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Abstract: We consider estimation in a bivariate mixture model in which the com-

ponent distributions can be decomposed into identical distributions. Previous ap-

proaches to estimation involve parametrizing the distributions. In this paper, we

use a semi-parametric approach. The method is based on the exponential tilt model

of Anderson (1979), where the log ratio of probability (density) functions from the

bivariate components is linear in the observations. The proposed model does not re-

quire training samples, i.e., data with confirmed component membership. We show

that in bivariate mixture models, parameters are identifiable. This is in contrast

to previous works, where parameters are identifiable if and only if each univariate

marginal model is identifiable (Teicher (1967)).
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1. Introduction

Mixture models have been studied by many researchers, dating back to at

least the late 1800s (Pearson (1893, 1895)). There is now a vast literature on

mixture model inference, we refer readers to the books by Titterington, Smith

and Makov (1985) and Lindsay (1995). Statistical analysis of mixture data is

not trivial since in general there is no closed form for the maximum likelihood

estimators. Empirical methods or an EM algorithm are needed. Furthermore,

theoretical results are difficult since the mixture parameter may lie on the bound-

ary of the parameter space. In addition, some nuisance parameters may be absent

under the null hypothesis and hence the null distribution of the likelihood ratio

test statistic is, in general, unknown even when the sample size is large. Despite

these difficulties, mixture models are still popular because of their flexibility in

modeling data in a large variety of applications, for example, in social economics

(Keane and Wolpin (1997) and Cameron and Heckman (2001)), in marketing

(Desarbo, Degrenatu, Wedel and Saxton (2001) and Moe and Fader (2002)),

in finance (Zangari (1996), Venkatraman (1997) and Hull and White (1998)),
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in social psychology (Thomas and Horton (1997)) and in biomedical sciences

(Vounatsu, Smith and Smith (1998) and Zou, Fine and Yandell (2002)).

Apart from the technical difficulties discussed above, there is the added con-

cern of robustness when modeling multivariate data using parametric mixture

models. As Thomas and Lohaus (1993) and Hettmansperger and Thomas (2000)

pointed out, component distributions in a mixture model are often asymmetric,

let alone normal. Earlier, MacDonald (1975) also suggested that most paramet-

ric estimators are very sensitive to departures from distributional assumptions.

Therefore, when modeling multivariate mixture data, it is desirable to make infer-

ence under minimal assumptions on the underlying component distributions. To

answer this need, we here consider a semi-parametric approach. We assume the

component densities are related by Anderson’s (1979) exponential tilt model. For

ease of illustration, we focus on estimation in a bivariate two-component mixture

where the component distributions in the multivariate mixture model can be de-

composed into independent identical distributions. However, the method we pro-

pose can be generalized to more general situations, such as the decomposition of

the components into independent but non-identical distributions. Decomposition

of the components into independent identical distributions means that, given we

know which component an observation comes from, the within component data

are independent and identically distributed (i.i.d.). Such an assumption was used

in a study of developmental psychology (Thomas and Horton (1993, 1997) and

Hettmansperger and Thomas (2000)). In medical applications, Hall and Zhou

(2003) also discussed a problem with k-variate data drawn from a mixture of two

distributions, each having independent components. They showed that when

k ≥ 3, it is possible to identify the mixture model even without parametrizing

the underlying component distributions. Finally, conditional independence of

multivariate data can also be seen as a special case of the popular random ef-

fects model with clustered data. In such a model, observations from individuals

within a cluster are often considered to be independent, when conditioned on an

unobserved parameter. The unconditional joint distribution of the data from all

the clusters is then a mixture distribution (Liu and Pierce (1994) and Qu and

Hadgu (1998)).

