
Statistica Sinica 16(2006), 353-374

AN EFFECTIVE METHOD FOR HIGH-DIMENSIONAL

LOG-DENSITY ANOVA ESTIMATION, WITH APPLICATION

TO NONPARAMETRIC GRAPHICAL MODEL BUILDING
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Abstract: The log-density functional ANOVA model provides a powerful frame-
work for the estimation and interpretation of high-dimensional densities. Existing
methods for fitting such a model require repeated numerical integration of high-
dimensional functions, and are infeasible in problems of dimension larger than four.
We propose a new method for fitting the log-density ANOVA model based on a pe-
nalized M -estimation formulation with a novel loss function. Solving the penalized
M -estimation problem does not require high-dimensional integration: only one-
dimensional integrals are required and they can be computed quickly by using the
cumulative distribution function of familiar one-dimensional densities. Simulations
indicate that the proposed method is statistically very efficient and computationally
practical in high-dimensional problems. We apply the new method to the construc-
tion and estimation of (undirected) nonparametric graphical models. The graphical
models use graphs to display the conditional dependence among random variables
and have become very popular, but have mostly been studied parametrically. Our
method provides a practical way to construct and estimate nonparametric graphical
models.
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1. Introduction

Consider the density estimation problem, in which we are given a random

sample of a d-dimensional random vector X = (X1, . . . , Xd) and wish to esti-

mate the density function p(·) of X. A number of nonparametric algorithms

are successful for low-dimensional problems (d ≤ 3), but there are few practical

algorithms for higher dimensional problems. A major difficulty is that a general

high-dimensional density function is hard to estimate, both in terms of accu-

racy and computational cost. Even when an accurate estimate is available, a

complicated high-dimensional density function can be very hard to interpret.

The log-density smoothing spline ANOVA (analysis of variance) model pro-

vides a powerful framework for the estimation and interpretation of high-dimen-

sional density functions. In such a model the log-density function is decom-

posed as a sum of a constant term, one-dimensional functions (main effects),
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two-dimensional functions (two-way interactions), and so on:

η(x) = constant +

d
∑

j=1

ηj(xj) +
∑

j<k

ηjk(xj, xk) + · · · , (1)

where the components satisfy side conditions that guarantee uniqueness, and the

series is usually truncated in some manner to enhance interpretability. For an

overview of such models, see Gu (2002). Notice that the additive log-density

model (with no interaction terms) actually assumes independence among the

variables. The all-two-way-interaction model (the model with all the main ef-

fects and two-way interactions, but no higher order interactions) is the simplest

model in which dependence structure can be incorporated, and is commonly used.

Such a model has the further advantage that the components in the ANOVA

decomposition can be visualized. In this paper we mainly consider the all-two-

way-interaction model, though the new method that we are to propose for fitting

log-density ANOVA model is applicable to more general log-density ANOVA

structures.

There is a close connection between the log-density ANOVA model and

(undirected) graphical models, which use graphs to intuitively represent the con-

ditional dependence structure among a number of variables. For example, in

a three-dimensional problem, the absence of the terms η23 and η123 in the log-

density ANOVA decomposition (1) indicates that the random variables X2 and

X3 are conditionally independent given X1 (in symbols, X2 ⊥⊥ X3 | X1). The

aforementioned three-dimensional example can be represented by the graph

X2——X1——X3.

Currently most of the research on undirected graphical models has been

parametric. When the variables considered are categorical, graphical models

are special cases of the log-linear models; when the variables are continuous,

the current research on graphical models assumes joint Gaussian distribution for

the variables; when there are both categorical and continuous variables, a condi-

tional Gaussian distribution is usually assumed. Model selection among graphical

models is typically done with stepwise forward/backward type procedures. For

a review of graphical models, see, for example, Edwards (2000). To enhance the

scope of applicability of the graphical model methodology, in this paper we will

consider the building of (undirected) nonparametric graphical models through

their connection with log-density ANOVA models. The relation between these

two types of models is particularly simple when we concentrate on the log-density
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all-two-way-interaction model. In such a model, the absence of interaction term

between any two variables entails conditional independence between the two vari-

ables given all other variables, and there is a one-to-one correspondence between

the submodels of the log-density all-two-way-interaction model with graphical

displays. The log-density all-two-way-interaction model can be seen as the con-

tinuous counterpart to the all-two-way-interaction log-linear model discussed in

Whittaker (1990). Notice that the commonly used parametric Gaussian graphical

model can also be seen as a parametric special case of the log-density all-two-

way-interaction model.

The building of nonparametric graphical models via log-density ANOVA

model depends crucially on the availability of effective algorithms to fit the

log-density ANOVA model in high dimensions. Currently the most commonly

used method for fitting the log-density ANOVA model is the penalized likeli-

hood method. Leonard (1978) introduced the logistic density transform p =

exp(h)/
∫

exp(h) to incorporate the positivity and unity constraints of density

function, and proposed to estimate h via penalized log likelihood. Silverman

(1982) proposed and studied the theoretical properties of the penalized likeli-

hood estimator obtained by solving

arg min
η

{

−
1

n

n
∑

i=1

η(xi) +

∫

eη + λJ(η)
}

(2)

over a reproducing kernel Hilbert space H, where J is a penalty functional that

involves only derivatives. Gu and Qiu (1993) studied the theoretical property of

the penalized likelihood estimate of the logistic density over reproducing kernel

Hilbert spaces. This estimate is the solution to

arg min
η

{

−
1

n

n
∑

i=1

η(xi) + log

∫

eη + λJ(η)
}

. (3)

Gu (1993) provided a practical algorithm for (3), and gave some one- and two-

dimensional examples. Gu (2002) and Gu and Wang (2003) improved Gu’s orig-

inal algorithm, and the new algorithm is available in the software R.

