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Abstract: Gaussian kernel regularization is widely used in the machine learning

literature and has proved successful in many empirical experiments. The periodic

version of Gaussian kernel regularization has been shown to be minimax rate opti-

mal in estimating functions in any finite order Sobolev space. However, for a data

set with n points, the computation complexity of the Gaussian kernel regulariza-

tion method is of order O(n3). In this paper we propose to use binning to reduce

the computation of Gaussian kernel regularization in both regression and classifi-

cation. For periodic Gaussian kernel regression, we show that the binned estimator

achieves the same minimax rates as the unbinned estimator, but the computation

is reduced to O(m3) with m as the number of bins. To achieve the minimax rate

in the kth order Sobolev space, m needs to be in the order of O(kn
1/(2k+1)), which

makes the binned estimator computation of order O(n) for k = 1, and even less

for larger k. Our simulations show that the binned estimator (binning 120 data

points into 20 bins in our simulation) provides almost the same accuracy with only

0.4% of computation time. For classification, binning with L2-loss Gaussian kernel

regularization and Gaussian kernel Support Vector Machines is tested in a polar

cloud detection problem.

Key words and phrases: Asymptotic minimax risk, binning, Gaussian kernel, rate

of convergence, regularization, Sobolev space, support vector machines.

1. Introduction

The method of regularization has been widely used in the nonparametric

function estimation problem. The problem begins with estimating a function f

using data (xi, yi), i = 1, . . . , n, from a nonparametric regression model

yi = f(xi) + εi, i = 1, . . . , n, (1.1)

where xi ∈ Rd, i = 1, . . . , n, are regression inputs or predictors, the yi’s are the

responses, and the εi’s are i.i.d. N(0, σ2). The method of regularization takes

the form of finding f ∈ F that minimizes

L(f,data) + λJ(f), (1.2)

where L is an empirical loss, often taken to be the negative log-likelihood. J(f)

is the penalty functional, usually a quadratic functional corresponding to a norm
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or semi-norm of a Reproducing Kernel Hilbert Space (RKHS) F . The regu-

larization parameter λ trades off the empirical loss with the penalty J(f). In

the regression case we may take L(f,data) =
∑n

i=1(yi − f(xi))
2 and the penalty

functional J(f) usually measures the smoothness.

In the nonparametric statistics literature, the well-known smoothing spline

(cf., Wahba (1990)) is an example of the regularization method. The RKHS

used in smoothing splines is a Hilbert Sobolev space, and the penalty J(f) =
∫

[f (m)(x)]2dx is the norm or semi-norm in this space. The reproducing kernel of

this Hilbert Sobolev space was nicely covered in Wahba (1990), and the commonly

used cubic spline corresponds to the case m = 2.

In the machine learning literature, Support Vector Machines (SVM) and

regularization networks, which are both regularization methods, have been used

successfully in many practical applications. Smola, Schölkopf, and Müller (1998),

Wahba (1999) and Evgeniou, Pontil and Poggio (2000) make the connection

between both methods and the methods of regularization in the RKHS. SVM

uses a hinge loss function L(f, data) =
∑n

i=1(1 − yif(xi))
+ in (1.2), with labels

yi coded as {−1, 1} in the two-class case. The penalty functional J(f) used in

SVM is the norm of the RKHS (see Vapnik (1995) and Whaba, Lin and Zhang

(1999) for details).

One particularly popular reproducing kernel used in the machine learning

literature is the Gaussian kernel G(s, t) = (2π)−1/2ω−1 exp((s− t)2/2ω2). Girosi,

Jones, and Poggio (1993) and Smola et al (1998) showed that the Gaussian kernel

corresponds to the penalty functional

Jg(f) =
∞

∑

m=0

ω2m

2mm!

∫ ∞

−∞

[f (m)(x)]2dx. (1.3)

Smola et al (1998) also introduced the periodic Gaussian reproducing kernel for

estimating 2π-periodic functions in (−π, π] as the kernel corresponding to the

penalty functional

Jpg(f) =

∞
∑

m=0

ω2m

2mm!

∫ π

−π
[f (m)(x)]2dx. (1.4)

Using the equivalence between nonparametric regression and the Gaussian

white noise model shown in Brown and Low (1996), Lin and Brown (2004) showed

asymptotic properties of regularization using a periodic Gaussian kernel. Periodic

Gaussian kernel regularization is rate optimal in estimating functions in all finite

order Sobolev spaces. It is also asymptotically minimax for estimating functions

in the infinite order Sobolev space and the space of analytic functions. These

asymptotic results on the periodic Gaussian kernel give a partial explanation
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of the success of the Gaussian reproducing kernel in practice. In Section 2, we

describe periodic Gaussian kernel regularization in the nonparametric regression

setup and review the asymptotic results, which will be compared to the binning

results in Section 4. Although having good statistical properties, the Gaussian

kernel regularization method is computationally very expensive, usually of order

O(n3) on n data points. It is computationally infeasible when n is too large.

In this paper, motivated by the application of binning techniques in non-

parametric regression (cf., Hall, Park and Turlach (1998)), we study the effect

of binning in periodic Gaussian kernel regularization. We first give the eigen-

structure of the periodic Gaussian kernel in the finite sample case, then the

eigenstructure is used to prove the asymptotic minimax rates of the binned peri-

odic Gaussian kernel regularization estimator. The results on the kernel matrix

are given in Section 3.

In Section 4, we show that the binned estimator achieves the same minimax

rates as the unbinned estimator, while the computation is reduced to O(m3)

with m as the number of bins. To achieve the minimax rate in the kth order

Sobolev space, m needs to be in the order of O(kn1/(2k+1)), which makes the

binned estimator computation O(n) for k = 1, and even less for larger k. For

estimating functions in the Sobolev space of infinite order, the number of bins m

only needs to be of order O(
√

log(n)) to achieve the minimax risk. For simple

average binning, the optimal regularization parameter λB for binned data has a

simple relationship with the optimal λ for the unbinned data, λB ≈ mλ/n and

ω stays the same. In practice, choosing the parameters (λB , ω) by Mallow’s Cp

achieves the asymptotic rate.

In Section 5, experiments are carried out to assess the accuracy and the

computation reduction of the binning scheme in regression and classification

problems. We first run simulations to test binning periodic Gaussian kernel

regularization in the nonparametric regression setup. Four periodic functions

with different orders of smoothness are used the simulation. Compared to the

unbinned estimators on 120 data points, the binned estimators (6 data in each

bin) provide the same accuracy, but require only 0.4% of computation.

For classification, binning on L2-loss Gaussian kernel regularization and

Gaussian kernel Support Vector Machines are tested in a polar cloud detection

problem. With the same computation time, the L2-loss Gaussian kernel regu-

larization on 966 bins achieves better accuracy (79.22%) than that (71.40%) on

966 randomly sampled data. Using the OSU-SVM Matlab package, the SVM

trained on 966 bins has a comparable test classification rate as the SVM trained

on 27,179 samples, and reduces the training time from 5.99 hours to 2.56 min-

utes. The SVM trained on 966 randomly selected samples has a similar training

time as and a slightly worse test classification rate than the SVM on 966 bins,
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but has 67% more support vectors so takes 67% longer to predict on a new data

point.

Compared to k-mean clustering, another possible SVM training sample-size

reduction scheme proposed in Feng and Mangasarian (2001), binning is much

faster. The SVM trained on 512 cluster centers from the k-mean algorithm re-

ports almost the same test classification rate and a similar number of support

vectors as the SVM on 512 bins, but k-mean clustering takes 375 times more

computation time than binning. Therefore, for both regression and classifica-

tion, binning Gaussian kernel regularization reduces computation and maintains

accuracy.

