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1. Introduction

Ching-Zong Wei has made many important contributions to statistics and

other areas, ranging from sequential analysis and stochastic approximation to

time series and systems control. This article mainly focuses on his contributions

to the area of time series and related fields. Wei received his formal training

in statistics from Columbia University. Naturally, his research interest reflects

the strong tradition of Columbia University. Wei’s contributions in time series

manifest in the typical fashion of a classical statistician. Wei possessed a unique

ability of applying powerful probabilistic tools to tackle convoluted problems

from which elegant and profound solutions were developed. Because of his talent,

some people consider Wei more of a probabilist than a statistician. As will be

demonstrated in the following section, Wei’s contributions have many deep and

far-reaching impacts that lie well beyond probability; he was always strongly

motivated by applications.

This paper is organized as follows. In Subsections 2.1 to 2.3, we review Wei’s

work according to the categories of estimation, inference and model selection.

Here, we also provide a road map for certain portions of the extensive literature

on these topics, and the impact of Wei’s work in related areas. Wei’s contributions

are not restricted to linear time series. In Section 3, his contributions to non-

linear time series and other areas such as branching processes are discussed.

Section 3 also contains ideas on new developments and some concluding remarks.

2. Inference

Wei’s research in time series can be classified into three stages: estimation,
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inference and model selection. Throughout these stages, there are some underly-

ing common themes. The first one, perhaps the most important, is the issue of

on-line recursion. As will be seen in the following subsections, one of the guiding

principles in his work is to construct an on-line inferential framework. The sec-

ond theme of Wei’s work is the order of the information contained in the model.

Such an idea, coupled with local martingale convergence theory, constitute most

of the building blocks of his work. But Wei’s contributions do not cease at the

mathematical level. He has always advocated the importance of furnishing “life”

to the theory, which means that one has to articulate the essence of the theory

in statistical or non-mathematical terms. These themes are reflected throughout

his work.

2.1. Estimation

The seminal paper of Lai, Robbins and Wei (1978) considered the strong

consistency property of the least squares estimate of a multiple regression model.

This result extended the earlier work of Anderson and Taylor (1979) and con-

stituted the turning point of the study of strong consistency in the regres-

sion literature. Since then, Wei and his co-authors in a series of paper (see

Lai, Robbins and Wei (1978), Chen, Lai and Wei (1981), Lai and Wei (1982a,

1982b, 1982c)) extended strong consistency in various directions. A detailed ac-

count on these developments, in connection with stochastic approximation, is

given in Lai (2003).

One of the major breakthroughs in the consistency problem was given in

Lai and Wei (1982a), where a minimal sufficient condition for the least squares

estimate of a stochastic regression model to be strongly consistent was provided.

Specifically, consider the stochastic regression model

yn = βTxn + εn, n = 1, 2, . . . , (1)

where the εn are unobservable errors, β = (β1, . . . , βp)
T are unknown parame-

ters and yn is the observable response corresponding to the design vector xn =

(xn1, . . . , xnp)
T. Then

bn = (
n

∑

i=1

xix
T
i )−1

n
∑

i=1

xiyi (2)

is the least squares estimate (LSE) of the unknown parameter vector β based

on the observations x1, y1, . . . ,xn, yn. Herein, the unobservable sequence {εn}
is assumed to be a martingale difference sequence with respect to an increasing

sequence of sigma fields Fn satisfying a Lyapunov condition

sup
n
E(|εn|γ |Fn−1) <∞ almost surely (a.s.) for some γ > 2. (3)
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By assuming that the design vector at stage n is adaptable, i.e., xn is Fn−1

measurable, Lai and Wei (1982a), proved the following.

Theorem 2.1. bn → β a.s. if

λmin(n) → ∞ a.s. and log λmax(n) = o(λmin(n)) a.s., (4)

where λmin(n) and λmax(n) denote respectively the minimum and the maximum

eigenvalues of the design matrix
∑n

i=1 xix
T
i at stage n.

Lai and Wei (1982a) also showed that, without further assumptions, condi-

tion (4) is the best possible one in the sense that they constructed an example in

which λmin(n) → ∞ a.s. and log λmax(n)/λmin(n) converges to a positive random

variable, but P (bn → β) = 0.

