ. The censoring time was independent of them and

had a uniform distribution on [0, 10]. We set βββ = (1, 1)T . Corresponding to

ρ = 0.5, 0 and −0.5, the censoring rates were 21%, 18% and 15%, respectively.

The external reliability set had the same structure as that for the study reported

in Table 1. The primary and reliability sets were each of size 400. Various

values of ρ and different error distributions were investigated, and 1,000 iterations

were conducted under each scenario. The relative performance of these various

estimators for the error-prone covariate appears similar to that observed in the
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previous single-covariate model. Meanwhile, the regression coefficient estimation

for the accurately-measured covariate might also be affected by the measurement

error.

Table 1. Simulation summaries of estimators for the single-covariate Cox

regression model.

σε NV RC PC NCa NCb NC NV RC PC NCa NCb NC

primary/reliability set size = 400 primary/reliability set size = 800

ε ∼ Normal
0.25 F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B −86 −28 10 10 10 8 −89 −31 5 5 4 3

D 70 75 84 86 85 85 49 53 59 59 59 59

D̂ 68 72 80 82 81 80 48 51 57 58 57 57

C 74.6 91.1 93.5 93.8 93.5 93.4 53.3 89.1 93.9 93.9 93.7 93.7

0.50 F 0.0 0.0 0.0 1.1 0.3 0.1 0.0 0.0 0.0 0.5 0.0 0.0

B −277 −94 31 40 33 23 −280 −98 16 17 17 11
D 63 83 129 175 139 135 45 60 91 96 94 92

D̂ 61 79 119 153 129 122 43 56 83 94 88 85

C 1.1 76.2 93.7 94.0 95.1 93.8 0.0 57.5 94.0 94.7 94.8 94.1

0.75 F 0.0 0.0 6.0 10.0 9.4 3.6 0.0 0.0 0.9 4.2 3.2 0.6

B −461 −152 55 102 82 58 −464 −158 52 58 64 39

D 55 100 395 577 417 316 39 71 171 287 252 192

D̂ 52 96 245 334 314 251 37 68 156 212 224 171

C 0.0 61.0 95.8 93.8 94.4 93.6 0.0 36.4 96.9 95.0 95.3 94.8

ε ∼ Uniform
0.25 F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B −88 −31 7 5 6 5 −92 −35 1 −1 −1 −1

D 67 72 81 81 81 80 49 52 58 58 58 58

D̂ 67 72 80 80 80 79 48 51 56 56 56 56

C 72.6 92.6 95.3 94.7 94.5 94.5 49.5 88.3 94.3 93.7 94.0 93.9

0.50 F 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B −276 −93 41 18 16 14 −278 −97 26 5 4 2
D 59 76 122 115 112 111 43 56 84 81 79 78

D̂ 59 76 115 112 107 106 42 54 79 77 74 74
C 0.5 74.3 95.1 95.1 94.4 94.0 0.0 55.2 94.1 93.7 93.0 92.7

0.75 F 0.0 0.0 12.0 1.9 0.0 0.0 0.0 0.0 2.8 0.2 0.0 0.0

B −457 −147 103 40 38 33 −458 −152 152 19 12 9

D 49 87 589 182 171 168 36 63 180 140 109 108

D̂ 50 88 278 187 155 151 35 61 196 132 103 101

C 0.0 56.6 97.5 94.7 94.8 94.4 0.0 30.2 99.1 94.0 93.2 93.0

F: root-finding failure (%); B: bias (×1, 000); D: standard deviation (×1, 000); D̂: average of

the standard error (×1, 000); C: coverage (%) of the 95% Wald-type confidence interval.
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Table 2. Simulation summaries of estimators for the double-covariate Cox

regression model.