2. Periodic Gaussian Kernel Regularization

Lin and Brown (2004) studied the asymptotic properties of periodic Gaussian

kernel regularization in estimating 2π-periodic functions on (−π, π] in three differ-

ent function spaces. Using the asymptotic equivalence between the nonparamet-

ric regression and the Gaussian white noise model (see Brown and Low (1996)),

asymptotic properties of periodic Gaussian kernel regularization are proved in

the Gaussian white noise model. In this section, we introduce periodic Gaussian

regularization and review the asymptotic results of Lin and Brown (2004) in the

nonparametric regression setting.

2.1. Nonparametric regression

We consider estimating periodic function on (0, 1] using periodic Gaussian

regularization. With data (xi, yi), i = 1, . . . , n, observed from model (1.1) at

equally space designed points xi’s, the method of periodic Gaussian kernel reg-

ularization with L2 loss estimates f by a periodic function f̂λ that minimizes

n
∑

i=1

(yi − f(xi))
2 + λJpg(f), (2.1)

where Jpg(f) is the norm of the corresponding RKHS FK of the periodic Gaus-

sian kernel (Smola et al, (1998))

K(s, t) = 2
∞
∑

l=0

exp(− l2ω2

2
) cos(2πl(s − t)). (2.2)

The theory of reproducing kernel Hilbert space guarantees that the solution

to (2.1) over FK is in the finite dimensional space spanned by {K(xi, ·), i =

1, . . . , n} (see Wahba (1990) for an introduction to the theory of reproducing
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kernels). Therefore, we can write the solution to (2.1) as f̂(x) =
∑n

i=1 ĉiK(xi, x)

and (2.1) becomes

min
c

[(y − G(n)c)T (y − G(n)c) + λcT G(n)c], (2.3)

where y = (y1, . . . , yn)T , c = (c1, . . . , cn)T , and G(n) as a n×n matrix K(xi, xj).

The solution is ĉ = (G(n)+λI)−1y with I being a n×n identity matrix. The fitted

values are ŷ = G(n)ĉ = G(n)(G(n) + λI)−1y , Sy, which is a linear estimator.

2.2. Asymptotic Properties

We briefly review the asymptotic results of Lin and Brown (2004) and com-

pare them to the binned estimators in Section 4. The asymptotic risk of periodic

Gaussian regularization is studied in estimating periodic function from three

types of function spaces: Sobolev ellipsoids of finite order, ellipsoid spaces of

analytic functions, and Sobolev spaces of infinite order. These are defined as

follows. (Instead of working with 2π-periodic functions on (−π, π], we study

periodic functions on (0,1].)

The kth order Sobolev ellipsoid Hk(Q) is

Hk(Q) = {f ∈ L2(0, 1) : f is periodic,

∫ 1

0
[f(t)]2 + [f (k)(t)]2dt ≤ Q}. (2.4)

It has an alternative definition in the Fourier space as

Hk(Q) = {f : f(t) =

∞
∑

l=0

θlφl(t),

∞
∑

l=0

γlθ
2
l ≤ Q, γ0 = 1, γ2l−1 = γ2l = l2k + 1},

(2.5)

where φ0(t) = 1, φ2l−1(t) =
√

2 sin(2πlt) and φ2l(t) =
√

2 cos(2πlt) are the clas-

sical trigonometric basis in L2(0, 1) and θl =
∫ 1
0 f(t)φl(t)dt is the corresponding

Fourier coefficient.

The ellipsoid space of analytic functions, Aα(Q), corresponds to (2.5) with

the exponentially increasing sequence γl = exp(αl); the infinite order Sobolev

space, H∞
ω (Q), corresponds to (2.5) with the sequence γ0 = 1 and γ2l−1 =

γ2l = el2ω2/2. Note that the penalty functional Jpg of periodic Gaussian kernel

regularization is the norm of H∞
ω (Q).

The asymptotic risk of ŷ is determined by the tradeoff between the variance

and the bias. The asymptotic variance of ŷ = G(n)ĉ = G(n)(G(n) + λI)−1y

depends only on λ and ω, where G(n) denotes matrix K(xi, xj). In the meantime,

the asymptotic bias depends not only on λ and ω, but also on the function f itself.

Lin and Brown (2004) proved the following lemma using the equivalence between

the nonparametric regression and the Gaussian white noise model (Brown and

Low (1996)).
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Lemma 1.(Lin and Brown (2004)) The solution ŷ to the periodic Gaussian kernel

regularization problem (2.3) has an asymptotic variance

1

n

∑

Var (ŷi) =
1

n

∑

(1 + λβl)
−2 ∼ 2

√
2ω−1n−1(− log λ)

1
2 , (2.6)

for βl = exp(l2ω2/2) as λ goes to zero. The asymptotic bias is

1

n

∑

bias2(ŷi) ∼
∑

λ2β2
l (1 + λβl)

−2θ2
l , (2.7)

when estimating f(t) =
∑∞

l=0 θlφl(t).

Based on (2.6) and (2.7), the following asymptotic results about the periodic

Gaussian kernel regularization are shown.

Lemma 2.(Lin and Brown (2004)) For estimating functions in the kth or-

der Sobolev space Hk(Q), the periodic Gaussian kernel regularization has mini-

max risk (2k + 1)k−2k/(2k+1)Q1/(2k+1)n−2k/(2k+1), achieved when log(n/λ)/ω2 ∼
(knQ)2/(2k+1)/2. The minimax rate for estimating functions in Aα(Q) is 2n−1

α−1(log n), and the rate is 2
√

2ω−1n−1(log n)1/2 for estimating functions in

H∞
ω (Q).

It is well known that the asymptotic minimax risk over H k(Q) is [2k/(k +

1)]2k/(2k+1)(2k + 1)1/(2k+1)Q1/(2k+1)n−2k/(2k+1). If we calculate the efficiency of

the periodic Gaussian kernel regularization in terms of sample sizes needed to

achieve the same risk, the efficiency goes to one when the function gets smoother.

Therefore, the estimator is rate optimal in this case. For estimating functions

in Aα(Q) and H∞
ω (Q), periodic Gaussian kernel regularization achieves the min-

imax risk (see Johnstone (1998) for the proof of minimax risk in Aα(Q)). The

asymptotic rates in Lemma 2 are compared with the binning results in Section 4.

3. The Eigen-structure of the Projection Matrix

Instead of working with the Gaussian white noise model, we directly prove

Lin and Brown’s asymptotic results in the nonparametric regression model. Al-

though the results stated in Section 2.2 are proved more easily in the Gaussian

white noise model than in the regression model, knowing the eigen structure of

the projection matrix S (defined as ŷ = G(n)(G(n) +λI)−1y , Sy in Section 2.1)

helps us understand the binned estimators in Section 4. To study the variance-

bias trade-off of periodic Gaussian regularization, we first derive the eigen-values

and eigen-vectors of G(n) = K(xi, xj) and make the connection with the func-

tional eigen-values and eigen-functions of the reproducing kernel K.
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For a general reproducing kernel R(·, ·) that satisfies
∫ ∫

R2(x, y)dxdy < ∞,

there exist an orthonormal sequence of eigen-functions φ1, φ2, . . . , and eigen-

values ρ1 ≥ ρ2 ≥ · · · ≥ 0, with

∫ b

a
R(s, t)φl(s)ds = ρlφ(t), l = 1, 2, . . . (3.1)

and R(s, t) =
∑∞

l=1 ρlφl(s)φl(t). When equally spaced points x1, . . . , xn are taken

in (a, b], we get a Gram matrix R
(n)
i,j = R(xi, xj). The eigen-vectors and eigen-

values of R(n) are defined as a sequence of orthonormal n by 1 vectors v1, . . . , vn

and values d1 ≥ · · · ≥ dn that satisfy

R(n)V
(n)
l = d

(n)
l V

(n)
l , l = 1, . . . , n (3.2)

and R(n) =
∑n

l=1 d
(n)
l V

(n)
l V

(n)T

l . The eigen-values d
(n)
l have limits: limn→∞ d

(n)
l

(b − a)/n = ρl (c.f., Williams and Seeger (2000)).