The organization of the rest of this paper is as follows. In Section 2, we

present the methodology and the main results. By using Vardi’s (1985) biased

sampling inference technique and Owen’s (1988) empirical likelihood, we maxi-

mize the empirical likelihood function subject to suitable constraints. The pro-

filed empirical likelihood is related to Shannon’s mutual information. It is shown

that the maximum semi-parametric likelihood estimate has an asymptotic nor-

mal distribution. We also demonstrate that the profiled empirical likelihood

behaves like a conventional parametric likelihood, so that the profiled likelihood
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ratio statistic has an asymptotic chi-squared distribution. Section 3 gives some

simulation results.

2. Method and Main Results

We assume i.i.d. bivariate data (x1, y1), . . . , (xn, yn) from a mixture distri-

bution with density

h(x, y) = λf(x)f(y) + (1 − λ)g(x)g(y), (1)

where λ represents the mixing proportion of the two components and f and g

are two univariate density functions. We let H,F , and G denote the distribution

functions corresponding to h, f , and g, respectively. Throughout the paper, we

let η = (λ, α, β), and η0 = (λ0, α0, β0) be the true values of the parameters.

Assume that f and g are related by an exponential tilt model (Anderson

(1979))

g(x) = exp(α+ βx)f(x), (2)

where α and β are unknown parameters. If we let D be the indicator for the

component membership of an observation (D = 0 if it is from F and D = 1 if it

is from G), then the exponential tilt model is equivalent to the logistic regression

model

P (D = 1|x) =
exp(α∗ + βx)

1 + exp(α∗ + βx)
,

where α∗ = α + log{(1 − λ)/λ} (Qin (1998)). With the exponential tilt model,

the marginal distribution of x is

h1(x) = [(1 − λ) + λ exp(α+ βx)]f(x). (3)

Similarly, we can define h2(y) as the marginal distribution of y. Model (3) may

be considered as a biased sample problem with weight w(x) = (1−λ)+λ exp(α+

βx), which depends on the parameters (α, β, λ). Discussions on biased sampling

problems can be found in the literature, for example Vardi (1985), Gill, Vardi

and Wellner (1988), Qin (1998) and Gilbert, Lele and Vardi (1999). Note that

the underlying parameters cannot be identified from the marginal density since

the xi’s and yi’s have the same distribution, and f and (α, β, λ) are unknown.

This is in contrast to the situation with a parametric multivariate mixture model

with independent components, where the model is identifiable as long as the

parameters in the marginal models are identifiable (Teicher (1967)). The non-

identifiablity problem can be illustrated by the following example. Suppose the

mixture model is used to model brand loyalty in a product. The population of

consumers can be considered to be made up of those who are loyal to a particular

brand and those who are not brand loyal. A mixture distribution can be used
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to model their purchase behavior over a number of purchasing periods. In the
notation of this paper, the dimension of F (and G) represents the number of
purchasing periods that consumers’ behavior have been recorded. If only one
purchase record is recorded per consumer, there is no way to determine whether
the customer is brand loyal, hence the model is unidentifiable.

Returning to the estimation problem at (1) and (2), the joint density of (x, y)
is

h(x, y) = [λ+ (1 − λ) exp{2α+ β(x+ y)}]f(x)f(y). (4)

It is easy to observe that (4) is identifiable by noting that f is cancelled out
in h(x, y)/{h1(x)h2(y)}, and both the joint and marginal distributions can be

estimated using the observed data.
Based on the observed data, the likelihood is

L =

n
∏

i=1

[λ+ (1 − λ) exp{2α + β(xi + yi)}]dF (xi)dF (yi).

Obviously, F only jumps at each observed (xi, yi), i = 1, 2, . . . , n. For conve-
nience, we denote the jump sizes as pj , j = 1, 2, . . . , 2n. Then the log-likelihood
is

l =

n
∑

i=1

log[λ+ (1 − λ) exp{2α+ β(xi + yi)}] +

2n
∑

j=1

log pj.