ρ NV RC PC NCa NCb NC

ε ∼ Normal

0.5 F 0.0 0.0 0.0 2.1 0.4 0.4

B −315 22 −84 −94 35 0 28 −5 36 −1 21 −1
D 66 78 94 82 145 92 159 97 158 92 145 91

D̂ 65 78 92 82 136 90 160 91 156 91 138 89
C 0.5 94.0 82.9 77.2 95.4 95.7 95.2 93.9 95.9 95.2 94.8 95.2

0 F 0.0 0.0 0.0 1.5 0.3 0.2

B −278 −101 −96 −100 25 9 22 7 25 9 15 5

D 60 68 78 69 122 92 142 101 128 93 125 93

D̂ 60 69 78 70 116 88 128 92 125 91 121 92

C 1.0 65.6 74.2 66.2 95.4 95.5 95.4 95.3 96.6 95.8 95.3 95.8

−0.5 F 0.0 0.0 0.0 2.2 0.6 0.4

B −326 −214 −98 −100 29 20 25 17 30 21 17 11
D 64 71 90 80 144 120 161 130 153 126 145 121

D̂ 63 71 89 80 135 114 156 127 150 123 137 115

C 0.5 14.9 77.9 74.9 95.7 95.2 95.4 95.8 95.5 95.8 94.9 95.4

ε ∼ Uniform

0.5 F 0.0 0.0 0.0 0.3 0.0 0.0

B −311 30 −78 −85 55 10 28 9 27 10 24 10

D 67 80 93 84 147 92 140 92 134 91 133 90

D̂ 63 78 88 82 134 90 131 89 123 89 122 89
C 0.4 93.4 81.5 79.1 94.9 94.5 95.6 94.8 94.7 94.9 94.2 94.9

0 F 0.0 0.0 0.0 0.1 0.0 0.0

B −272 −91 −87 −91 45 25 24 17 23 17 20 16

D 60 69 78 69 123 89 118 88 115 87 114 87

D̂ 58 69 76 70 114 89 112 87 107 86 106 86

C 0.6 71.2 75.2 72.2 95.6 94.7 95.6 94.9 94.3 95.1 94.2 95.1

−0.5 F 0.0 0.0 0.0 0.2 0.0 0.0

B −319 −205 −88 −90 56 43 29 25 27 24 24 21
D 61 68 85 75 140 115 134 111 128 107 127 106

D̂ 62 71 86 79 134 114 132 112 124 107 122 106

C 0.0 18.1 80.6 76.9 96.5 96.1 96.6 96.0 96.0 96.5 95.8 96.4

Two columns under each setting correspond to the two covariates, with the first being error-

prone and the second accurately measured. See the footnote of Table 1 for the notation.

4.3. Application to an AIDS trial

The development in this article is motivated by AIDS research, where CD4

count is an important biomarker measuring functionality of the immune system.
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Unfortunately, CD4 count is not accurately ascertainable and is subject to sub-

stantial measurement error. Given that only primary data are available in many

studies, the proposed methodology facilitates an analysis with error-assessment

data obtained from external sources. We illustrate it using data from the AIDS

Clinical Trials Group (ACTG) 175 trial.

The ACTG 175 trial evaluated treatments with either a single nucleoside or

two nucleosides in HIV-1 infected adults whose screening CD4 counts were from

200 to 500 per cubic millimeter (Hammer et al. (1996)). The participants were

randomized to one of four treatments: Zidovudine (ZDV), Zidovudine and Di-

danosine (ZDV+ddI), Zidovudine and Zalcitabine (ZDV+ddC), and Didanosine

(ddI); the randomization was stratified according to the length of prior antiretro-

viral therapy. For this analysis, we are interested in the effect of the true baseline

CD4 count on time to an AIDS-defining event or death in participants with prior

antiretroviral therapy. In general, an observed CD4 count is contaminated by

instrumental error and biological diurnal fluctuation. The true baseline ln(CD4)

is conceptually defined as the average underlying measure over a a short period

of time at baseline. Note that the screening CD4 count is not regarded as a

baseline one.

In this trial, duplicated mismeasured baseline CD4 counts are available.