On (0, 1], the eigen-functions of the periodic Gaussian kernel K are the

classical trigonometric basis functions φ0(t) = 1, φ2l−1(t) =
√

2 sin(2πlt), φ2l(t) =√
2 cos(2πlt), with the corresponding eigen-values ρ0 = 2 and ρ2l−1 = ρ2l =

exp(−l2ω2/2) (For simplicity, the labels of eigen-values and eigen-functions start

from 0 instead of 1). It is straightforward to see the eigen-function decomposition

when we rewrite K(s, t) as

K(s, t) = 2

∞
∑

l=0

exp(− l2ω2

2
) cos(2πl(s − t))

=

∞
∑

l=0

e−
l2ω2

2 [
√

2 sin(2πls)
√

2 sin(2πlt) +
√

2 cos(2πls)
√

2 cos(2πlt)]

=

∞
∑

l=0

ρlφl(s)φl(t),

where φl(t)’s are orthonormal on (0, 1]. When n equally spaced data points are

taken over (0, 1], such as xi = −(1/2n) + i/n, G(n) has the following property.

Theorem 1. The Gram matrix G(n) = K(xi, xj) at equal-spaced data points

x1, . . . , xn over (0, 1] has eigen-vectors V
(n)
0 , V

(n)
1 , . . . , V

(n)
n−1 (indexed from 0 to

n − 1) given by

V
(n)
0 =

√

1

n
(1, . . . , 1)T =

√

1

n
(φ0(x1), . . . , φ0(xn))T ,

V
(n)
l =

√

2

n
(sin(2πhx1), . . . , sin(2πhxn))T =

√

1

n
(φl(x1), . . . , φl(xn))T , for odd l,
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V
(n)
l =

√

2

n
(cos(2πhx1), . . . , cos(2πhxn))T =

√

1

n
(φl(x1), . . . , φl(xn))T for even l,

where h = d(l + 1)/2e, l = 1, . . . , n − 1, and dae stands for the integer part of a.

The corresponding eigen-values are given by

d
(n)
0 =nρ0 + 2n

∞
∑

k=1

(−1)kρ2kn,

d
(n)
l =n{ρl +

∞
∑

k=1

(−1)k[ρkn+h + (−1)l−2hρkn−h]}.

The proof is given in the appendix. Remarkably, the eigen-vector V
(n)
l is

exactly the evaluation of eigen-function φl(·) at x1, . . . , xn, scaled by
√

(1/n).

With the eigen decomposition of G(n), we now study the variance-bias trade-

off of the periodic Gaussian kernel regularization. Using matrix notation, let

V (n) , (V
(n)
0 , . . . , V

(n)
n−1) and D(n) , diag(d

(n)
0 , . . . , d

(n)
n−1) be an n by n diagonal

matrix , so G(n) = V (n)D(n)V (n)T .

We have S = G(n)(G(n) + λI)−1 = V (n) diag(d
(n)
l /(d

(n)
l + λ))V (n)T , so the

variance term is

1

n

∑

Var (ŷi) =
1

n
trace(ST S) =

1

n

n−1
∑

l=0

( d
(n)
l

d
(n)
l + λ

)2
=

1

n

n−1
∑

l=0

(

d
(n)
l
n

d
(n)
l
n + λ

n

)2
.

Since limn→∞ d
(n)
l /n = ρl for l > 0 and ρl = 1/βl, we get

1

n

∑

Var (ŷi) ∼
1

n

∑

(
ρl

ρl + λ
n

)2 =
1

n

∑

(1 + βl(
λ

n
))−2,

which is the same as at (2.6).

For the bias term, we expand f(t) as f(t) =
∑∞

l=0 θlφl(t). Using the relation-

ship between V (n) and φ(·) in Theorem 1, we can write F = (f(x1), . . . , f(xn))T

as F =
∑n−1

l=0 Θ
(n)
l V

(n)
l = V (n)Θ(n), where Θ

(n)
0 =

√
n

∑∞
k=0(−1)kθ2kn, and

Θ
(n)
l =

√
n{θl +

∑∞
k=1(−1)k[θkn+h + (−1)l−2hθkn−h]}, for 1 ≤ l ≤ n − 1 and
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h = d(l + 1)/2e. Thus, the bias term is

1

n

∑

Bias2(ŷi) =
1

n
((S − I)F )T ((S − I)F )

=
1

n
(V (n) diag(

λ

d
(n)
l + λ

)V (n)T F )T (V (n) diag(
λ

d
(n)
l + λ

)V (n)T F )

=
1

n

n−1
∑

l=0

(
Θ

(n)
l λ

d
(n)
l + λ

)2 =
1

n

n−1
∑

l=0

n(
Θ

(n)
l√
n

)2(
λ
n

d
(n)
l
n + λ

n

)2

∼
∑

θ2
l (

λ
n

ρl + λ
n

)2

=
∑

θ2
l (

βlλ
n

1 + βlλ
n

)2,

since limn→∞ Θ
(n)
l /

√
n = θl, limn→∞ d

(n)
l /n = ρl, and ρl = 1/βl.

4. Binning Periodic Gaussian Kernel Regularization

Although periodic Gaussian regularization method has good asymptotic

properties, the computation of the estimator ŷ = G(n)(G(n)+λI)−1y is expensive,

taking O(n3) to invert the n by n matrix G(n) + λI. When the sample size

gets large, the computation is not even feasible. In nonparametric regression

estimation, Hall, Park and Turlach (1998) studied the binning technique. In this

section, we use the explicit eigen-structure of the periodic Gaussian kernel to

study the effect of binning on the asymptotic properties of periodic Gaussian

regularization.

4.1. Simple Binning Scheme

Let us take equally spaced n data points in (0, 1], say xi = −(1/(2n)) + i/n.

Without loss of generality, we assume n is m× p, where m is the number of bins

and p is number of data points in each bin. Let us denote the centers of bins as

x̄j = (x(j−1)×p+1 + · · · + x(j−1)×p+p)/p and the average of observations in each

bin as ȳj = (y(j−1)×p+1 + · · · + y(j−1)×p+p)/p, for j = 1, . . . ,m. When we apply

periodic Gaussian regularization to the binned data, the estimated function is

f̂(x) =
∑m

j=1 ĉjK(x, x̄j), where ĉ is the solution of

min
c

(ȳ − G(m)c)T (ȳ − G(m)c) + λBcT G(m)c, (4.1)

with G
(m)
i,j = K(x̄i, x̄j), ȳ = (ȳ1, . . . , ȳm) and λB is the regularization parameter.

Similar to the estimator derived in Section 2.1, the solution to (4.1) is ĉ =
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(G(m) + λBI)−1ȳ. Let

B(m,n) =









m
n · · · m

n 0 · · · · · · 0

0 · · · 0 m
n · · · m

n 0 · · · 0

· · · · · ·
0 · · · · · · 0 m

n · · · m
n









m×n

. (4.2)

The binned estimator can be written as ŷ = G(n,m)(G(m) +λBI)−1B(m,n)y =

SBy with G
(n,m)
i,j = K(xi, x̄j) being an n by m matrix. From this expression, it

is straightforward to see that the computation is reduced to O(m3), since the

matrix inversion is taken on an m by m matrix. The additional computation for

binning the data itself is around O(n).