While the penalized likelihood method has been successful in low-dimensional

log-density ANOVA problems, it is not practically feasible for high-dimensional

problems. In high-dimensional problems, the major difficulty of the penalized

likelihood method is the calculation of
∫

exp(η) involved in the estimation. No-

tice that in general
∫

exp(η) does not decompose, even when η is in an all-two-way

interaction model. For each fixed tuning parameter, solving (2) or (3) involves a

number of Newton-Raphson iterations, and an expensive high-dimensional inte-

gration is needed for each of the iterations. In one or two dimensions, this integral
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may be approximated by using simple grid point cubature. However, the use of

grid points is not practical in high dimension, as the number of points for a de-

cent approximation increases exponentially with the dimension d, and accuracy

of the approximation is required for successful Newton-Raphson iterations. A

sparse grid method has been used in Gu and Wang (2003) for the integration.

However, it still cannot provide sufficient accuracy with a reasonable number

of points in high-dimensional problems. Furthermore, the sparse grid cubature

involves negative weights, which causes serious numerical problems since the in-

tegration is embedded in an optimization procedure. For instance, the minimand

that is convex in theory is not guaranteed to be convex numerically. So far the

highest dimensional log-density ANOVA problem tackled in the literature is of

dimension four, and it usually takes a large amount of time for the penalized

likelihood method to fit four-dimensional problems.

In this paper we propose a new method that is suitable for log-density

ANOVA model estimation in high-dimensional space. This is a penalized M -

estimation type method with a novel loss function that targets the true log-

density. For each fixed tuning parameter, solving our penalized M -estimation

formulation involves only one-dimensional integrals, and these one-dimensional

integrals can be computed quickly by using the cumulative distribution function

of familiar one-dimensional densities. The computational load of the new method

is much lighter than that of the penalized likelihood method, and it is practically

feasible for high-dimensional problems. The penalized M -estimation formulation

of the proposed algorithm is given in Section 2. In Section 3, the function space

for the log-density smoothing spline ANOVA model is briefly reviewed, and we

also introduce an alternative penalty to the smoothing spline penalty. This is a

sparsity-inducing penalty, and when it is used in our formulation, the estimation

and model selection in the log-density ANOVA model can be done simultane-

ously. This enables us to build and fit nonparametric graphical models. Section

4 gives the detailed algorithm of the penalized M -estimation method with the

sparsity-inducing penalty in the log-density ANOVA model. Simulations and

examples are given in Section 5 and Section 6. We give some discussions in

Section 7.

2. The penalized M-Estimation Formulation of the New Method

Let X be the support of the density p(x) of X and ρ be a fixed positive

density function over X . We propose to find f ∈ H which minimizes

ln(f) + λJ(f), (4)
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where

ln(f) =
1

n

n
∑

i=1

e−f(xi) +

∫

f(x)ρ(x)dx.

Here H is a reproducing kernel Hilbert space (typically a Sobolev Hilbert space or

a tensor product of them; more details on this function space are given in Section

3), and J is a penalty functional, usually a squared semi-norm in H. The for-

mulation (4) is of the form of the method of regularization. Cox and O’Sullivan

(1990) provided a general framework for studying the theoretical properties of

this type of method. In general, under mild conditions, the estimator from (4)

converges to the minimizer of the population version of ln, when the tuning pa-

rameter λ is chosen to go to zero at a certain rate. The population version of the

ln in our case is

l(f) = E[e−f(X)] +

∫

f(x)ρ(x)dx =

∫

e−f(x)p(x)dx +

∫

f(x)ρ(x)dx. (5)

The first and second order Fréchet derivatives of l(f) are

Dl(f)h = −

∫

e−f(x)h(x)p(x)dx +

∫

h(x)ρ(x)dx,

D2l(f)gh =

∫

e−f(x)g(x)h(x)p(x)dx,

where D denotes Fréchet derivative operator. By setting Dl(f)h =
∫

h(x)[ρ(x)−

exp{−f(x)}p(x)]dx to zero for all h ∈ H, we get ρ − exp(−f)p = 0, that is,

exp(f)ρ = p. Also, l is strictly convex since D2l(f)gg =
∫

exp{−f(x)}g(x)2p(x)

dx > 0 for any nonzero g ∈ H. Therefore l(f) is uniquely minimized by f̄ =

log p − log ρ, and this is what our method estimates. A detailed study of the

consistency properties of our method, including the rates of convergence, will be

given in a separate paper. If f̂ is the solution to the minimizing problem (4), the

estimate of the density p will be proportional to exp(f̂)ρ.

The function ρ(x) is a baseline density that is chosen before the estimation,

and exp(f̂(x)) is used to catch the detailed density. The baseline density can

be chosen to be any density function with the same support as the density p(x).

The optimization problem (4) involves an integral
∫

f(x)ρ(x)dx. As we will

see in Section 4.1, with suitable choices of ρ, this integral naturally decomposes

into a sum of integrals in low dimensions in the log-density ANOVA model, and

these low-dimensional integrals can be further decomposed into products of one-

dimensional integrals due to the properties of the reproducing kernels used in

the log-density smoothing spline ANOVA model. The one-dimensional integrals

can be computed quickly by using cumulative distribution functions of familiar
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one-dimensional distributions. Therefore the integration
∫

f(x)ρ(x)dx involved

in the optimization procedure can be computed quickly and accurately.