By taking advantage of them, Huang and Wang (2000) addressed a similar

scientific question for antiretroviral-naive participants. However, for illustra-

tion purpose, here we included only one baseline CD4 count—taken closest to

the randomization—in our primary set of the antiretroviral-sophisticated par-

ticipants, and used duplicated baseline CD4 counts of the antiretroviral-naive

participants as external reliability data. The sample size of the primary set is

1,395, with 349, 349, 346 and 351 participants randomized to ZDV, ZDV+ddI,

ZDV+ddC, and ddI treatments, respectively. The median length of follow-up

was 35 months and 216 events were observed. The variance of the observed base-

line ln(CD4) was estimated to be 0.125. The size of the external reliability set

is 1,036 and the estimated error variance is 0.033; see Huang and Wang (2000,

Fig. 1) where the data were presented. From the two data sets, the standard

deviation ratio of the error and the true baseline ln(CD4) in the primary set was

estimated to be 0.60.

A Cox regression model was adopted with four covariates: the true baseline

ln(CD4) and three treatment indicators, with the ZDV group treated as the ref-

erence. The analysis results from various methods are presented in Table 3. As

expected, the naive coefficient estimate of the true baseline ln(CD4) is substan-

tially smaller in absolute magnitude than others. On the other hand, the regres-

sion calibration, parametric-correction estimates are close to the nonparametric-

correction ones, which are almost identical themselves. Similar phenomena were
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observed for antiretroviral-naive participants in Huang and Wang (2000). This

might be due to infrequent events, moderate error contamination, or proximity

to normal errors.

Table 3. Comparison of regression coefficient estimates in the ACTG 175

data.

ln(CD4) ZDV+ddI† ZDV+ddC† ddI†

estimate s.e. estimate s.e. estimate s.e. estimate s.e.

NV −1.506 0.161 −0.501 0.197 −0.108 0.181 −0.337 0.190
RC −2.042 0.247 −0.511 0.198 −0.115 0.181 −0.341 0.191

PC −1.861 0.206 −0.542 0.202 −0.132 0.184 −0.338 0.192

NCa −1.932 0.232 −0.551 0.204 −0.138 0.185 −0.338 0.192

NCb −1.933 0.233 −0.552 0.204 −0.138 0.185 −0.338 0.192

NC −1.933 0.233 −0.552 0.204 −0.138 0.185 −0.338 0.192

†Indicators with the ZDV group being the reference.

5. Discussion

It is worthwhile to point out that our new technique does not replace, but

rather complements that of Huang and Wang (1999, 2000, 2001). While the

former most noticeably extends nonparametric correction to the setup of external

error assessment, only the latter is applicable to instrumental variable estimation

(Huang and Wang (1999; 2001, Sec. 4.2)). In addition, an estimating function

amenable to the latter may not be so to the former. A weighted partial-score

function for the proportional hazards model (Lin and Wei (1989)),

∫ τ

0

[
Ê{I(T ≥ t) exp(bTX)} dÊ{X∆I(T ≤ t)}

− Ê{I(T ≥ t)X exp(bTX)} dÊ{∆I(T ≤ t)}
]
,

is such an example, where the errors-in-covariates effect is no longer additive in

the limit. Together, the two techniques facilitate nonparametric correction for a

wide spectrum of error-assessment data.

We have illustrated the proposed nonparametric correction technique with

external error assessment. Although its applicability to internal error assessment

is apparent, several issues are worth attention because in this case the distinction

between primary and error-assessment data is not as clear. To focus, consider

internal reliability data and a single error cluster.

(i) Given that each individual has R(≥ 1) copies of W, the naive estimating

function is no longer unique. Taking Poisson regression as an example, we
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suggest using

ÊA[{W − ÊA(W)}Y ] − Ê(Y )

[
ÊA{W exp(bTW)}

ÊA{exp(bTW)}
− ÊA(W)

]
,

where A averages over the R copies of W. This naive estimating function

makes use of all copies of W and has the same limit as the one using a single

copy of W. Then, the nonparametric correction may proceed in the same

fashion as in the external error-assessment case, although (straightforward)

adjustments are necessary for variance estimation and for efficient estimation.

Note that R may be random and can even depend on {X, Y }. This can be

important in practice since the inclusion in the error-assessment subset may

depend on the true covariates and the response.