Using this matrix expression, the variance of the estimator can be written

as
1

n

∑

Var (ŷi) =
1

n
trace(ST

BSB) =
1

n
trace(SBST

B), (4.3)

and can be explicitly written out using the eigen-decomposition of SB.

Proposition 1. Suppose n = mp, xi = −(1/(2n))+ i/n, and x̄j = (x(j−1)×p+1 +

· · · + x(j−1)×p+p)/p. The eigen-vectors V (m)of G(m) and the eigen-vectors V (n)

of G(n) satisfy

G(n,m)V
(m)
k = d

(m)
k

√

n

m
V

(n)
k for k = 0, . . . ,m.

The proof is in the appendix. This proposition shows that an eigen-vector of

G(m) is projected to the corresponding eigen-vector of G(n) by the matrix G(n,m).

Theorem 2. The asymptotic variance of the binned estimator ŷ = G(n,m)(G(m)+

λBI)−1B(m,n)y in the equally spaced binning scheme is

1

n

∑

Var (ŷi) ∼
1

n

∑

(1 +
βlλB

m
)−2 ∼ 2

√
2w−1n−1(− log(

λB

m
))

1
2 , (4.4)

as m → ∞, n → ∞ and λB → 0. The expression is the same as the asymptotic

variance of the original estimator when λB = mλ/n.

See the proof in the appendix. Now we focus on the bias term, which depends

not only on the projection operation, but also on the smoothness of f .

Theorem 3. In the equally spaced binning scheme, if m → ∞, n → ∞, m/n → 0

and λB → 0, the bias of the binned estimator is

1

n

∑

Bias2(ŷi) ∼
m−1
∑

j=0

θ2
j

(

βjλB

m

1 +
βjλB

m

)2
+

∞
∑

j=m

θj
2 (4.5)
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when estimating f(t) =
∑∞

l=0 θlφl(t).

The theorem is proved in the appendix.

4.2. Asymptotic rates of binned estimators

In this section, we study the asymptotic rates of binned periodic Gaussian

kernel regularization for estimating functions in the spaces defined in Section 2.2.

We start with the infinite order Sobolev space.

Theorem 4. The minimax rate of the binned estimator ŷ=G(n,m)(G(m)+λBI)−1

B(m,n)y for estimating functions in the infinite order Sobolev space H∞
w (Q) is

min
m,w,λB

max
θ∈H∞

w (Q)
E[

1

n
(ŷ − y)T (ŷ − y)] ∼ 2

√
2w−1n−1(log n)

1
2 ,

the rate of the unbinned estimator. This is achieved when m/n → 0, and m

is large enough so that w2m2/2 > log(4m/λB); the parameter λB = λB(n,m)

satisfies log(m/λB) ∼ log n, λB/m = o(n−1(log n)1/2). Thus m is O(
√

log(n)).

Proof. As shown in Theorem 3, the bias of the binned estimator is

1

n

∑

Bias2(ŷi) ∼
m−1
∑

l=0

θ2
l (

βlλB
m

1 + βlλB
m

)2 +

∞
∑

l=m

θl
2

≤ λB

4m

m−1
∑

l=0

βlθ
2
l +

∞
∑

l=m

θ2
l

≤ λB

4m

∞
∑

l=0

βlθ
2
l (when

λBβm

4m
> 1)

≤ λB

4m
Q,

and λBβm/4m > 1 is satisfied as w2m2/2 > log(4m/λB). Then the asymptotic

risk is

1

n
E[(ŷ − y)T (ŷ − y)] ≤ 1

n

∑

(1 +
βlλB

m
)−2 +

λB

4m
Q ∼ 2

√
2w−1n−1(log n)

1
2 ,

when log(m/λB) ∼ log n and λB/m = o(n−1(log n)1/2).

The asymptotic rate has m of O(
√

log(n)), hence the computation complex-

ity of the binned estimator is around O(log n)3/2. In practice, we do not expect

m can be this small since this type of function is not realistic in applications.

Next we consider the Sobolev space Hk(Q) with finite order k.
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Theorem 5. The minimax rate of the binned estimator ŷ = G(n,m)(G(m) +

λBI)−1B(m,n)y for estimating functions in the kth order Sobolev space H k(Q) is

min
m,w,λB

max
θ∈Hk(Q)

1

n
E[(ŷ − y)T (ŷ − y)] ∼ (2k + 1)k−

2k
2k+1 Q

1
2k+1 n−

2k
2k+1 ,

the rate of the unbinned estimator. This is achieved when: m/n→ 0 and m is

large enough that m>
√

2w−1(− log(λB/m))1/2; the parameter λB =λB(n,m, w)

satisfies log(m/λB)/w2 ∼ (knQ)2/(2k+1)/2. This m to is O(kn1/(2k+1)).

Proof. We first study the bias term. With λm = λB/m,

B(m,w, λm) = max
θ∈Hk(Q)

m−1
∑

l=0

θ2
l (

βlλm

1 + βlλm
)2 +

∞
∑

l=m

θl
2

= max
θ∈Hk(Q)

m−1
∑

l=0

(1 + β−1
l λ−1

m )−2ρ−1
l (ρlθ

2
l ) +

∞
∑

l=m

ρ−1
l (ρlθ

2
l ).

Here ρ2l−1 = ρ2l = 1 + l2k are the coefficients in the definition (2.4) of the

Sobolev ellipsoid Hk(Q). The maximum is achieved by putting all mass Q at the

l term that maximizes
∑m−1

l=0 (1 + β−1
l λ−1

m )−2ρ−1
l +

∑∞
l=m ρ−1

l . First let us find

the maximizer of Aλm(x) = [1+λ−1
m exp(−x2w2/2)]−2(1+x2k)−1 over x ≥ 0. As

shown in Lin and Brown (2004), the maximizer x0 satisfies x2
0w

2/2 ∼ (− log λm)

and the maximum Aλm(x0) ∼ x−2k
0 ∼ 2−kw2k(− log λm)−k. When m > x0

and m ≥
√

2w−1(− log λm)1/2, we have (1 + m2k)−1 < 2−kw2k (− log λm)−k.

Therefore, the maximum value of B(m,w, λm) ∼ Q2−kw2k (− log λm)−k. Thus

max
θ∈Hk(Q)

1

n
E[(ŷ − y)T (ŷ − y)] ∼ Q2−kw2k(− log λm)−k + 2

√
2w−1n−1(− log λm)

1
2 .

This asymptotic rate (2k + 1)k−2k/(2k+1)Q1/(2k+1)n−2k/(2k+1) is achieved when

the parameters satisfy log(m/λB)/w2 ∼ (knQ)2/(2k+1)/2 and the number of bins

m >
√

2w−1(− log(λB/m))1/2.

The theorem shows the binned estimator achieves the same minimax rate

of the original estimator in the finite order Sobolev space. The same result

also holds in the ellipsoid Aα(Q) of analytic functions but we will not prove it

here. Comparing the order of smallest m needed to achieve the optimal rates

for estimating functions with different order of smoothness, we find that the

smoother functions require a smaller number of bins. For instance, the optimal

rate of estimating a function in the kth order Sobolev space can be achieved by

binning the data into m = O(kn1/(2k+1)) bins. The number of bins m decreases
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as k increases. Binning reduces the computation from O(n3) to O(m3) = O(n)

for k = 1, to O(n3/5) for k = 2, and even less for larger k values.

5. Experiments

Simulations and real data experiments are conducted to study the effect of

binning in regression and classification. We first use simulations to study binning

in estimating periodic functions in the nonparametric regression setup. The

results show that the accuracy of binned estimators are no worse than the original

estimators when functions are smooth enough. Meanwhile, the computation is

reduced to 0.4% of the computation original estimator when an original 120 data

points are placed in 20 bins.