Suppose that the function space H can be decomposed into H = {1} ⊕ G,

where {1} is the constant space, and G is its orthogonal complement. Then

the minimization problem (4) over f ∈ H is equivalent to finding g ∈ G which

minimizes

log

{

1

n

n
∑

i=1

e−g(xi)

}

+

∫

g(x)ρ(x)dx + λJ(g), (6)

provided the penalty J remains unchanged for adding a constant (which is typi-

cally true since J typically involves only derivatives), since

min
f∈H

{ 1

n

n
∑

i=1

e−f(xi) +

∫

f(x)ρ(x)dx + λJ(f)
}

= min
g∈G,d∈R

{ 1

n

n
∑

i=1

e−g(xi)e−d +

∫

g(x)ρ(x)dx + d + λJ(g)
}

= min
g∈G

{

1 +

∫

g(x)ρ(x)dx + log
( 1

n

n
∑

i=1

e−g(xi)
)

+ λJ(g)
}

.

If ĝ minimizes (6), then the estimator for the density is of the form

p̂(x) = constant eĝ(x)ρ(x). (7)

Here the constant term can be chosen to satisfy the unity constraint
∫

p̂(x)dx = 1.

After ĝ is obtained by solving (6), the normalizing constant in (7) requires a high-

dimensional integration. However, this step is separate from the optimization

procedure, and is only needed once. This does not cause serious computational

problems.

3. Function space of smoothing spline ANOVA

Let H(j) be a reproducing kernel Hilbert space of univariate functions on Xj

of the form H(j) = {1(j)} ⊕H
(j)
1 , where {1(j)} is the space of constant functions

on Xj and H
(j)
1 is its orthogonal complement. We can construct a reproducing

kernel Hilbert space of functions on X = X1×· · ·×Xd through the tensor product

space strategy:

d
⊗

j=1

H(j) =

d
⊗

j=1

{

{1(j)}⊕H
(j)
1

}

= {1}⊕

{ d
⊕

j=1

H
(j)
1

}

⊕

{

⊕

j<k

[H
(j)
1 ⊗H

(k)
1 ]

}

⊕ · · · ,

(8)
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where {1} denotes the constant functions on X and factors of the form {1(j)} are

omitted whenever they multiply a term of a different form, with some abuse of

notation.

For a continuous variable Xj on the domain [0, 1], we take H(j) to be the

commonly used second order Sobolev-Hilbert space {f |f, f ′ are absolutely con-

tinuous; f ′′ ∈ L2([0, 1])}. Endowed with the inner product

< f1, f2 >=

∫ 1

0
f1(t)dt

∫ 1

0
f2(t)dt +

∫ 1

0
f ′
1(t)dt

∫ 1

0
f ′
2(t)dt +

∫ 1

0
f ′′
1 (t)f ′′

2 (t)dt,

H(j) is a reproducing kernel Hilbert space with the reproducing kernel R(s, t) =

1 + R1(s, t) = 1 + k1(s)k1(t) + k2(s)k2(t) − k4(|s − t|), where

k1(x) = x −
1

2

k2(x) =
1

2

{

k2
1(x) −

1

12

}

k4(x) =
1

24

{

k4
1(x) −

1

2
k2
1(x) +

7

240

}

,

and R1 is the reproducing kernel of H
(j)
1 . See Wahba (1990) and Gu (2002).

In the log-density smoothing spline ANOVA model, the log-density is as-

sumed to have an ANOVA decomposition with only low order interactions. If

we choose the baseline density ρ such that log ρ has an additive structure, as we

will do in our implementation, then f = log p − log ρ and the log-density share

the same ANOVA structure. In the smoothing spline ANOVA model, we assume

each functional component in the decomposition (1) of f lies in a corresponding

subspace in the orthogonal decomposition (8) of
⊗d

j=1 H
(j). Thus the function

space H assumed for f consists of some orthogonal component subspaces in (8).

Relabeling the subspaces other than the null space N = {1} in the model as G (α),

α = 1, . . . , p, then H = N⊕{
⊕p

α=1 G
(α)}, and the smoothing spline method finds

f ∈ H to minimize

ln(f) + λ

p
∑

α=1

θ−1
α ‖P αf‖2, (9)

where P α is the orthogonal projector in H into G(α). Here θα ≥ 0 and if θα = 0,

the minimizer is taken to satisfy ‖P αf‖2 = 0. (We use the convention 0/0 =

0.) It is known that the minimizer of (9) in the regression problem is in the

finite dimensional space N ⊕ Gn, where Gn = span{Rθ(xi, ·), i = 1, . . . , n} and

Rθ(s, t) =
∑p

α=1 θαRα(s, t) (Wahba (1990, Chap. 10)).
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In our log-density ANOVA model fitting, the smoothing spline method would

find f ∈ {1} ⊕ Gn to minimize our new formulation (4) with J(f) =
∑p

α=1 θ−1
α

‖P αf‖2, and it is equivalent to finding g ∈ Gn to minimize

log
{ 1

n

n
∑

i=1

e−g(xi)
}

+

∫

g(x)ρ(x)dx + λ

p
∑

α=1

θ−1
α ‖P αg‖2. (10)

Note that the Representer Theorem for smoothing spline regression does not

hold for our estimator, and we seek a good approximate solution in the finite-

dimensional space {1} ⊕ Gn.

The COSSO (Lin and Zhang (2002)) is a method of regularization with the

penalty functional being the sum of component norms, instead of the weighted

sum of squared norms employed in the traditional smoothing spline method.

The penalty used in COSSO enables us to get a sparse solution in terms of

smoothing spline ANOVA functional components, so that both estimation and

model selection can be carried out simultaneously.