Condition (4) is quite intriguing and fails to hold in many applications

in stochastic approximation and systems control, see for example Lai and Wei

(1987). In view of this deficiency, Wei (1985) conducted a refined analysis of the

problem and came up with the result that if there exists a linear transformation

A such that the transformed design vectors zn = Axn satisfy

lim inf
n→∞

(

D−1
n

n
∑

i=1

ziz
T
i D−1

n

)

> 0 where Dn =
{

diag
(

n
∑

i=1

zizi
T
)}1/2

, (5)

then bn is still strongly consistent. The following result ensued.

Theorem 2.2. Suppose that in the regression model (1), condition (3) holds.

Assume that λmin(n) → ∞ and

log λmax(n)2δ = o(λmin(n)) a.s. for some δ > (min(γ, 4))−1. (6)

Suppose that there exists a nonsingular matrix A such that the random vectors

zn = Axn satisfy (5). Then bn → β a.s.

If the transformed design vectors satisfy an additional assumption (see Wei

(1985)), then (6) can further be weakened to the condition

λmin(n) → ∞ a.s. and log log λmax(n) = o(λmin(n)) a.s. , (7)

in which bn is still strongly consistent.

As evidenced in this development, Wei made significant contributions to

the estimation of stochastic regression models. One of the key elements to the

estimation problem is to assess the order of magnitude of the design matrix
∑n

i=1 xix
T
i . To understand this order, Wei made use of the recursive nature

of the least squares estimate from which a martingale transform structure was

uncovered. By analyzing this structure in detail, Wei was able to decompose this
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quantity into different components and to apply the local martingale convergence

result of Chow to evaluate the order of the design matrix. It turns out that this

consideration has an impact far beyond estimation.

Because of its relevance to systems control, different extensions of Wei’s re-

sult have been carried out. Lai and Wei applied the consistency idea to study

the properties of self-tuning regulators and adaptive controllers (see Lai and Wei

(1986) and Lai and Wei (1987)). The monograph of Guo (1990) provides a suc-

cinct review of various strong consistency issues in systems control engineering.

In time series, Lai and Wei (1982c and 1985) established the strong consistency

of the least squares estimate for a general AR model, irrespective to the loca-

tion of its characteristic roots, while Tiao and Tsay (1983) considered the weak

consistency property of the least squares estimate for a nonstationary ARMA

model. Recently, Nielsen (2005) extended Lai and Wei’s result to the general

VAR model with deterministic components.

2.2. Limiting distributions

Back in 1958, White (1958) amongst others, first showed that the limiting

distribution of the least squares estimate of the autoregressive coefficient of a non-

stationary AR(1) model, i.e., when the autoregressive coefficient equals to one,

is a functional of a stochastic integral of a standard Brownian motion. It turns

out that this model has a strong bearing in the econometric literature in testing

whether a time series is a random walk, the so-called unit root testing problem.

After Dickey and Fuller (1979) established the form of this limiting distribution

as a ratio of sums of i.i.d. random variables, the unit root testing problem became

a topical issue in econometrics. Numerous articles were written on this and an

elementary survey on this literature was given in Stock and Watson (1988).

Having built the groundwork in estimation, the next stage of Wei’s work

concerned the issue of asymptotic inference. He was interested in the limit-

ing distributions of the least squares estimates of the parameters of a general

nonstationary autoregressive model. Chan and Wei (1987) first considered the

AR(1) model when the autoregressive coefficient converges to one asymptotically.

Instead of a Brownian motion, Chan and Wei (1987) showed that the limiting

distribution of the least squares estimate of a nearly nonstationary AR(1) model

converges weakly to a functional of an Ornstein-Uhlenbeck process. Specifically,

consider a first-order autoregressive process

yt,n = βnyt−1,n + εt, t = 1, · · · , n, (8)

where βn = 1−γ/n, γ is a real number, y0,n = 0 for all n, and {εt} is a martingale

difference sequence satisfying (3). This is known as the nearly nonstationary or
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near-integrated (see Phillips (1987)) time series. If γ = 0, (8) reduces to the

traditional unit root model.