For classification, we test the binning idea on a problem raised in a polar

cloud detection problem (cf., Shi (2004)). The L2 loss and hinge loss functions

are tested in this experiment. In both cases, the binned classifier is competitive

with classifiers trained from the full data. Furthermore, computation time is

significantly reduced by binning. As an illustration, the time for training SVM

on 966 bins is 2.56 minutes, compared to the 5.99 hours that are needed to train

SVM on 27,179 samples, which provides slightly better accuracy than the SVM

on 966 bins.

5.1. Non-parametric regression

Data are simulated from the regression model (1) with noise N(0, 1), using

four periodic functions on (0, 1] with different order of smoothness:

f1(x) = 10 sin2(2πx)1(x≤ 1
2
)

f2(x) = 10 × (−x + 2(x − 1

4
)1(x≥ 1

4
) + 2(−x +

3

4
)1(x≥ 3

4
))

f3(x) =
10

2 − sin(2πx)

f4(x) = 2 + sin(2πx) + 2 cos(2πx) + 3 sin2(2πx) + 4 cos3(2πx) + 5 sin3(2πx).

The plots of the functions and data are given in Figure 5.1. The first function has

a second order of smoothness; the second function has the first order of smooth-

ness; the third function is infinitely smooth; the fourth function is even smoother

– it has a Fourier series that only contains finitely many terms. In our simulation,

the sample size n is 120 and the numbers of bins are m = 60, 40, 30, 24, 20, 15, 12,

with corresponding numbers in each bin as p = 2, 3, 4, 5, 6, 8, 10. All simulations

are done in Matlab 6.
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The computation of periodic Gaussian regularization is sketched as follows.

We follow Lin and Brown (2004) to approximate the periodic Gaussian kernel de-

fined in (2.2). A Gaussian kernel G(s, t) = (2π)−1/2ω−1 exp((s− t)2/2ω2) is used

to approximate K(s, t). It is shown in Willamson, Smola and Schölkopf(2001)

that K(s, t) =
∑∞

k=−∞ G((s − t − 2kπ)/2π). Actually GJ(s, t) =
∑J

k=−J G((s −
t − 2kπ)/2π) for J = 1 is already a good approximation to K(s, t), with 0 <

K(s, t) − G1(s, t) < 2.1 × 10−20 ∀(s − t) ∈ (0, 1] for w ≤ 1. Therefore, we use

G1(s, t) as an easily computable proxy for K(s, t) in the simulation.
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Figure 5.1. Regression functions and data used in the simulations.

For the data generated from (1) using the four functions considered, we com-

pare the mean squared errors of the binned estimator and the original estimator.

For periodic Gaussian kernel regularization, we search over w = 0.3k1 − 0.1 for

k1 = 1, . . . , 10; and λ = exp(−0.4k2 + 7), for k2 = 1, . . . , 50. Then we compute

the binned estimator for each p as 2, 3, 4, 5, 6, 8, 10. The parameters are set to

be ω and λB = mλ/n. In both cases, we use the minimal point of Mallow’s Cp

(Mallows (1973)) to choose the parameter (w, λB).

The simulation runs 300 times. The left panel of Figure 5.2 shows the stan-

dard errors against the number of data points in each bin for the four functions

(with the unbinned estimators shown as those with one data in each bin in the

plot). In most cases, the average errors of binned estimators are not significantly

higher than those the original estimators, while the computation is reduced from

O(1203) to O(m3). For example, let us consider the estimator using 6 data points

in each bin (m = 20). The standard error (not shown in the plot) of the average

errors is computed and two sample t tests is conducted to compare the binned

estimator to the original estimator. For all four functions, the p-values are all
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larger than 0.1, which says there is no significant loss of accuracy in binning the

data to 20 bins in this experiment. In the meantime, the computation complexity

is reduced to O(203), 0.4% of O(1203) on the full data.
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Figure 5.2. Mean square errors of the binned estimators vs. the number of
data points in each bin. Left: Binned Periodic Gaussian kernel regulariza-
tion; Right: Binned Gaussian kernel regularization. In both plots, unbinned
estimators are those with 1 data in each bin.

In our experiment, the periodic Gaussian kernel is replaced by a Gaussian

kernel, which is most common in practice. We repeat the same experiments

again and get the average mean square errors plotted in the right panel of Figure

5.2. The errors from using the Gaussian kernel are generally higher than those

from the periodic Gaussian kernel, since the Gaussian kernel does not take into

account that our functions are periodic. However, the binned estimators have

almost the same accuracy as the unbinned ones when there are enough number

of bins. The computational reduction is the same as in the periodic Gaussian

case.

5.2. Cloud detection over snow and ice covered surface

In this section, we test binning in a classification problem using Gaussian

kernel regularization. By reducing the variance, binning the data is expected to

maintain classification accuracy while relieving the computational burden even.

We illustrate the effect of binning using a polar cloud detection problem arising

in atmospheric science. In polar regions, detecting clouds using satellite remote

sensing data is difficult, because the surface is covered by snow and ice that have

similar reflecting signatures as clouds. In Shi et al (2004), the Enhanced Linear

Correlation Matching Classification (ELCMC) algorithm based on three features
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was developed for polar cloud detection using data collected by the Multi-angle

Imaging SpectroRadiometer (MISR).

Thresholding the features, the ELCMC algorithm has an average accuracy

of about 92% (compare to expert labels) over 60 different scenes, with around

55,000 valid pixels in each scene. However, there are some scenes that are very

hard to classify using the simple threshold method. The data set we investigate

is collected in MISR orbit 18,528 blocks 22-24 over Greenland in 2002, with only

a 75% accuracy rate by the ELCMC method. The MISR red channel image of

the data is shown in the left panel of Figure 5.3. It is not easy to separate clouds

from the surface because the scene itself is very complicated. There are several

types of clouds in this scene: low clouds, high clouds, transparent high clouds

above low clouds. Moreover, the scene also contains different types of surfaces:

smooth snow covered terrain, rough terrain, frozen rivers, and cliffs.
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Figure 5.3. MISR image and expert labels

Right now, the most reliable way to get a large volume of validation data for

polar cloud detection is by expert labelling, since there are not enough ground

measurements in polar region. The expert labels from our collaborator Prof.

Eugene Clothiaux (Department of Meteorology, Pennsylvania State University)

are shown in the right panel of Figure 5.3 with white pixels denoting “cloudy”,

gray pixels for “clear” and black for “not sure”. There are 54,879 pixels with

“cloudy” or “clear” labels in this scene, we use half of these labels for training

and half for testing different classifiers. Each pixels is associated with a three-

dimensional vector X = (log(SD), CORR,NDAI), computed from the original

MISR data as described in Shi et al (2004). Hence we build and test classifiers

based on these three features.

We test binning on the Gaussian kernel regularization with two types of loss

functions. One is the L2 loss function as studied in this paper, and the other is the
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hinge loss function corresponding to Support Vector Machines. In both cases,

we binned the data based on the empirical marginal distribution of the three

predictors. For each predictor, we found the 10%, 20%, . . ., 90% percentiles of

the empirical distribution, and these percentiles serve are the split points for each

predictor. Therefore, we get 1,000 bins in three-dimensional space. In those bins,

966 contain data and 34 are empty. Thus, the 966 bin centers are our binned data

in the experiments. The computation is carried out in Matlab 6 on a desktop

computer with a Pentium 4 2.4GHz CPU and 512M memory.