For fixed (λ, α, β), we maximize the pj’s subject to the constraints

2n
∑

j=1

pj = 1, pj ≥ 0,
2n
∑

j=1

pj{exp(α+ βtj) − 1} = 0,

where (t1, . . . , t2n) = (x1, y1, . . . , xn, yn), and the last constraint reflects that

g(x) = exp(α + βx)f(x) is a density function with total mass 1. After profiling
the pj’s (see, for e.g., Qin (1999)), the log-likelihood can be written as

l =

n
∑

i=1

log[λ+(1−λ) exp{2α+β(xi+yi)}]−
2n
∑

j=1

log[1+γ{exp(α+βtj)−1}]. (5)

Differentiating (5) with respect to (λ, α, β), we have

∂l

∂λ
=

n
∑

i=1

1 − exp{2α + β(xi + yi)}
λ+ (1 − λ) exp{2α + β(xi + yi)}

= 0, (6)

∂l

∂α
=

n
∑

i=1

2(1 − λ) exp{2α + β(xi + yi)}
λ+ (1 − λ) exp{2α + β(xi + yi)}

−
2n
∑

j=1

γ exp(α+ βtj)

1 + γ{exp(α+ βtj) − 1}

= 0, (7)
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∂l

∂β
=

n
∑

i=1

(xi + yi)(1 − λ) exp{2α+ β(xi + yi)}
λ+ (1−λ) exp{2α+β(xi + yi)}

−
2n
∑

j=1

tjγ exp(α+ βtj)

1 + γ{exp(α+ βtj) − 1}
= 0. (8)

Multiplying (6) by (1 − λ), we have

n
∑

i=1

1

λ+ (1 − λ) exp({2α+ β(xi + yi)}
= n.

Furthermore, using (6) and (7), it can be shown that

γ = 1 − λ. (9)

Remark: Note that since

h(x, y)

h1(x)h2(y)
=

λ+ (1 − λ) exp{2α + β(x+ y)}
{λ+ (1 − λ) exp(α+ βx)}{λ + (1 − λ) exp(α+ βy)} ,

and using γ = 1 − λ in the semi-parametric likelihood (5), we have l =
∑n

i=1 log

{h(xi, yi)/h1(xi)h2(yi)}. The quantity E[log{h(x, y)/h1(x)h2(y)}] is Shannon’s

mutual information function (Gourieroux and Monfort (1997, pp.403-404)), and

has been used for measuring the partial link between two random variables,

conditional on a third variable: it is non-negative, and is zero if and only if x and

y are independent. Note that the estimating equation
∑n

i=1 ∂ log{h(xi, yi)/h1(xi)

h2(yi)}/∂η = 0 is unbiased since
∑n

i=1 ∂ log h(xi, yi)/∂η,
∑n

i=1 ∂ log h1(xi)/∂η

and
∑n

i=1 ∂ log h2(yi)/∂η are scores based on the joint and marginal distributions,

respectively.

Denote the solution of (6) to (8) as η̂ = (λ̂, α̂, β̂). We have the following

results.

Theorem 1. Suppose F is non-degenerate, and |∂3l/∂ηi∂ηj∂ηk|, i, j, k = 1, 2, 3,

are bounded by some integrable functions, that EF{exp(3βx)} < ∞ in a neigh-

borhood of the true value of β0, and that 0 < λ0 < 1 and β0 6= 0. Then, as

n→ ∞,

√
n





λ̂− λ0

α̂− α0

β̂ − β0



 → N(0,Σ) in distribution,

where Σ is defined at (A.2) in the Appendix.

Theorem 2. Let R(λ) = 2{maxλ,α,β l(λ, α, β) − maxα,β l(λ, α, β)}. Under the

conditions of Theorem 1, R(λ0) → χ2(1) in distribution.
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3. Simulation Results

In this section, we give some simulation results. We first present results

that illustrate the non-robustness of the parametric maximum likelihood method.