The COSSO finds g ∈ Gn to minimize

log
{ 1

n

n
∑

i=1

e−g(xi)
}

+

∫

g(x)ρ(x)dx + τ

p
∑

α=1

‖P αg‖. (11)

It is easy to show, with arguments similar to those in Lin and Zhang (2002),

that the minimization problem (11) is equivalent to the problem of finding θ =

(θ1, . . . , θp)
T and g ∈ Gn to minimize

log
{ 1

n

n
∑

i=1

e−g(xi)
}

+

∫

g(x)ρ(x)dx + λ0

p
∑

α=1

θ−1
α ||P αg||2 + λ

p
∑

α=1

θα, (12)

subject to θα ≥ 0, α = 1, . . . , p, where λ0 is a fixed constant and λ is a smoothing

parameter. Note that there is only one smoothing parameter λ in (12). The θα

are not free smoothing parameters but part of the estimate.

For any fixed θ, the COSSO (12) is a smoothing spline problem (10) with

fixed smoothing parameters. Thus we find a solution to (12) among the functions

of the form g(x) =
∑n

i=1 ciRθ(xi,x) =
∑p

α=1 θα

∑n
i=1 ciRα(xi,x).

4. Algorithm

We consider the log-density all-two-way-interaction model in our implemen-

tation. For the solution ĝ in the all-two-way-interaction model, the estimated

log-density p̂(x) = constant + ĝ(x) + log ρ(x) preserves the two-way interaction

structure if log ρ is additive.
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4.1. Baseline density function

We assume the domain of each variable is [0, 1], and use the Beta family for

the baseline density. We fit a Beta density to the marginal distribution of Xj with

the method of maximum likelihood. Let ρ(j) be the fitted density function. Then

the product of marginal baseline densities ρ(j) serves as the baseline density ρ.

In the log-density all-two-way-interaction model, the solution g =
∑d

j=1 gj +
∑

j<k gjk to the problem of minimizing (10) is to be found among the functions

of the form

g(x) =

n
∑

i=1

ci

{

d
∑

j=1

θjRj(xi,x) +
∑

j<k

θjkRj(xi,x)Rk(xi,x)
}

,

where Rj(x,x′) = Rj(xj , x
′
j) for j = 1, . . . , d. The integral term in (10) can be

computed as

∫

g(x)ρ(x)dx =
n

∑

i=1

ci

{

d
∑

j=1

θj b̃ij +
∑

j<k

θjkb̃ij b̃ik

}

,

where b̃ij =
∫

Rj(xi,x)ρ(x)dx, since the baseline density ρ(x) is the product of

marginal baseline densities.

Now let us discuss how to compute the integral terms b̃ij separately in each

dimension j with the notation j for the dimension suppressed throughout this

section. Here b̃i =
∫ 1
0 R1(xi, x)ρ(x)dx =

∫ 1
0 {k1(xi)k1(x) + k2(xi)k2(x) − k4(|xi −

x|)}ρ(x)dx needs to be computed with a Beta baseline density function ρ(x) =

ρ(x;β1, β2). For this computation, let x[r] = x(x + 1) · · · (x + r − 1). Then, for

y ∈ [0, 1],

lr(y) =

∫ y

0
xrρ(x)dx = betacdf(y;β1 + r, β2)

β
[r]
1

(β1 + β2)[r]
,

ur(y) =

∫ 1

y

xrρ(x)dx = {1 − betacdf(y;β1 + r, β2)}
β

[r]
1

(β1 + β2)[r]
.

Letting mr =
∫ 1
0 xrρ(x)dx, we get

∫ 1

0
k1(x)ρ(x)dx = m1 −

1

2
∫ 1

0
k2(x)ρ(x)dx =

1

2

(

m2 − m1 +
1

6

)
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and
∫ 1
0 k4(|x − xi|)ρ(x)dx can be computed as

∫ 1

0
k4(|x − y|)ρ(x)dx =

∫ y

0
k4(y − x)ρ(x)dx +

∫ 1

y

k4(x − y)ρ(x)dx

=
1

24

{

l4(y)+4al3(y)+

(

6a2−
1

2

)

l2(y)+
(

4a3−a
)

l1(y)+

(

a4−
a2

2
+

7

240

)

l0(y)

}

+
1

24

{

u4(y)+4bu3(y)+

(

6b2−
1

2

)

u2(y)+
(

4b3−b
)

u1(y)+

(

b4−
b2

2
+

7

240

)

u0(y)

}

with a(y) = −y + 1/2 and b(y) = −y − 1/2.
It is also possible to use other distributions than the beta distribution. For

example, when using the uniform density for ρ, the computation of
∫

gρ is par-
ticularly simple and can be done analytically.