5.2.1 Binning on Gaussian kernel regularization with L2 loss

The Gaussian kernel regularization with the L2 loss function is tested with

three different setups for training data. The first is random sampling of a small

proportion of the data for training classification. This is the common approach to

large data sets, and it serves as a baseline for our comparison. In the second setup

the bin centers, and majority vote of the labels in each bin, are used as training

data and responses. Thus, each bin center is treated as one data point. In the

last setup, the training data and labels are the bin centers and the proportion of

1’s in each bin. To reflect the fact that different bins may have different number

of data points, we also give a weight to each bin center in the loss function. In

all three setups, half of the 54,879 data points are left out for choosing the best

ω and λ.

In the first setup, we randomly sample 966 data points from the full data

(54,879 data points) and use the corresponding label y (0 and 1) to train the

classifier ŷ = Kω(Kω + λI)−1y. The predicted labels are given by the indicator

function I(y > 0.5). Cross-validation is performed to chose the parameters (ω, λ)

from ω = 0.8 + (i− 5)× 0.05 and λ = 0.1 + (j − 5)× 0.005 for i, j = 1, . . . , 9. For

each (ω, λ) pair, this procedure is repeated 21 times and the average classification

rate is reported. The best average classification rate is 71.40% (with SE 0.43%).

With the classification results from the 21 runs, we also take the majority vote

over the results to build a “bagged” classifier, which improves the accuracy to

77.77%. As discussed in Breiman (1996) and Bühlmann and Yu (2002), bagging

reduces the classification error by reducing the variance.

In the second setup, the 966 bin centers are used as training data. Cross-

validation is carried out to find the best (ω, λ) over the same range as in the first

setup. The classifier is then applied to the full data to get an accuracy rate. The

best set of parameters leads to a 75.86% accuracy rate.

In the third setup, we solve the following minimization problem: minc
∑996

i=1

(y −Kc)T W (y −Kc) + λcT Kc, with the weight in the diagonal matrix W being

proportional to the number of data points in each bin. This leads to the solution
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c = (K + λW−1)−1y. Doing cross-validation over the same range of parameters,

we achieve a 79.22% accuracy, the best result with sample size 966 in L2-loss.

We compare the computation time (in Matlab) of those setups in Table 5.1

as well. Training and testing the L2 Gaussian kernel regularization on 966 data

points takes 26.24 seconds on average. Using cross-validation to chose the best

parameters takes about 35.42 minutes (26.24 × the number of parameter pairs

tested) for the simple classifier in the first setup, and the “bagged” classifier takes

12.40 hours. In the second and third setups, binning the data in 966 bins takes

3.87 seconds and the training process takes 35.42 minutes. So the computation of

binning classifiers takes only about 4.77% (35.48min/12.40hr) of the time needed

for training the “bagging” classifier, but it provides better estimation results. It

is worth to notice that the training step of these classifiers involves inverting an

n by n matrix, the computer runs out of memory when the training data size is

larger than 3,000.

Table 5.1. Binning L2 Gaussian kernel regularization for cloud detection. *

denotes the average accuracy of 21 runs.

random sample size 966 GKR-L2 on GKR-L2 on 966 bins

GKR-L2 Bagged GKR-L2 996 bin centers with fuzzy labels

Accuracy 71.40% * 77.77% 75.86% 79.22%

Comp Time 81 × 26.24 81 × 21 × 26.24 3.87+ 81 × 26.24 3.87 + 81 × 26.24

(seconds) = 35.42 minutes = 12.40 hours = 35.48 minutes = 35.48 minutes

5.2.2 Binning on Gaussian kernel SVM

The Gaussian kernel Support Vector Machine is a regularization method

using the hinge loss function in (1.2). Because of the hinge loss function, a large

proportion of the parameters c1, . . . , cn are zeros, and the non-zeros data points

are called support vectors (see Vapnik (1995) and Wahba et al. (1999) for details).

In this section, we study the effect of binning on the Gaussian kernel SVM for

the polar cloud detection problem, even though our theoretical results only cover

the L2 loss.

The software that we used to train the SVM is the Ohio State University

SVM Classifier Matlab Toolbox (Junshui Ma et al. http://www.eleceng.ohio-

state.edu/∼maj/osu smv/). The OSU SVM toolbox implements SVM classifiers

in C++ using the LIBSVM algorithm of Chih-Chung Chang and Chih-Jen Lin

(http://www.csie.ntu.edu.tw/∼cjlin/libsvm/). The LIBSVM algorithm breaks

the large SVM Quadratic Programming (QP) optimization problem into a series

of small QP problems to allow the training data size to be very large. The

computational complexity of training LIBSVM is, empirically, around O(n2
1),



BINNING IN GAUSSIAN KERNEL REGULARIZATION 559

where n1 is the training sample size. The complexity of testing is O(s n2) where

n2 is the test size and s is the number of support vectors, which usually increases

linearly with the size of the training data set.

Similar to the L2 Gaussian kernel regularization in Section 5.2.1, the Gaus-

sian kernel SVM is tested on three different types of training data. The first

two setups are identical to the ones used in the L2 loss case. However, the third

setup in the L2 case is not easy to carry out in OSU SVM, since the OSU SVM

training package does not admit fuzzy labels, or support adding weights to each

individual points. Hence we replace the third setup by randomly sampling half

of the data (27,179 points) and compare the accuracy of SVM trained from this

huge sample to the ones from the first two types of training data. For all tested

classifiers, the accuracy, computation time and number of support vectors are

given in Table 5.2.

Table 5.2. Binning SVM for cloud detection. * denotes average rate of 21
runs with SE 0.18%.

random sample size 966 SVM on 966 SVM

SVM Bagged SVM bin centers size 27,179

Accuracy *85.09% 86.07% 86.08% 86.46%

Comp Time 81 × 1.85 21× 81 × 1.85 3.87 + 81 × 1.85 81 × 266.06

(seconds) = 2.5 minutes = 52.11 minutes = 2.56 minutes = 5.99 hours

# Support Vectors 350 ∼ 7, 350 210 8,630

The first observation from the table is that the SVM with all the data (27,179

points) provides the best test classification rate, but requires the longest compu-

tation time. The accuracy rates of the bagging SVM and the SVM on bin centers

are comparable, but the bagging SVM needs 20 times more computation time.

The time for training SVM on 966 bin centers is 2.56 minutes, as against 5.99

hours used to train SVM on 27,179 samples. With the same amount of computa-

tion, the accuracy of SVM on bin centers (86.08%) is significantly higher (5 SE

above the average) than the average accuracy (85.09%) of the same sized SVM

on random samples. Therefore, the SVM on bin centers is better than the SVM

on the same sized data randomly sampled from the full data. Thus, the SVM on

bin centers is the computationally most efficient method for training SVM, and

it provides almost the same accuracy to the full SVM.

Besides the training time, the number of support vectors determines the

computation time needed to classify new data. As shown in the table, the SVM

on bin centers has the fewest number of support vectors, so it is the fastest in

this regard. From the comparison, it is clear that the SVM on the binned data

provides fast training, fast prediction, and almost the best accuracy.
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Finally, we compare binning with another possible sample-size reduction

scheme, clustering. Feng and Mangasarian (2001) proposed using the k-mean

clustering algorithm to pick a small proportion of training data for a SVM. This

method first clusters the data into m clusters. Although this method reduces

the size of training data as well, the computation of k-means clustering itself is

very expensive compared to that of training the SVM, or is not feasible due to

the memory requirements when data size is too large. In the cloud detection

problem, clustering 27,179 training data into 512 groups takes 21.65 minutes,

and the time increases dramatically when the number of centroid increases. The

increase in the requirement of computer memory is even worse than the increase

in the computation time. Computer memory runs out when we try to cluster the

data into 966 clusters.