Assuming fully parametrized models for f(x, y) = f(x, y, θ1) and g(x, y) =

g(x, y, θ2), inference can be based on the likelihood l(λ, θ1, θ2) =
∑n

i=1 log{λf(xi,

yi, θ1)+(1−λ)g(xi, yi, θ2)}. We considered two different situations of model mis-

specification. In the first situation, the data came from a mixture distribution

with independent identical log-normal components. Specifically, the data distri-

bution was such that f(x, y) = f(x)f(y) and g(x, y) = g(x)g(y), with f(x) being

the density for x where log(x) was N(0, 1) and g(x) being the density for x where

log(x) was N(µ, 1). The data were then (mis)modeled using an exponential mix-

ture likelihood. In the second situation, the data came from a log-transformed

mixture distribution with independent exponential components. Specifically, the

underlying samples were taken from f(x) = exp(−x) and g(x) = 1/µexp(−x/µ)

and log-transformed. The data were then modeled (incorrectly) using a normal

mixture likelihood.

For the log-normal mixture model, the values of µ = 1.5, 2, 2.5 and λ =

0.2, 0.5, 0.8 were used, and for the transformed exponential mixture model the

values of µ = 3, 4, 1/3 and λ = 0.2, 0.5, 0.8 were used. In both models, for each

combination of the parameters µ and λ, we generated 1,000 data sets of sample

size 200. We considered only the estimation of λ. The simulation means and

variances of the parameter estimates obtained from maximizing the parametric

likelihoods are reported in Table 1. As observed from the results, the parame-

ter estimates are grossly biased from the true parameter values. These results

illustrate the risks of using a parametric model.

Table 1. Mean (variance) of the parametric estimates of λ based on 1,000

simulations, sample size= 200, using an incorrectly specified model.

Mixture of log-Normal models

λ µ = 1.5 µ = 2.0 µ = 2.5

0.20 0.65412 (0.04428) 0.33248 (0.05012) 0.17759 (0.00261)

0.50 0.58454 (0.00987) 0.49602 (0.00373) 0.47465 (0.00204)
0.80 0.78703 (0.00265) 0.77687 (0.00193) 0.77427 (0.00121)

Transformed mixture of exponentials

λ µ = 1/3 µ = 1/4 µ = 3

0.20 0.90062 (0.06963) 0.78115 (0.08675) 0.83343 (0.11587)

0.50 0.87980 (0.06568) 0.80482 (0.04128) 0.80186 (0.12021)

0.80 0.98741 (0.00794) 0.94493 (0.03833) 0.85757 (0.10114)
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We now give results for our semi-parametric method. The following al-

gorithm was used to maximize the semi-parametric likelihood. From (9), the

Lagrange multiplier γ is equal to 1 − λ. For fixed (α, β), we solved (6) to obtain

λ = λ(α, β) by imposing the constraints that λ = 0 if ∂l(λ, α, β)/∂λ|λ=0 ≤ 0 and

λ = 1 if ∂l(λ, α, β)/∂λ|λ=1 ≥ 0. Then we employed the downhill simplex algo-

rithm (Press et al. (1992)) to search for (α, β) to maximize the semi-parametric

likelihood. In the simulations, when the two components were close to each

other it was hard to estimate the underlying parameters. A larger sample size

was needed when the mixture parameter λ was close to 0 or 1 and β was close

to 0.

For comparison, we also calculated the maximum likelihood estimate of λ

using the parametric likelihoods. In this comparison, we assumed the models for

f(x, y) and g(x, y) were correctly specified.

Similar to a robustness study, two situations were considered. The first was

a mixture model with independent identical normal components. Specifically,

the underlying densities f(x) and g(y) were N(0, 1) and N(µ, 1), respectively.

Therefore g(x) = exp(α + βx)f(x), with, α = −µ2/2; and β = µ. The values

of µ = 1.5, 2, 2.5 and λ = 0.2, 0.5, 0.8 were used. We generated 1,000 data sets

of sample size 200 for each combination of µ and λ. Means and variances of the

parameter estimates based on the 1,000 simulations are reported at the top of

Table 2. The first and second entries are the mean (variance) of the paramet-

ric maximum likelihood estimate and the semi-parametric maximum likelihood

estimate, respectively.