4.2. Newton-Raphson iteration

In this section we introduce the algorithm for finding g ∈ Gn =span{Rθ(xi, ·),
i = 1, . . . , n} to minimize (10) for fixed λ and θ = (θ1, . . . , θp)

T . A function in
Gn has the expression g(x) =

∑n
i=1 ciRθ(xi,x) =

∑p
α=1 θα

∑n
i=1 ciRα(xi,x), and

its penalty J(g) =
∑p

α=1 θ−1
α ||P αg||2 has a matrix representation J(g) = cT Rθc,

where Rθ = {Rθ(xi,xj)}i,j=1,...,n and c is the n column vector of coefficients with
ith entry ci. The integral term can be written as

∫

g(x)ρ(x)dx =

p
∑

α=1

n
∑

i=1

θαci

∫

Rα(xi,x)ρ(x)dx = θTBT c,

where B is a n × p matrix with (i, α)th entry bi,α =
∫

Rα(x,xi)ρ(x)dx.
In the all-two-way-interaction ANOVA setting, Rθ =

∑d
j=1 θjRj +

∑

j<k θjk

(Rj ◦ Rk), where Rj is the kernel matrix for the jth variable and ◦ is used for
the element-wise matrix product operator. The (i, α)th entry bi,α of the n × p

matrix B is bi,α = b̃ij for α = 1, . . . , d, and bi,α = b̃ij b̃ik for α = (d + 1), . . . , p.
Denoting ξθ

i (·) = Rθ(xi, ·) and bθ = Bθ, the minimization problem (10) is

Aλ,θ(c) = log

(

1

n

n
∑

i=1

exp
{

−
n

∑

j=1

cjξ
θ
j (xi)

}

)

+ bT
θ c + λcT Rθc. (13)

The Newton-Raphson iteration can be applied to minimize (13) for fixed λ and
θ. A direct calculation gives

∂Aλ,θ

∂ck

=−
n

∑

i=1

wi(c)ξ
θ
k(xi) + {bθ}k + 2λ{Rθc}k,

∂2Aλ,θ

∂ck∂cl
=

n
∑

i=1

wi(c)ξ
θ
k(xi)ξ

θ
l (xi)−

{ n
∑

i=1

wi(c)ξ
θ
k(xi)

}{ n
∑

i=1

wi(c)ξ
θ
l (xi)

}

+2λ{Rθ}k,l,
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where {bθ}k denotes kth entry of the vector bθ, {Rθ}k,l denotes (k, l)th entry of

the matrix Rθ, and

wi(c) =
exp

{

− g(xi)
}

∑n
i=1 exp

{

− g(xi)
} =

exp
{

−
∑n

j=1 cjξ
θ
j (xi)

}

∑n
i=1 exp

{

−
∑n

j=1 cjξ
θ
j (xi)

} .

Letting wc = (w1(c), . . . , wn(c))T and Dc = Diag(w1(c), . . . , wn(c)), the gradi-

ent vector and the Hessian matrix of Aλ,θ(c) can be written as

GAλ,θ
(c) = −Rθwc + bθ + 2λRθc,

HAλ,θ
(c) = RθDcRθ − (Rθwc)(Rθwc)

T + 2λRθ.

Writing c̃ as the current iterate of c, the Newton updating equation is

GAλ,θ
(c̃) + HAλ,θ

(c̃)(c − c̃) = 0.

After arranging terms we get, successively,
(

RθDc̃ −Rθwc̃w
T
c̃ + 2λI

)

Rθc =
(

RθDc̃ −Rθwc̃w
T
c̃

)

Rθc̃ + Rθwc̃ − bθ,

(

RθDc̃ −Rθwc̃w
T
c̃ + 2λI

)

g =
(

RθDc̃ −Rθwc̃w
T
c̃

)

g̃ + Rθwc̃ − bθ,

when expressed in terms of g = (g(x1), . . . , g(xn))T = Rθc.

4.3. The COSSO

We find a solution to the COSSO (12) among the functions of the form

g(x) =
∑n

i=1 ciRθ(xi,x) =
∑p

α=1 θα

∑n
i=1 ciRα(xi,x). The COSSO formula can

be viewed as a function of θ and c = (c1, . . . , cn)T . A reasonable scheme would

be to minimize (12) iteratively with respect to θ and c. If θ were fixed, then,

since it is a smoothing spline problem, the solution can be obtained as described

in Section 4.2. On the other hand, if c were fixed, let gα = Rαc, and G =

[g1, . . . ,gp] be the n × p matrix with the αth column being gα. Then (12) is

equivalent to minimizing

A(θ) = log

{

1

n
1T exp(−Gθ)

}

+ cTBθ + λ0c
TGθ

subject to θα ≥ 0 and
∑

θα ≤ M for some M . In our algorithm, instead of A(θ),

we propose to solve a quadratic approximation of A(θ) for updating θ.

Letting wθ =(wθ1, . . . , wθn)T , where wθi =exp{−g(xi)}/
∑n

j=1exp{−g(xj)},
the gradient vector and the Hessian matrix of A(θ) can be written as

GA(θ) = −GTwθ + BT c + λ0G
T c,

HA(θ) = GT {Diag(wθ) −wθw
T
θ }G.
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Therefore the iteration for updating θ is via solving the simple quadratic pro-

gramming problem which minimizes the quadratic approximation of A(θ) around

the current iterate θ̃,

A(θ̃) + (θ − θ̃)T GA(θ̃) +
1

2
(θ − θ̃)T HA(θ̃)(θ − θ̃)

=
1

2
θT HA(θ̃)θ + θT {GA(θ̃) − HA(θ̃)θ̃} + constant, (14)

subject to θα ≥ 0 and
∑

θα ≤ M .

For fixed λ0 and M , our algorithm is as follows.

1. Initialization: fix θα = 1, α = 1, . . . , p.

2. For a currently given θ, solve for c.

3. For the current c, and θ̃ being the current iterate of θ, solve for θ in (14).
4. repeat Step 2 and Step 3 until θ converges or a given number of times,

whichever comes first.