Theorem 2.3. Let the time series {yt,n} follow (8) with the innovation se-

quence {εt} satisfying (3). Let the least squares estimate of βn be bn = (
∑n

t=1

yt−1,nεt)/(
∑n

t=1 y
2
t−1,n). Then as n→ ∞,

n(bn − βn) →D L(γ) :=

∫ 1
0 X(t) dX(t)
∫ 1
0 X

2(t) dt
,

where→D denotes convergence in distribution and X(t) is the Ornstein-Uhlenbeck

process satisfying the diffusion equation

dX(t) = −γX(t) dt+ dW (t),

X(0) = 0 and W (t) is a standard Brownian motion.

This particular result encompasses the unit-root case of White (1958) when

γ = 0. In this case, the autoregressive coefficient βn =1 and L(0)=
∫ 1
0 W (t)dW (t)

/
∫ 1
0 W

2(t)dt, which is the limitng distribution of the Dickey-Fuller statistic. Us-

ing reproducing kernels, Chan (1988) further developed this limiting form as

sums of i.i.d. random variables. The near-integrated notion was formulated with

reference to the work of LeCam about limiting experiments in terms of contigu-

ous alternatives. This idea was later explored by Jeganathan (1991, 1995), who

generalized the near-integrated notion to a general AR(p) case and introduced

the idea of Local Asymptotic Brownian Functional in studying optimality issues.

In a spectral setting, Dahlhaus (1985) considered both tapered and non-tapered

Yule-Walker estimates for near-integrated models. Since then, numerous exten-

sions have been carried out by econometricians and statisticians alike.

Chan and Wei (1988) considered the limiting distributions of the least squares

estimate of a general nonstationary AR(p) model when the characteristic roots
lie on or outside the unit circle, each of which may have different multiplicities.

This was the first comprehensive treatment of the LSE for a general nonstation-

ary AR(p) model, and it was shown in Chan and Wei (1988) that the locations

of the roots of the time series played an important role in characterizing the lim-

iting distributions. Specifically, they considered a general nonstationary AR(p)

model

yt = β1yt−1 + · · · + βpyt−p + εt. (9)

In (9), the autoregressive polynomial β(z) = (1−β1z−· · ·−βpz
p) has roots lying

on or outside the unit circle. That is,

β(z) = (1 − z)a(1 + z)b
∏̀

k=1

(1 − 2 cos θkz + z2)dkψ(z), (10)
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where a, b, `, dk are nonnegative integers, θk belongs to (0, π) and ψ(z) is a poly-

nomial of order r = p − (a + b + 2d1 + · · · + 2dk) that has all roots outside the

unit disk.

When the underlying model is stationary with all roots lying outside the unit

circle, classical central limit theorem type results can be obtained. But when

the roots are of unit modulus, it turns out that the asymptotic distributions

are characterized in terms of iterated integrals of Brownian motions. The key

idea in obtaining these results lies in analyzing the order of magnitude of the

observed Fisher’s information matrix. Note that the least squares estimate of

β = (β1, . . . , βp)
T can be expressed as

bn =
(

n
∑

t=1

yt−1yt−1
T
)

−1
n

∑

t=1

yt−1yt, (11)

where yt = (yt, . . . , yt−p+1)
T and y0 = (0, . . . , 0)T. Similar to the estimation

problem, different characteristic roots carry different information. By transform-

ing the original nonstationary AR model into components according to their

characteristic roots, Chan and Wei (1988) was able to derive the precise form

of the limiting distributions. During the course of this investigation, they also

obtained an important result about the weak convergence of stochastic integrals

(Theorem 2.4 in Chan and Wei (1988)) which is of indepedent interest and has

many applications in different areas, see for example Kurtz and Protter (1991).

In addition, Chan and Wei also showed that different components are asymp-

totically uncorrelated and, as a result, a joint limiting law can be established.

Specifically, using the notations of Chan and Wei (1988), the following theorem

was established.

Theorem 2.4. Assume that {yt} follows (9) with the characteristic polynomial

satisfying (10) and the innovation sequence {εt} satisfying (3). Then as n→ ∞,

QTGT
n (bn − β) →D ((F−1ξ)T, (F̃−1η)T, (H−1

1 ζ1)
T, . . . , (H−1

` ζ`)
T, NT)T,

where (F, ξ), (F̃ ,η), (H1, ζ1), . . . , (H`, ζ`), N,Gn, Q are independent and defined

in equations (3.2), (3.3) and Theorem 2.2 of Chan and Wei (1988).