Just for comparison, clustering-SVM and binning-SVM on 512 groups pro-

vides very close classification rates, 85.72% and 85.64% respectively, but binning

is much faster than clustering. Running in Matlab, clustering takes 21.65 min-

utes, which is 376 times of the computation time (3.45 seconds) of binning data to

512 bins. The numbers of support vectors of the clustering-SVM and the binning-

SVM are very close, 145 and 143 respectively, so their testing times are about

the same. Thus binning is preferred to clustering in reducing the computation

for a SVM.
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Appendix

Proof of Theorem 1. As shown in Section 3, the expansion of kernel K(·, ·) in

(2.2) leads to

G
(n)
i,j = K(xi, xj) = 2

∞
∑

l=0

e−
l2ω2

2 [sin(2πlxi) sin(2πlxj) + cos(2πlxi) cos(2πlxj)]

(A.1)

with xi = i/n − 1/(2n).
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In case n is an odd number (n = 2q + 1), any non-negative integer l can be
written as l = kn − h or l = kn + h, where both k and h are integers satisfying
k ≥ 0 and 0 ≤ h ≤ q. For any k ≥ 1, h > 0, and all i,

sin(2π(kn + h)xi) = sin(2πknxi + 2πhxi)

= sin(2πknxi) cos(2πhxi) + cos(2πknxi) sin(2πhxi)

= sin(2kiπ − kπ) cos(2πhxi) + cos(2kiπ − kπ) sin(2πhxi)

= (−1)k sin(2πhxi).

In the same way, we get sin(2π(kn−h)xi)=(−1)k+1 sin(2πhxi), and cos(2π(kn+

h)xi)=cos(2π(kn− h)xi)=(−1)k cos(2πhxi). In case h=0, we have sin(2πknxi)
= 0 and cos(2πknxi) = (−1)k for all i. Therefore, the Gram matrix G(n) can be
written as

G
(n)
i,j = dC

0 +

q
∑

h=1

[dS
h sin(2πhxi) sin(2πhxj) + dC

h cos(2πhxi) cos(2πhxj)], (A.2)

where

dC
0 = 2 + 2

∞
∑

k=1

(−1)ke−
(kn)2ω2

2 ,

dS
h = 2{e−h2ω2

2 +

∞
∑

k=1

(−1)k(e−
(kn+h)2ω2

2 − e−
(kn−h)2ω2

2 )},

dC
h = 2{e−h2ω2

2 +

∞
∑

k=1

(−1)k(e−
(kn+h)2ω2

2 + e−
(kn−h)2ω2

2 )}.

Let V
(n)
0 =

√

1/n(1, . . . , 1)T , V
(n)
2h−1 =

√

2/n(sin(2πhx1), . . . , sin(2πhxn))T , and

V
(n)
2h =

√

2/n(cos(2πhx1), . . . , cos(2πhxn))T , for h = 1, . . . , q. Using the orthog-
onality relationships

n
∑

i=1

sin(2πµxi) sin(2πνxi) =
n

2
µ = ν = 1, . . . , q

= 0 µ 6= ν;µ, ν = 0, . . . , q,
n

∑

i=1

cos(2πµxi) cos(2πνxi) =
n

2
µ = ν = 1, . . . , q

= 0 µ 6= ν;µ, ν = 0, . . . , q,
n

∑

i=1

cos(2πµxi) = 0 µ = 1, . . . , q,

n
∑

i=1

sin(2πµxi) = 0 µ = 1, . . . , q,
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we can easily see that V0, . . . , V2q are orthonormal vectors. Furthermore, they are

the eigen-vectors of G(n) with corresponding eigen-values d
(n)
0 = ndC

0 , d
(n)
2h−1 =

ndS
h/2, and d

(n)
2h = ndC

h /2, since G(n) =
∑2q

l=0 d
(n)
l V

(n)
l V

(n)T
l . This completes the

proof for odd n.

For n = 2q observations , the eigen-vectors of G(n) are V
(n)
0 , . . ., V

(n)
2q−1 and

the eigen-values are d
(n)
0 , . . . , d

(n)
2q−1, while both are the same as defined in the

odd number case. The proofs for odd n hold here, except that sin(2πkqxi) =

sin(2πkq(i/n − 2/n)) = 0 for all k > 0, which leaves V0, . . . , V2q−2, V2q as the

2q eigen-vectors. The eigen-vectors are slightly different than those for odd n,

but the difference does not affect the asymptotic results. Therefore, we use the

eigen-structure for odd n in the rest of the paper.

To simple the notation, we can write the eigen-values dl in terms of ρl as d
(n)
0

=nρ0+2n
∑∞

k=1(−1)kρ2kn and d
(n)
l =n{ρl+

∑∞
k=1(−1)k[ρkn+h+(−1)l−2hρkn−h]},

where l = 1, . . . , n − 1, and h = d(l + 1)/2e, while dae is the integer part of a.

Proof of Proposition 1. For x ∈ (0, 1], x̄ as defined in Proposition 1, and

k ≥ 0,

m
∑

j=1

K(x, x̄j) cos(2πkx̄j)

=

m
∑

j=1

{2
∞
∑

l=0

exp(− l2ω2

2
)cos(2πl(x − x̄j)) cos(2πkx̄j)}

= 2
∞
∑

l=0

exp(− l2ω2

2
){

m
∑

j=1

cos(2πl(x − x̄j)) cos(2πkx̄j)}

=

∞
∑

l=0

exp(− l2ω2

2
){

m
∑

j=1

cos(2π(lx + (k − l)x̄j)) + cos(2π(lx − (k + l)x̄j))}.

For any integer r,

m
∑

j=1

cos(2π(lx + rx̄j)) =

m
∑

j=1

cos(2πlx − r

m
π + 2π

r

m
j)

=

{

0, when r
m is not an integer;

m(−1)
r
m cos(2πlx), when r

m is an integer.

Therefore,
∑m

j=1 K(x, x̄j) cos(2πkx̄j) = d
(m)
k cos(2πkx), where d

(m)
k follows the

definition in Theorem 1. It is also true that
∑m

j=1 K(x, x̄j) sin(2πkx̄j) = d
(m)
k

sin(2πkx). As shown in Theorem 1, the eigen-vector V
(m)
k of G(m) is

√

2/m
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cos(2πx̄j) or
√

2/m sin(2πx̄j). Therefore,

G(n,m)V
(m)
k = d

(m)
k

√

n

m
V

(n)
k

for all k = 0, 1, . . . ,m.

Proof of Theorem 2. Following the relationship shown in Theorem 1, G(n,m)

V (m) =
√

n/mV (n,m) diag(d
(m)
l ), with V (n,m) the n by m matrix formed by the

first m eigen-vectors of G(m). The projection matrix is SB=G(n,m)V (m) diag((d
(m)
l

+λB)−1)V (m)T B(m,n) =
√

n/mV (n,m) diag(d
(m)
l /(d

(m)
l +λB))V (m)T

B(m,n). Since

B(m,n)B(m,n)T = diag (m/n), the asymptotic variance of the estimator is:

1

n

∑

Var (ŷi) =
1

n
trace(ST

BSB)

=
1

n
trace(

n

m
V (n,m) diag(

d
(m)
l

d
(m)
l + λB

)V (m)T B(m,n)

B(m,n)T V (m) diag(
dm

l

d
(m)
l + λB

)V (n,m)T )

=
1

n
trace(diag(

d
(m)
l

d
(m)
l + λB

)2) =
1

n

m−1
∑

l=0

(
d
(m)
l

d
(m)
l + λB

)2.