4.4. Choosing the smoothing parameter

The Kullback-Leibler (KL) loss is often considered a measure of distance be-

tween two probability density functions. If p̂ is an estimate of the density function

p of X, then the KL loss is given by KL(p, p̂) = EX log{p(X)/p̂(X)}. Ignoring
the term which involves only the true density p, we have the relative Kullback-

Leibler (RKL) loss RKL(p, p̂) = −EX log p̂(X). If a tuning set is available, we

can use the empirical RKL loss on the tuning set to tune the smoothing param-

eter. When there is no tuning set, we can use five- or ten-fold cross-validation.
In computing the KL loss, we need to evaluate the constant term in (7).

This is done through Monte Carlo integration. Notice that this integration is

required only after the iterative estimation procedure, and the performance of

the estimator is not very sensitive to the slight changes in the tuning parameter.

Therefore Monte Carlo integration with a reasonable sample size can do the job.
Combined with the tuning procedure, the complete algorithm to fit the

COSSO estimate is as follows.

1. Fix θα = 1, α = 1, . . . , p. Solve the smoothing spline problem and tune λ0

according to CV. Set λ0 fixed at the chosen value in all later steps.

2. For each given M in a reasonable range, apply the COSSO algorithm with
M . Tune M according to CV. The solution corresponding to this chosen M

is the final solution.

5. Simulations

To investigate how our method performs in various problems, we used simu-

lated data from a number of sources. All examples considered in this section are

for the two-way interaction models.
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For the univariate problem the algorithm described in Section 4.2 was di-

rectly applied. The COSSO algorithm for the all-two-way-interaction models

described in Section 4.3 and Section 4.4 was applied for higher dimensional ex-

amples where the model selection is of as much interest as estimation accuracy.

Our method (referred to as NEW) is compared with the Gaussian kernel den-

sity estimation (GKDE) and the penalized likelihood (PL) method. The kernel

density estimator used is the simplest kind that involves only one smoothing pa-

rameter. It is simple to use and works well for low-dimensional problems, but

is not expected to work well in high dimensions. For the penalized likelihood

method we used the implementation in the R library gss which can handle at

most 4-dimensional problems. The five-fold cross-validated (5-CV) log-likelihood

was used in choosing smoothing parameters for our method and the GKDE. The

selection of smoothing parameters for the PL method was through a modified

version of the generalized approximate cross-validation (GACV) described in

Gu and Wang (2003), with the default parameter value α = 1.4. To evaluate the

performances of the estimators in our simulation study, we generated an inde-

pendent test sample {x∗
k, k = 1, . . . , N} from the true density p, and used the

empirical KL loss on the test sample to compare the estimators.

Example 5.1. Samples of size n = 100 were generated from the univariate

density proportional to (1/3)N(0.3, 0.12) + (2/3)N(0.7, 0.12) truncated to [0, 1].

The estimated density functions by our method, the GKDE, and the PL method

based on the first sample are shown in Figure 1. For these estimated densities, the

empirical KL losses were computed based on an independent test sample of size

N = 1, 000 from the true density, and these were KLNEW = 0.0119, KLGKDE =

0.0220 and KLPL = 0.0103. We ran the simulation s = 100 times more, and

the empirical KL losses on test samples were computed in each simulation and

displayed in the boxplots (Figure 1, bottom right). The boxplots show that

the three methods are comparable in this one-dimensional example, that the PL

method performs slightly better than the others.

Example 5.2. A 4-dimensional density was constructed by independently com-

bining the univariate density used in Example 5.1 and the two-dimensional den-

sity proportional to

1

2
N((0.3, 0.5),

I

49
) +

1

3
N((0.7, 0.7),

I

49
) +

1

6
N((0.75, 0.25),

I

49
) (15)

truncated on [0, 1]2. (X1, X2) follows (15), and X3 and X4 follow the density

in Example 5.1. (X1, X2), X3, and X4 are independent of each other. Three

estimation methods were applied to the s = 50 samples of size n = 600. The test

sample size for the empirical KL was N = 3, 000.
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Figure 1. Based on a sample of size n = 100 from the true density (solid line)
of Example 5.1, the estimated densities (dashed line) by the new method (top
left), the Gaussian kernel density estimation (top right), and the penalized
likelihood method (bottom left) are plotted. The dotted line in the top left
panel indicates the baseline density. Boxplots of the empirical KL losses on
test samples of estimated densities by the three methods based on s = 100
simulations are plotted (bottom right). The smoothing parameters were
selected through 5-CV for the new method and GKDE, and a modified
GACV for the penalized likelihood method.

For visual illustration of the joint density estimate, the two-dimensional con-

tour plots of the estimated densities, based on a sample of size n = 600 of the

random pair (X1, X2) in Example 5.2, are displayed along with the true contour

plot in Figure 2.

The R function ssden for the PL method adopts a sub-basis scheme which

uses only a part of the sample as basis functions to reduce the computational

load. That is, the minimizer is found in the space spanned by {R(xi, ·), i ∈ I,

and φj(·), j = 1, . . . , l} for a random subset I of {1, . . . , n}, instead of {1, . . . , n}
itself, where {φ1, . . . , φl} is a basis of the null space. The cardinality of the set I

is denoted by nB.
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For comparison to the PL method, we also brought the sub-basis scheme into

our method in this example. To compare the running time between our method

and the PL method, the first sample of Example 5.2 was taken and two methods

were applied with the same sets of sub-basis functions of various sizes. The total

CPU time used by our MATLAB implementation according to the MATLAB

function cputime, and the total elapsed times for the R process by the function

ssden according to the R function proc.time are presented for nB = 42, 100, 200,

600 in Table 1, where nB = 42 is the default option of the ssden function. The

PL method failed with nB = 200, 300, 400, 500, 600.
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Figure 2. Based on a sample of size n = 600 of the pair (X1, X2) in Example

5.2, the two-dimensional contour plots of the estimated densities by the new

method (top left), the Gaussian kernel density estimation (top right), and

the penalized likelihood method (bottom left) are displayed along with the

true contour plot (bottom right). The smoothing parameters were selected

through 5-CV for the new method and GKDE, and a modified GACV for

the penalized likelihood method.
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Table 1. Total elapsed times (in seconds) for our method and the R ssden process.

nB our method PL

42 120.50 3435.79

100 213.05 9418.51

200 427.10 Fail

600 1828.08 Fail
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Figure 3. Example 5.2. Boxplots of the empirical KL losses on test samples
of estimated densities by our method and the GKDE based on s = 50 sim-
ulations. The boxplot for the PL method is based on only 47 runs. The PL
method failed in the other 3 runs.