This result of Chan and Wei paved the way to the analysis of nonstationary

processes and, since then, numerous extensions have been conducted. Jeganathan

(1991) generalized this idea to the near-integrated situations where the lim-

iting distributions of the LSE are expressed in terms of iterated integrals of

Ornstein-Uhlenbeck processes. When the underlying model has long-memory,

Chan and Terrin (1995) extended this result to functionals of fractional Brown-

ian motions, while Ling and Li (1998) considered the case when the innovations
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are modeled by GARCH processes. Extensions of this result to vector AR pro-

cesses are given in Tsay and Tiao (1990) and to processes with deterministic

trends in Chan (1989). On the econometric front, Theorem 2.4 provides a fun-

damental tool in analyzing co-integrated systems. A comprehensive review on

co-integrated vector autoregressions is given in Johansen (1995).

Beyond limiting distributions, Wei was also interested in residual analysis.

Lee and Wei (1999) considered the stochastic regression model (1)

ynt = βT
nxnt + rnt + εnt, 1 ≤ t ≤ n, (12)

where βn are unknown parameters, xnt are observable random vectors and rnt

are random variables which they called “model bias.” This model can be con-

sidered an extension of (1) as it encompasses both stochastic regressions and

autoregressive time series. Let bn denote the least squares estimate of βn by

regressing y on x ignoring r, and let the residual be defined as ε̃nt = ynt −bT
nxnt.

Consider the residual empirical process

Ŷn(u) =
1√
n

n
∑

t=1

[I(Hn(ε̃nt) ≤ u) − u], (13)

where Hn is the underlying distribution of {εnt}. Under certain regularity con-

ditions on Hn and the growth rates of the orders of the model, Lee and Wei

(1999) showed that for a Gaussian stationary AR(∞) model, under the setting

of a null hypothesis K0 : H(·) = Φ(·) and a contiguous sequence of alternatives

Kn : Hn(·) = (1 − γ/
√
n)Φ(·) + (γ/

√
n)H(·), where H is a distribution function

with mean zero and variance one, the following theorem holds.

Theorem 2.5. Under Kn, the residual empirical process Ŷn(u) defined in (13)

converges weakly to a Gaussian process Y with mean and covariance

EY (u) = −γ(u−H ◦ Φ−1(u))

Cov(Y (u), Y (v)) = u ∧ v − uv − 0.5φ(Φ−1(u))Φ−1(u)φ(Φ−1(v))Φ−1(v),

where 0 ≤ u, v ≤ 1. Here Φ and φ denote the cumulative distribution function

and the density function of a standard normal random variable, respectively.

In particular, for nonstationary AR(p) models, following the notations used

in Lee and Wei (1999), let (W1,W2) be a mean zero two-dimensional Gaussian

process with covariance structure such that for all s, t ∈ [0, 1]:

Cov(W1(s),W1(t)) = s ∧ t− st,

Cov(W2(s),W2(t)) = s ∧ t,

Cov(W1(s),W2(t)) = (t/σ)

∫ G−1(s)

−∞

x dG(x), (14)
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where G is the distribution function of the innovation sequence {εt} in (9). The

following weak convergence result of the residual empirical processes was estab-

lished in Lee and Wei (1999).

Theorem 2.6. Consider a nonstationary AR(p) model satisfying (9) with a

characteristic root of one with multiplicity a ≥ 1, and an i.i.d. innovation se-

quence {εt} with mean zero, variance 0 < σ2 < ∞ and continuous distribution

function G. Then as n→ ∞,

Ŷn(u) →D W1(u) + σ(F−1ξ)TηGT(G−1(u)),

where (W1,W2) is the two-dimensional Gaussian process defined in (14); F0 =

σW2, F1 =
∫ 1
0 F0(s)ds, Fj =

∫ 1
0 Fj−1(s)ds, j = 2, . . . , a; ξ = (

∫ 1
0 Fa−1(s)dW2(s),

. . . ,
∫ 1
0 F0(s)dW2(s))

T; η = (Fa(1), . . . , F1(1))
T; and F is the matrix whose

(j, l)th entry is σjl =
∫ 1
0 Fj−1(s)Fl−1(s)ds.