(ii) Suppose further that the reliability study is conducted on the whole pri-

mary set, i.e., Pr(R ≥ 2) = 1, which is the major setup considered in

Huang and Wang (1999, 2000, 2001). Interestingly, using ϕ̂ϕϕa(b) along with

the earlier naive estimating function for Poisson regression results in a cor-

rected estimating function equivalent to that given in Huang and Wang

(1999). However, the corrected estimating functions here for logistic and

Cox regressions do not reduce to those in Huang and Wang (2000, 2001).

This shows that the two techniques have similarities as well as differences.

(iii)Now, suppose that R is constant and is at least 2. An alternative naive

estimating function would appear equally natural, with X replaced by the

average W of the R copies of W:

Ê [{W − Ê(W)}Y ] − Ê(Y )φ̂φφ1(b;W)

in the case of Poisson regression, which requires a correction of Rφφφ1(b;R−1εεε)

= φφφ1(R
−1b;εεε). This points to room, and therefore needs effort, for further

improving the estimation of βββ in efficiency. In this regard, the result of Huang

and Wang (2001, Lemma 2) on synthesizing multiple estimating functions

might be useful.

Our development in this article originates from natural estimating functions

in the absence of measurement error, namely the score function for Poisson

regression, the weighted score functions given in Huang and Wang (2001) for

logistic regression, and the partial-score function for Cox regression. One mo-

tivation for using them is that the resulting nonparametric-correction estima-

tors are fairly efficient, at least when the magnitude of measurement error is

small. Nevertheless, other estimating functions amenable to the proposed non-

parametric correction technique exist. For example, (3) for Poisson regression

is equivalent to φ̂φφY (0;X) − φ̂φφ1(b;X), which is a special member in the class,
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φ̂φφY (γγγ;X) − φ̂φφ1(b + γγγ;X) for any given value of γγγ. We are currently exploring

approaches to taking advantage of this result for more efficient estimation of βββ,

especially when the measurement error is large.

As a general concern, consistent functional modeling methods do not al-

ways have satisfactory small-sample performance in the presence of substan-

tial error contamination. Besides nonparametric correction, conditional score

(Stefanski and Carroll (1985)) and parametric correction (Nakamura (1990) and

Stefanski (1989)) also have this issue; see Huang and Wang (2001) among oth-

ers. Specifically for parametric and nonparametric correction methods, a cor-

rected estimating function may not always have a zero-crossing and in addition

the estimator may have large outliers. Unfortunately, large-sample results may

be inadequate to address such small-sample issues. Refining these correction

methods is an important, albeit challenging, research topic.
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Appendix A. Properties of φφφH(b;G)

Function φφφH(b;G) is defined in (9). Under regularity conditions, the follow-

ing properties are derived through elementary algebra:

1. For δδδ ⊥ {G,H}, φφφH(b;G + δδδ) = φφφH(b;G) + φφφ1(b;δδδ).

2. For var(G) = 0, φφφ1(b;G) = 0.

3. For G1 ⊥ G2, φφφ1{(b
T
1 ,bT

2 )T ; (GT
1 ,GT

2 )T } = {φφφ1(b1;G1)
T ,φφφ1(b2;G2)

T }T .

4. For G ⊥ δδδ1 ⊥ δδδ2, φφφ1(b;G) =
E [(G + δδδ1) exp{bT (G + δδδ2)}]

E [exp{bT (G + δδδ2)}]
− E(G + δδδ1).

Appendix B. Asymptotic Theory Under the Set-up of Section 4.1

Consider Cox regression with external error assessment, and suppose that

there is a single error cluster. Specifically, the primary data consist of np, say,

iid replicates of {W, T,∆} and the external error assessment data consist of ne,

say, iid replicates of {U,V}. We focus on the estimating function Ψ̂ΨΨ
C
(b) given

in (14) with ϕ̂ϕϕ(b) = ϕ̂ϕϕa(b). The approach to large-sample study here is similar to

that in Huang and Wang (2000), and it can be used for the developments under
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other set-ups considered in this article. In the study, we let np → ∞, ne → ∞

and np/ne converge to a finite non-zero constant.