To compare the performance of the methods in Example 5.2, we applied

our method and the ssden function with nB = 42 in s = 50 simulations. The

same basis functions were used in each simulation. Another difficulty arose in
the ssden function: the procedure sometimes failed to fit the model. Although

ssden returned answers in all simulations, the warnings “Newton iteration fails

to converge” followed in three cases, where the answers were far from reason-
able estimates. The algorithm finished successfully in the remaining cases. Our

method had no problems.

Figure 3 shows boxplots of the empirical KL losses on test samples for our

method and the GKDE based on s = 50 simulations. The boxplot for the PL
method based on only 47 cases, where ssden was successful, is also displayed in

Figure 3, together with the boxplots for our method and the GKDE based on 50

simulations. It is clear that our method performs much better than the GKDE.
If we use only the 47 cases where the ssden function successfully obtained the

estimates to compute the error for the PL method, the PL method performed

slightly better than our method. This result is biased in favor of the PL method,
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since we effectively deleted the outliers in the performance measure of the PL
method.

In higher dimensional problems, it is appropriate to use more basis func-
tions, and the computational cost for integration also increases exponentially.
Therefore the PL method is not suitable for high-dimensional problems, its im-
plementation in gss can handle at most 4-dimensional problems. Our method is
computationally much more practical. For examples with dimension higher than
four, comparisons are made only between our method (with the full basis) and
GKDE, since the PL estimates cannot be computed.

Example 5.3. Samples of size n = 600 were generated from the 5-variate normal
density truncated to [0, 1]5 with mean (0.5, 0.5, 0.5, 0.5, 0.5) and covariance matrix
Σ1, with

Σ−1
1 =













62 − 30 0 0 −30

−30 62 − 15 0 0

0 −15 62 13 0

0 0 13 62 − 19

−30 0 0 − 19 62













.

Notice that Xj ⊥⊥ Xk | (the rest) for (j, k) = (1, 3), (1, 4), (2, 4), (2, 5), (3, 5) so
the corresponding graph is a chordless 5-cycle (Figure 4, left panel). We repeated
the simulation s = 50 times, the test sample size was N = 3, 000.

Example 5.4. Another 5-dimensional density was constructed by independently
combining two 2-dimensional densities and the univariate density used in Exam-
ple 5.1. (X1, X2) follows the 2-dimensional density proportional to (15) trun-
cated to [0, 1]2, X5 follows the density of Example 5.1, and (X3, X4) follows the
2-dimensional density

2

3
Beta2(2, 4) +

1

3
Beta2(7, 4), (16)

where Beta2 represents the 2-dimensional distribution where each variable inde-
pendently follows the corresponding Beta density. (X1, X2), (X3, X4), and X5

are independent of each other. Figure 4 (right panel) shows the corresponding
graph. Two estimation methods were applied to the s = 50 samples of size
n = 600, the test sample size was N = 3, 000.

Example 5.5. A 10-dimensional density was constructed by independently com-
bining (X1, . . . , X5) from Example 5.3, (X6, X7, X8) from the 3-variate normal
density truncated to [0, 1]3 with mean (0.5, 0.5, 0.5) and covariance matrix Σ2,
with

Σ−1
2 =

1

1.2





62 − 30 − 30

−30 62 0

−30 0 62



 ,
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and (X9, X10) from (16). Notice that X7 ⊥⊥ X8 | X6. We considered only

11 two-way interactions including the 8 interactions present in the true density

(the solid edges in Figure 5). The additionally considered interactions are those

corresponding to the dashed edges in Figure 5. With sample size n = 600, the

simulation was repeated s = 50 times; the test sample size N = 5, 000 was used.
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(a) Example 5.3. (b) Example 5.4.

Figure 4. Graphs for two 5-D examples. The edges indicate the interaction
terms present in the true density.

PSfrag replacements

0

1

2

3

4

0.5

x

density

PL

New

GKDE

Approx. KL

0.05

0.1

0.15

(a) New Method
(b) Gaussian Kernel Density Estimation

(b) Gaussian Kernel Density

Estimation
(c) Penalized Likelihood Method

(d) Boxplots

0.0

0.2

0.4

0.6

0.8

1.0

(d) True Density

0.00

0.05

0.10

0.15

0.20

0.25

0.15

0.10

0.20

PL∗

NEW

GKDE

Boxplots

Approximate KL

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

(a)
(b)
(c)

a
b
c
d
e
f

Figure 5. Graph for Example 5.5. The interactions corresponding to the solid
edges are those present in the true density. The interactions corresponding
to the dashed edges are additionally included in the estimation procedure.

For the Examples 5.3, 5.4 and 5.5, boxplots of the empirical KL losses on test

samples for our method and the GKDE based on s = 50 simulations are displayed

in Figure 6. It is clear that our method performs better than the GKDE, and

much better in Example 5.4 and 5.5.