This theorem indicates that the residual empirical process for an unstable

AR(p) model with roots of one does not converge to a Brownian bridge as in the

stable case. As a result, Lee and Wei recommended under such a situation, one

should conduct a unit root test before using conventional methods such as the

Kolmogorov-Smirnov test.

2.3. Model Selection

Consider the stochastic regression model (1) again. Wei (1987) studied the

performance of the least squares estimates in prediction and formulated the so-

called predictive principle for model selection. By analyzing the order of the

cumulative predictive errors

Cn =

n
∑

k=1

(βTxk − bT
k−1xk)

2 =

n
∑

k=1

(ε̂k − εk)
2,

where ε̂k = yk − ŷk = yk − bT
k−1xk is the one-step prediction error, Wei observed

that the term Cn plays a crucial role for order selection.

Theorem 2.7. Consider the regression model (1) with {εn} satisfying assumption

(3). Assume that

xT
n

(

n
∑

k=1

xkx
T
k

)

−1
xn → v a.s. as n → ∞,

where v is a nonnegative random variable. Then

(1 − v)Cn +

n
∑

k=1

[(bn − β)Txk]
2 ∼ nvσ2 a.s.
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on the set {1 > v > 0, cn → ∞} and

Cn +

n
∑

k=1

[(bn − β)Txk]
2 ∼ σ2 log det

(

n
∑

k=1

xkx
T
k

)

a.s.

on the set {v = 0, Cn → ∞, λmin(n) → ∞}, where λmin(n) denotes the minimum

eigenvalue of the design matrix
∑n

k=1 xkx
T
k .

The proof of this result again relies on the Local Martingale Convergence

Theorem and follows the argument of Lai and Wei (1982a). With this result,

a new order selection criterion was proposed for a nonstationary AR(p) model.

Specifically, Wei (1987) obtained the following result.

Theorem 2.8. Assume that the autoregressive model (9) has roots equal to one

or bigger than one in magnitude (i.e., b = d1 = · · · = d` = 0) and assume that

βp 6= 0 for an unknown p, but r ≥ p is given. Let yn = (y1, . . . , yn−r+1)
T. Then

ân =
[

log det
(

n
∑

k=p

yky
T
k

)

/ log n− r
]1/2

→ a in probability.

By means of the estimator ân, one can determine how many times to dif-

ference an integrated time series to achieve stationarity when the exact order p

is unknown, but an upper bound r of the order is given. After differencing the

integrated series ân times, one can then apply traditional AIC or BIC for order

selection. In other words, this theorem can be used to construct a two-step order

selection procedure.

With this result, Wei went further on the notion of predictive least squares

in model selection. In Wei (1992), he reconsidered (1) and examined the conven-

tional model selection criterion

log σ̂2
n +

cn
n
, (15)

where n is the sample size and σ̂2
n is the residual variance after fitting the model

based on x, and cn is a nonnegative random variable that measures the com-

plexity of the chosen model, which is proportional to the number of parame-

ters. Common criteria such as the Akaike’s Information Criterion (AIC) or the

Bayesian Information Criterion (BIC) fall within this setting. Motivated by (15),

Wei (1992) introduced the idea of the predictive least squares (PLS) criterion

PLS(x) =

n
∑

i=m+1

(yi − bT
i−1xi)

2, (16)
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and considered four important issues. The first one deals with the interpretation

of PLS in which (16) is decomposed into a sum of goodness of fit and a penalty

that reflects the model complexity. The second one deals with the strong consis-

tency of PLS for a general model including nonstationary time series. The third

one is the asymptotic equivalence of PLS and BIC. Here, regression and time se-

ries depart from each other. Wei showed that for a polynomial regression model,

BIC is not equivalent to PLS. But for a Gaussian time series model, Wei showed

the asymptotic equivalence of PLS and BIC. The last issue deals with modifying

the PLS to come up with an efficient criterion for model selection. Here he in-

troduced the so-called Fisher’s Information Criterion (FIC) and proved that the

FIC can be expressed as

FIC(M) = nσ̂2
n + σ̃2

n log det
(

n
∑

i=1

xix
T
i

)