From Table 2, we observe that both parametric and semi-parametric likeli-

hood estimations are satisfactory, though there is some bias when λ is close to the

boundaries. Naturally there is some loss of efficiency in using the semi-parametric

likelihood estimation under a correctly specified model.

The second model we used was an exponential mixture model with f(x) =

exp(−x), g(x) = (1/µ) exp(−x/µ). Hence g(x) = exp(α+ βx)f(x), α = − log µ,

β = 1 − 1/µ. For µ = 3, 4, 1/3 and λ = 0.2, 0.5, 0.8, the simulation results are

reported at the bottom of Table 2. Once again, both models give satisfactory

parameter estimates, with the parametric model slightly more efficient.

Our simulation results are similar to those observed by Efron (1975) in com-

paring the relative efficiency of a logistic regression model to a full parametric

model. The similarity in the results between the two studies is not surpris-

ing since model (2) is essentially equivalent to a logistic regression model (Qin

(1998)). The proposed method offers a few advantages: the semi-parametric na-

ture of the model makes it robust against departures from model assumptions; it

is simple to implement; the model allows identification of all model parameters

without the requirement of a training sample.
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Table 2 Mean (variance) of the parametric and semi-parametric estimates of

λ based on 1,000 simulations, sample size=200.

F ∼ N(0, 1) and G ∼ N(µ, 1)

λ µ = 1.5 µ = 2.0 µ = 2.5

0.20 0.21099 (0.00512)1 0.20216 (0.00157) 0.20158 (0.00102)
0.20 0.21386 (0.00767)2 0.20165 (0.00198) 0.20188 (0.00114)

0.50 0.50072 (0.00528) 0.50083 (0.00219) 0.49842 (0.00152)
0.50 0.49815 (0.00798) 0.49928 (0.00285) 0.49860 (0.00161)

0.80 0.78897 (0.00504) 0.79698 (0.00165) 0.79833 (0.00103)
0.80 0.78401 (0.00812) 0.79551 (0.00206) 0.79901 (0.00111)

F ∼ exp(1) and G ∼ exp(µ)

λ µ = 1/3 µ = 1/4 µ = 3

0.20 0.25392 (0.03356) 0.22991 (0.01279) 0.23532 (0.01606)

0.20 0.27510 (0.05946) 0.22999 (0.02627) 0.23424 (0.03453)

0.50 0.49950 (0.01618) 0.50026 (0.00655) 0.50787 (0.01687)

0.50 0.50833 (0.03645) 0.50002 (0.01378) 0.49267 (0.03870)

0.80 0.76769 (0.01348) 0.79154 (0.00411) 0.75170 (0.03202)

0.80 0.77283 (0.03430) 0.78301 (0.01271) 0.73804 (0.05320)

1. parametric estimate.
2. semi-parametric estimate.

Appendix. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Let φ = (φ1, φ2, φ3)
T , where

φ1(η) =
1

n

n
∑

i=1

1 − exp[2α+ β(xi + yi)]

λ+ (1 − λ) exp[2α + β(xi + yi)]
,

φ2(η) =
1

n

n
∑

i=1

(xi + yi) exp[2α+ β(xi + yi)]

λ+(1−λ) exp[2α+β(xi+yi)]
− 1

n

2n
∑

j=1

tj exp(α+ βtj)

λ+(1−λ) exp(α+ βtj)
,

φ3(η) =
1

n

2n
∑

j=1

exp(α+ βtj) − 1

λ+ (1 − λ) exp(α+ βtj)
.