We rewrite the estimating function Ψ̂ΨΨ
C
(b) to give it an explicit functional

representation:

Ψ̂ΨΨ
C
(b) = Êp{W∆I(T ≤ τ)} −

∫ τ

0

Êp{I(T ≥ t)W exp(bTW)}

Êp{I(T ≥ t) exp(bT W)}
dÊp{∆I(T ≤ t)}

+

[
Êe{(U −V) exp(bTU)}

Êe{exp(bTU)}
− Êe(U −V)

]
Êp{∆I(T ≤ τ)},

where Êp and Êe have been used to differentiate empirical average in the pri-

mary and error-assessment samples. Now it is clear that Ψ̂ΨΨ
C
(b) is a functional

of the following seven empirical processes: Êp{∆I(T ≤ ·), Êp{W∆I(T ≤ τ)},

Êp{I(T ≥ ·) exp(bTW)}, Êp{I(T ≥ ·)W exp(bTW)}, Êe(U−V), Êe{exp(bTU)}

and Êe{(U −V) exp(bT U)}.

Suppose that the parameter space of concern B is a compact set around βββ.

We impose the following regularity conditions on moments:

E(XTX) < ∞, E{sup
b∈B

XTX exp(2bTX)} < ∞,

E(εεεTεεε) < ∞, E{sup
b∈B

εεεTεεε exp(2bTεεε)} < ∞,

E(ZTZ) < ∞, E{sup
b∈B

exp(2bT Z)} < ∞,

E(ηηηTηηη) < ∞.

First, consider the consistency of β̂ββ. Given that τ satisfies Pr(T ≥ τ) > 0,

Êp{I(T ≥ t) exp(bTW)} is bounded away from 0 for t ∈ [0, τ ] and b ∈ B.

Among the aforementioned seven empirical processes, those quantities that do

not involve t and b converge almost surely to limits by the standard Strong Law

of Large Numbers. For the rest, the extended Strong Law of Large Numbers

given in Appendix III of Andersen and Gill (1982) asserts that they converge

almost surely to limits as well, uniformly in t ∈ [0, τ ] and b ∈ B. Since Ψ̂ΨΨ
C
(b), as

a functional of these seven empirical processes, is continuous with respect to the

supremum norm, it converges almost surely and uniformly in b ∈ B to its limit

E{X∆I(T ≤ τ)} −

∫ τ

0

E{I(T ≥ t)X exp(bT X)}

E{I(T ≥ t) exp(bTX)}
dE{∆I(T ≤ t)},

which is monotone with a unique zero-crossing at βββ. Then, it follows that β̂ββ

exists and converges to βββ almost surely.
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Now, we show the asymptotic normality of Ψ̂ΨΨ
C
(βββ). Using Lemma 3 of Gill

(1989) and the chain rule, one can establish that the map from the seven empirical

processes to Ψ̂ΨΨ
C
(βββ) is compactly differentiable with respect to the supremum

norm. Furthermore, the standard Central Limit Theorem and Lemma 5.1 of

Tsiatis (1981) assert the asymptotic normality of these seven empirical processes

under the moment conditions. Thus, by the functional delta method, we have

the asymptotic normality of Ψ̂ΨΨ
C
(βββ).

Next, we consider the asymptotic linearity of Ψ̂ΨΨ
C
(b) around βββ. Given the

consistency of β̂ββ, standard Taylor expansion arguments reveal that it is sufficient

to show that the dΨ̂ΨΨ
C
(b)/dbT converges uniformly in b ∈ B. This can be achieved

using the same approach as we used to establish the consistency of Ψ̂ΨΨ
C
(b).

Finally, the asymptotic normality of β̂ββ is established given that of Ψ̂ΨΨ
C
(βββ) and

the asymptotic linearity of Ψ̂ΨΨ
C
(b) around βββ.