, (17)

where M is the model with design vector xi, and σ̂2
n and σ̃2

n are variance estima-

tors based on the model M and the full model, respectively. For a linear regres-

sion model with Gaussian errors, the conditional Fisher’s information matrix is

simply σ−2
∑n

i=1 xix
T
i , which can be interpreted as the amount of information

about the underlying unknown parameter. The FIC expression in (17) replaces

the second quantity in the conventional criterion (15), which is proportional to

the topological dimension of the selected model as reflected by cn, by the second

quantity of (17), which is proportional to the logarithm of the statistical informa-

tion that is contained in M as reflected by the conditional Fisher’s information

matrix. This insight enables Wei to further link up PLS with FIC via

PLS ∼ nσ̂2
n + σ2 log det

(

n
∑

i=1

xix
T
i

)

.

Replacing σ2 in the right-hand side by an estimator, PLS is simply FIC. In

summary, Wei showed the following.

Theorem 2.9. Assume either the stochastic regression model (1) holds with

certain regularity conditions being satisfied, or that the nonstationary time series

model (9) holds with characteristic polynomial satisfying (10) together with certain

regularity conditions (see Theorem 5.1.1 of Wei (1992)) being satisfied. Then the

FIC is strongly consistent.

This theorem has many important consequences. It is related to the or-

der selection criterion studied in Pötscher (1989) and the predictive minimum

description length idea used in Rissanen (1986). A similar idea was proposed

by Phillips (1995) in a Bayesian setting, where it is known as the posterior in-

formation criterion (PIC). A thorough discussion on this subject can be found
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in the 1995 themed issue of the Journal of Econometrics 69 entitled “Bayesian

and Classical Econometric Modeling of Time Series.” Further discussions about

Bayesian unit root inference were given in Kadane, Chan and Wolfson (1996).

Ing and Wei (2003, 2005) built on Wei’s idea to study the so-called same realiza-

tion prediction principle for order selection of autoregressive time series. They

showed that AIC is asymptotically efficient for same realization prediction prob-

lems.

3. Miscellaneous Developments and Conclusion

Wei’s contributions to time series are not restricted to the aforementioned do-

mains. In a series of papers, Findley and Wei (1993, 2002) and Findley, Pötscher

and Wei (2001, 2004) studied the convergence properties of sample moments for a

general class of time series from which consistency of parameter estimates based

on minimal multi-step ahead forecast errors were established. Wei has also made

important contributions to non-linear modeling. The essence of the probabilis-

tic developments was given in Guo and Wei (1993). In non-Gaussian processes,

Wei supervised Karagrigoriou in a thesis that studied the optimality of order

selection, see Karagrigoriou (1997).

In addition to time series, Wei has also produced a number of profound re-

sults in inference for stochastic processes in general. In Wei and Winnicki (1989,

1990), asymptotic results about critical branching processes were established.

Although the form of these results are different from those arising in nonstation-

ary time series, the techniques involved and the nature of the asymptotics are

somewhat similar to the nonstationary case. Collectively, Wei considered both

fields to be examples of what he called critical phenomena. In the area of stochas-

tic modeling, Hu and Wei (1989) considered the irreversible adaptive allocation

rule, and Basak, Hu and Wei (1997) studied the issue of weak convergence of

recursions.

The field of time series and stochastic regression have been going through

rigorous developments for the last two decades. Wei has provided an arsenal of

fundamental contributions in these areas. Time after time, he either came up

with the sharpest rate of convergence or he was among the first group of scholars

who established the asymptotic validity of certain procedures. This is mainly

due to his superb technical insight and his tenacity.

By reviewing his publications, one often comes up with more than the

stated results. In fact, there are numerous areas of possible extensions. In the

field of nonstationary time series, the recent popularity of long-memory mod-

els remains an open field, see Chan and Terrin (1995) and Buchmann and Chan

(2005). Equally important is the area of empirical likelihood inference for time

series. In addition to MLE, nonparametric procedures like empirical likelihood
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are gaining popularity and extension to this area is likely to be important, for

related literature see Chan and Ling (2006). Another area of importance is in-

ference for infinite variance models. Here, many of the LSE type results are no

longer valid and an entirely new asymptotic theory needs to be established, see

for example Chan, Peng and Qi (2005). Through asymptotic inference, Wei has

greatly broadened the scope of time series and stochastic regression and pushed

them to new frontiers with his keen new insight.
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