It is easy to show that in probability

∂φ(η0)

∂η
→ A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 , where
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a11 = −
∫

[1 − exp{2α0 + β0(x+ y)}]2
λ0 + (1 − λ0) exp{2α0 + β0(x+ y)}dF (x)dF (y),

a12 = 2

∫

exp{2α0 + β0(x+ y)}
λ0 + (1 − λ0) exp{2α0 + β0(x+ y)}dF (x)dF (y)

+4(1−λ0)

∫

[1−exp{2α0+β0(x+ y)}] exp{2α0+β0(x+ y)}
λ0 + (1 − λ0) exp{2α0 + β0(x+ y)} dF (x)dF (y),

a13 = 2(1−λ0)

∫

(x+y)[1−exp{2α0+β0(x+y)}] exp{2α0+β0(x+y)}
λ0 + (1 − λ0)exp{2α0 + β0(x+ y)} dF (x)dF (y)

−
∫

(x+ y) exp{2α0 + β0(x+ y)}
λ0 + (1 − λ0) exp{2α0 + β0(x+ y)}dF (x)dF (y),

a21 = −
∫

(x+ y) exp{2α0 + β0(x+ y)}[1 − exp{2α0 + β0(x+ y)}]
λ0 + (1 − λ0) exp{2α0 + β0(x+ y)} dF (x)dF (y)

+2

∫

x exp(α0 + β0x){1 − exp(α0 + β0x)}
λ0 + (1 − λ0) exp(α0 + β0x)

dF (x)dF (y),

a22 = 2λ0

∫

(x+ y) exp{2α0 + β0(x+ y)}
λ0 + (1 − λ0) exp(2α0 + β0(x+ y))

dF (x)dF (y)

−2λ0

∫

x exp(2α0 + 2β0x)

λ0 + (1 − λ0) exp(α0 + β0x)
dF (x),

a23 = λ0

∫

(x+ y)2 exp{2α0 + β0(x+ y)}
λ0 + (1 − λ0) exp{2α0 + β0(x+ y)}dF (x)dF (y)

−2λ0

∫

x2 exp(2α0 + β0x)

λ0 + (1 − λ0) exp(α0 + β0x)
dF (x),

a31 = 2

∫ {exp(α0 + β0x) − 1}2

λ0 + (1 − λ0) exp(α0 + β0x)
dF (x),

a32 =

∫

exp(α0 + β0x)

λ0 + (1 − λ0) exp(α0 + β0x)
dF (x),

a33 = −(1 − λ0)

∫

x exp(α0 + β0x)

λ0 + (1 − λ0) exp(α0 + β0x)
dF (x).

By expanding φ(η̂) at η0, we have

√
n(η̂ − η0) = −(∂φ(η0)/∂η)

−1√nφ(η0) + op(1) =
√
n(η̂ − η0)

= −A−1√nφ(η0) + op(1). (A.1)

Let ψ = (ψ1, ψ2, ψ3)
T . Then

√
nφ(η0) = (1/

√
n)

∑n
i=1 ψ(xi, yi, η0), where

ψ1(xi, yi, η0) =
1 − exp{2α0 + β0(xi + yi)}

λ0 + (1 − λ0) exp{2α0 + β0(xi + yi)}
,
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ψ2(xi, yi, η0) =
(xi + yi) exp[2α0 + β0(xi + yi)]

λ0 + (1 − λ0) exp[2α0+β0(xi+yi)]
− xi exp(α0 + β0xi)

λ0+(1−λ0) exp(α0+β0xi)

− yi exp(α0 + β0yi)

λ0 + (1 − λ0) exp(α0 + β0yi)
,

ψ3(xi, yi, η0) =
exp(α0 + β0xi) − 1

λ0 + (1 − λ0) exp(α0 + β0xi)
+

exp(α0 + β0yi) − 1

λ0 + (1 − λ0) + exp(α0 + β0yi)
.

Hence, in distribution,
√
nφ(η0) → N(0, V ), where V = Cov (ψ,ψ). Therefore,

by using Slutsky’s theorem on (A.1),

√
n(η̂ − η0) → N(0,Σ), Σ = A−1V A−1. (A.2)

Proof of Theorem 2. The proof is tedious, but similar to the proof of Theorem 2

in Qin (1999).
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