To study the model selection performance of our method, the number of times

each component appears in the s = 50 chosen models was determined for the

high-dimensional examples. In our computation we regarded a θ as zero if it was

smaller than 10−15. Notice that we have a hierarchical structure in the selected

model due to the baseline density, that is, main effects are always included in the

selected model. Hence, the number of times each two-way interaction appears in

the chosen models was counted, and is shown in Table 2. The numbers in the

interaction row represent the corresponding variable, for instance 9T represents
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the interaction term η9T between X9 and X10 (denoted by T). In the first row of

each example, 1 indicates presence of the corresponding term in the true density

and 0 indicates absence. Our method never missed the interaction present in the

true model in Example 5.2 and Example 5.4. In Example 5.3, the interaction

η34 was missed 10 times, but the interaction η23 was missed only once, and all

the other correct interactions were never missed. The interactions η23 and η34

were missed quite often in Example 5.5, however the overall selection is pretty

good in this example considering false terms were rarely selected. In general, we

notice that the correct interactions are detected very well by our method, but

our method tends to include some false terms in the chosen model.
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Figure 6. Boxplots of the empirical KL losses on test samples of estimated

densities by two methods in (a) Example 5.3 (b) Example 5.4, and (c) Ex-

ample 5.5 based on s = 50 simulations.

Table 2. The frequency of appearance of the two-way interactions in the

selected models in 50 runs. The numbers in the interaction row represent the

corresponding variable, for instance 9T represents the interaction between

X9 and X10. In each example, the presence of a term in the true density

is indicated by 1 and absence by 0 on top, and the counted frequency is on

bottom.

Interactions 12 13 14 23 24 34

Example 5.2 1 0 0 0 0 0

50 19 19 23 22 17

Interactions 12 13 14 15 23 24 25 34 35 45

Example 5.3 1 0 0 1 1 0 0 1 0 1

50 11 9 50 49 7 11 40 6 50

Example 5.4 1 0 0 0 0 0 0 1 0 0

50 24 20 19 28 20 14 50 18 18

Interactions 12 15 23 34 37 45 4T 67 68 89 9T

Example 5.5 1 1 1 1 0 1 0 1 1 0 1

50 50 37 21 1 49 0 50 50 3 50
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6. Example

As a practical application of our method, we consider the following example.

Example 6.6.(NO2) The data originated in a study where air pollution at a road

was related to traffic volume and meteorological variables. It was collected by the

Norwegian Public Roads Administration. The data set, contributed by Magne
Aldrin, consists of a subsample of 500 observations from the original data set with

the following variables: (a) hourly values of the logarithm of the concentration of

NO2, (b) the logarithm of the number of cars per hour, (c) temperature 2 meter

above ground, (d) wind speed, (e) the temperature difference between 25 and 2
meters above ground, (f) wind direction, (g) hour of day, and (h) day number.

PSfrag replacements

0

1

2

3

4

0.5

x

density

PL

New

GKDE

Approx. KL

0.05

0.1

0.15

(a) New Method
(b) Gaussian Kernel Density Estimation

(b) Gaussian Kernel Density

Estimation
(c) Penalized Likelihood Method

(d) Boxplots

0.0

0.20.2

0
.2

0.2

0
.2

0
.2

0
.2

0
.2

0
.2

0.20.20.2

0.4

0.60.6

0
.6

0.6

0
.6

0
.6

0
.6

0
.6

0
.6

0.60.60.6

0.8

1.0

(d) True Density

0.00

0.05

0.10

0.15

0.20

0.25

0.15

0.10

0.20

PL∗

NEW

GKDE

Boxplots
Approximate KL

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

(a)
(b)
(c)

a

b

c

d

e

f

Figure 7. Pairwise scatter plots of NO2 data.

The data is available at the StatLib Datasets Archive at Carnegie Mellon
University. The URL is lib.stat.cmu.edu/datasets/. We consider the first six

variables (a)−(f), they are all continuous. For the analysis of the data with

our method, the variables are scaled so that the values of each dimension fall in

[0, 1]. The pairwise scatter plots displayed in Figure 7 indicates that it is inap-

propriate to assume normality. For comparison, however, we took into account
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the parametric Gaussian graphical models, and the statistical software package
MIM introduced in Edwards (2000) was used for fitting the Gaussian graphical
model and for model selection. The default backward stepwise model selection
procedure, starting from the saturated model, was used for the MIM.

The selected models by our method and the MIM are shown in Figure 8. The
selected model by our method is simpler than that by the MIM. To evaluate the

estimation accuracy of the two methods for this example, we randomly separated
the data set into a training set (of size 300) and a test set (of size 200), built the
model based on the training set, and computed the log-likelihood on the test set.
Notice that a larger log-likelihood on the test set indicates better fitting. We
repeated the procedure 100 times and computed the mean log-likelihood. The
mean log-likelihood for our method was 3.10, and the mean log-likelihood for the
MIM was 3.01. Therefore our method provides a simpler model but it fits the
data better than the MIM for this example.
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Figure 8. The selected models of NO2 data by our method and the MIM.
The dashed edges in the right panel indicate the interaction terms selected
by the MIM but not by our method.

7. Discussion

An important question in our method is the choice of the smoothing pa-
rameters. One possibility is to reserve an independent test set for the tuning.
Another possibility is k-fold cross-validation, as used in this paper. It is hoped
that some easily computable approximation to the leave-out-one cross-validation
can be developed for log-density estimation, so that we do not have to reserve
an independent tuning set. Another question that needs further investigation is
how the estimator behaves for different choices of the baseline density ρ.
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