As proved before, limm→∞ d
(m)
l /m = ρl for l > 0 and ρl = 1/βl, we get

1

n

∑

Var (ŷi) ∼
1

n

∑

(
ρl

ρl + λB
m

)2 =
1

n

∑

(1 +
βlλB

m
)−2.

Proof of Theorem 3. The bias of the binned estimator is 1/n
∑

Bias2(ŷi) =

(1/n)((SB − I)F )T ((SB − I)F ). Let C(n,m) denote a n by m matrix of (Im×m :

0m×(n−m))
T . The term (SB − I)F is expanded as

(SB − I)F = (G(n,m)(G(m) + λBI)−1B(m,n) − I)V (n)Θ(n)

=

√

n

m
V (n,m) diag(

d
(m)
l

d
(m)
l + λB

)V (m)T B(m,n)V (n)Θ(n) − V (n)Θ(n)

= V (n)C(n,m) diag(

√

n

m

d
(m)
l

d
(m)
l + λB

)V (m)T B(m,n)V (n)Θ(n) − V (n)Θ(n)

= V (n)(C(n,m) diag(

√

n

m

d
(m)
l

d
(m)
l + λB

)V (m)T B(m,n)V (n) − I(n))Θ(n)

, V (n)A(n,n)Θ(n).
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Now, let us study V (m)T B(m,n)V (n). We first start with one of the V (n)’s eigen-

vectors:
√

2/n(cos 2πkx1, . . . , cos 2πkxn)T .

B(m,n)(cos 2πkx1, . . . , cos 2πkxn)T

=
(cos 2πkx1 + · · · + cos 2πkxp

p
, . . . ,

cos 2πkxn−p+1 + · · · + cos 2πkxn

p

)T

= w
(m,n)
k (cos 2πkx̄1, . . . , cos 2πkx̄m)T ,

were w
(m,n)
k is a constant as a function of n, m and k. When p = n/m is

odd, (xrp+1, . . . , xrp+p) is expressed as (x̄r − (p − 1)/2n, . . . , x̄r, . . . , x̄r + (p −
1)/2n). Thus, cos 2πkxrp+1 + · · · + cos 2πkxrp+p = [1 + 2 cos 2πk/n + · · · +

2 cos 2πk((p−1)/2)/n] cos 2πkx̄r. Therefore, w
(m,n)
k =(1+

∑(p−1)/2
j=1 2 cos 2πkj/n)/p

for odd p. It is straightforward to show that w
(m,n)
k =(

∑p/2
j=1 2 cos 2πkj−πk/n)/p

for even p. In the same way, we have

B(m,n)(sin2πkx1, . . . , sin2πkxn)T = w
(m,n)
k (sin2πkx̄1, . . . , sin2πkx̄m)T .

Let j0 = d(j + 1)/2e for 0 ≤ j ≤ n− 1. Following the proof of Proposition 1 and

assuming m = 2q+1 is odd, we can write any j0 as j0 = hm− i0 or j0 = hm+ i0

with 0 ≤ i0 ≤ q, where i0 is a function of j and m. For odd j and j0 = hm + i0,

we have

B(m,n)V
(n)
j = B(m,n)

√

2

n
(sin2πj0x1, . . . , sin2πj0xn)T

= w
(m,n)
j0

√

2

n
(sin2πj0x̄1, . . . , sin2πj0x̄n)T

= w
(m,n)
j0

√

2

n
(−1)h(sin2πi0x̄1, . . . , sin2πi0x̄n)T

= w
(m,n)
j0

√

m

n
(−1)hV

(m)
2i0−1

.

Similarly, we can derive the equation for even j and j0 = hm − i0. So the

structure of V
(m)
i

T
B(m,n)V

(n)
j is:

V
(m)
i

T
B(m,n)V

(n)
j =

√

m/n w
(m,n)
j0 cm,n

i,j V
(m)
i

T
V

(m)

2i0+ (−1)j−1
2

,

where the constant cm,n
i,j equals (−1)h if (1) j is even, or (2) j is odd and j0 =

hm + i0, and it equals (−1)h+1 otherwise. Therefore, the matrix is nonzero

only when i = 2i0 + ((−1)j − 1)/2 , ĵ. Write µij = w
(m,n)
j0

cm,n
i,j for the nonzero
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elements of matrix V (m)T B(m,n)V (n), which is in the following shape:

√

m

n









µ0,0 0 · · · 0 0 0 · · · µ0,2m−1 0 0 · · ·
0 µ1,1 0 0 0 0 · · · 0 µ1,2m 0 · · ·
0 0 · · · 0 µm−2,m 0 · · · 0 0 · · · · · ·
0 0 · · · µm−1,m−1 0 µm−1,m+1 0 · · · 0 0 · · ·









m×n

.

Since A(n,n) = C(n,m) diag(
√

n/m(d
(m)
l /(d

(m)
l + λB))V (m)T B(m,n)V (n)−I(n), the

entry of A(n,n) is aij = d
(m)
i /(d

(m)
i + λB)µij − I(j = i) for 0 ≤ i < m, and

aij = −I(j = i) for all i ≥ m. So A(n,n) is





diag(
d
(m)
l µll

d
(m)
l +λB

) − I(m,m) A(m,n−m)

0 −I(n−m,n−m)





n×n

.

For the bias,

1

n

∑

Bias2(ŷi) =
1

n
((SB − I)F )T ((SB − I)F )

=
1

n
(V (n)A(n,n)Θ(n))T V (n)A(n,n)Θ(n)

=
1

n
(
Θ(n)

√
n

)T A(n,n)T A(n,n) Θ
(n)

√
n

=

m−1
∑

j=0

(
Θ

(n)
j√
n

)2(
d
(m)
j µjj

d
(m)
j + λB

− 1)2 +

n−1
∑

j=m

(
Θ

(n)
j√
n

)2(1 + (
d
(m)

ĵ
µĵj

d
(m)

ĵ
+ λB

)2)

+

m−1
∑

k=0

n−1
∑

j=m

Θ
(n)
k Θ

(n)
j

n
(

d
(m)
k µkk

d
(m)
k + λB

− 1)(
d
(m)
k µkj

d
(m)
k + λB

)I(k = ĵ)

+
n−1
∑

k=m

m−1
∑

j=0

Θ
(n)
k Θ

(n)
j

n
(

d
(m)
k µkj

d
(m)
k + λB

)(
d
(m)
j µjj

d
(m)
j + λB

− 1)I(j = k̂)

+

n−1
∑

k=m

n−1
∑

j=m

Θ
(n)
k Θ

(n)
j

n
(

d
(m)
k µkj

d
(m)
k + λB

)(
d
(m)
k µkj

d
(m)
k + λB

)I(ĵ = k̂)I(j 6= k)

∼
m−1
∑

j=0

(
Θ

(n)
j√
n

)2(
d
(m)
j µjj

d
(m)
j + λB

− 1)2 +

n−1
∑

j=m

(
Θ

(n)
j√
n

)2(1 + (
d
(m)

ĵ
µĵj

d
(m)

ĵ
+ λB

)2)

when n → ∞, m → ∞ and dm/(dm + λ) → 0. Since cm,n
j,j = 1 for j = 1, . . . ,m
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and w
(m,n)
j → 1 as m/n → 0, we have µjj → 1. Therefore,

1

n

∑

Bias2(ŷi) ∼
m−1
∑

j=0

θ2
j (

ρj

ρj + λB
m

− 1)2 +

∞
∑

j=m

θj
2

=
m−1
∑

j=0

θ2
j (

λB
m

ρj + λB
m

)2 +
∞
∑

j=m

θj
2

=
m−1
∑

j=0

θ2
j (

βjλB

m

1 +
βjλB

m

)2 +
∞
∑

j=m

θj
2.

This completes the proof.
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