Appendix C. Variance Estimation in Section 4.1

The influence function approach is used for variance estimation of Ψ̂ΨΨ
C
(βββ)

(cf., Huber (1981)). Given that Ψ̂ΨΨ
C
(βββ) is a functional of empirical processes, the

functional delta method can be used to show that, asymptotically, it is a sum

of independent mean-zero contributions from individuals in the primary set and

individuals in the error-assessment sets.

Primary set

Denote the sample size by n and the data from the ith individual by {Wi, Ti,

∆i}, i = 1, . . . , n. The contribution of the ith individual is estimated by

ξξξi(βββ) = n−1

∫ τ

0

{
Wi − Ê(W) − φ̂φφI(T≥t)(βββ;W)

}

×

[
d{∆iI(Ti ≤ t)} −

exp(βββTWi)I(Ti ≥ t)

Ê{exp(βββTW)I(T ≥ t)}
dÊ{∆I(T ≤ t)}

]

+ n−1ϕ̂ϕϕ(βββ)∆iI(Ti ≤ τ).

External error assessment

According to the error clustering, write βββ ≡ {βββT
0 ,βββT

1 , . . . ,βββT
K}T . Specific to

the kth cluster, k = 1, . . . ,K, denote the size of the error-assessment data set by

mk and the replicate of {U,V} from the lth individual by {Ul,Vl}, l = 1, . . . ,mk.

By the functional delta method, the contributions of the lth individual to ϕ̂ϕϕa(βββk)
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and ϕ̂ϕϕb(βββk), respectively, are estimated by

ζζζal(βββk) = m−1
k A

{(
(Ul −Vl) −

ÊA{(U −V) exp(βββT
k U)}

ÊA{exp(βββT
k U)}

) exp(βββT
k Ul)

ÊA{exp(βββT
k U)}

− {(Ul −Vl) − ÊA(U −V)}

}
,

ζζζbl(βββk) = m−1
k A

{(
Ul −

ÊA[U exp{βββT
k (U −V)}]

ÊA[exp{βββT
k (U −V)}]

) exp{βββT
k (Ul −Vl)}

ÊA[exp{βββT
k (U −V)}]

− {Ul − ÊA(U)}

}
.

Recall that the error-assessment data sets may not be external to each other.

In other words, one individual may contribute to multiple data sets. Thus, the

number of individuals contributing to the K error-assessment data sets, m, is

no greater than
∑K

k=1 mk. Accordingly, we assemble the estimated contributions

of the jth individual, j = 1, . . . ,m, to ϕ̂ϕϕa(βββ) and ϕ̂ϕϕb(βββ), and obtain ζζζaj(βββ) and

ζζζbj(βββ), respectively.

Now, to estimate ΣΣΣ, use

Σ̂ΣΣ(βββ) =

m∑

j=1

(
ζζζaj(βββ)

ζζζbj(βββ)

)2

,

where v2 ≡ vvT for vector v. Since βββ is unknown, we plug in a consistent esti-

mator, for example, NCa or NCb, and the resulting estimate remains consistent.

For a weighted average ϕ̂ϕϕ(βββ) of ϕ̂ϕϕa(βββ) and ϕ̂ϕϕb(βββ), the estimated contribution

ζζζj(βββ) of the jth individual is the corresponding weighted average of ζζζaj(βββ) and

ζζζbj(βββ). Note that the weight can depend on the data, as in the case of optimal

ϕ̂ϕϕ(b).

Sandwich variance estimate for β̂ββ

The variance of Ψ̂ΨΨ
C
(βββ) is consistently estimated by ΩΩΩ(βββ) =

∑n
i=1 ξξξi(βββ)2 +

∑m
j=1[ζζζj(βββ)Ê{∆I(T ≤ τ)}]2. Write ΓΓΓ(βββ) =

{
dΨ̂ΨΨ

C
(b)/dbT

∣∣
b=βββ

}−1

. Then, the

sandwich variance estimate of β̂ββ is ΓΓΓ(βββ)ΩΩΩ(βββ)ΓΓΓ(βββ)T . Furthermore, one plugs in β̂ββ
to replace the unknown βββ and the variance estimate remains consistent.
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