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Abstract: Semiparametric transformation models are considered for failure time

data from case-cohort studies, where the covariates are assembled only for a ran-

domly selected subcohort from the entire cohort and additional cases outside the

subcohort. We present the estimating procedures for the regression parameters

and survival probability. The asymptotic properties of the resulting estimators

are developed based on asymptotic results for U-statistics, martingales, stochastic

processes and finite population sampling.

Key words and phrases: Asymptotic distribution, case-cohort design, consistency,

finite population sampling, semiparametric transformation models, U-statistic.

1. Introduction

The cohort design is frequently advocated as superior to the case-control

design in epidemiological studies because cohort design permits evaluation of ab-

solute risk as well as relative risk, and gives an opportunity to study multiple

outcomes related to a specific exposure. However, when the disease of interest is

rare or the time between exposure and disease manifestation is very long, it is ex-

tremely costly to follow subjects until the occurrences of disease. Generally, most

cost and effort involves the analysis of biological specimens or the ascertainment

of covariate profiles from raw data. Prentice (1986) introduced a case-cohort

design as a more efficient solution in large cohort studies and disease prevention

trials. In a case-cohort design, expensive covariates are assembled only for a

subcohort that is randomly selected from the entire cohort at the beginning of

the study, and any additional cases/failures outside the subcohort.

Statistical methods for analyzing failure time data from case-cohort studies

have been developed for the Cox hazards model and some alternative survival

models. Here we consider a family of models, namely the semiparametric trans-

formation models, for the case-cohort design where a subcohort is selected from

the full cohort by a simple random sampling without replacement. Semipara-

metric transformation models incorporate a variety of non-proportional hazards
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models besides the Cox proportional hazards model and the proportional odds

model. In the semiparametric transformation models, an unspecified strictly in-

creasing function h of failure time T is linearly associated with a p-vector of

covariates Z through the equation

h(T ) = −Z ′β + ε,

where Z ′ is a transpose of Z, β is an unknown p-vector of regression parameters

and ε is a random error with a completely known distribution function F and

density function f . In terms of survival function, semiparametric transforma-

tion models assume that a known transformation g of survival function Sz(t) is

linearly associated with covariate vector Z by

g{Sz(t)} = h(t) + Z ′β,

where g−1 = 1−F . In fact, the unspecified function h plays the same role as the

baseline hazard function in the Cox proportional hazards model.

We recently proposed a weighted estimating equation method to analyze the

case-cohort data with such models (Kong, Cai and Sen (2004)). The basic idea

is to use the inverse probability weighting technique to extend the approaches

of Cheng, Wei and Ying (1995, 1997) and Fine, Ying and Wei (1998) that are

only valid for complete data. In this paper, we rigorously develop the asymptotic

properties of the resulting estimators and explicitly state the sufficient conditions

which have not been fully discussed in the previous research. The estimating

procedures for regression coefficients and survival probability are briefly presented

in Section 2. The corresponding asymptotic properties are stated and proven in

Section 3.

2. Case-Cohort Estimators

2.1. Estimator of regression parameters

Let {Ti, Ci, Zi} (i = 1, . . . , N) be N independent, identically distributed

(i.i.d.) copies of {T,C,Z}, where C is the potential censoring time. Assume that

the distribution of C is independent of Z and T . Due to censoring, the observed

data has the form (Xi,∆i, Zi), whereXi = min(Ti, Ci), ∆i = I(Ti ≤ Ci) with I(.)

being an indicator function. For full cohort data, Fine et al. (1998) introduced

an extra parameter ζ = h(t0), where t0 is a prespecified constant such that

pr{min(T,C) > t0} > 0, and obtained the estimator of the parameter vector

θ = (ζ, β′)′ through the minimization of a sum of weighted squares

Qw(θ) =

N
∑

i=1

N
∑

j=1,j 6=i

wij(θ̂u)
[∆jI{min(Xi, t0) ≥ Xj}

Ĝ2(Xj)
− ηij(θ)

]2
,
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where wij is a positive weight function for efficiency improvement, θ̂u is the

unweighted least square estimator, Ĝ is the Kaplan-Meier estimator of survival

function for censoring time, and ηij(θ) =
∫ ζ
−∞{1−F (v+Z ′

iβ)}dF (v+Z ′
jβ). The

use of the truncation point t0 is to ensure that Ĝ is uniformly consistent over

[0, t0].

In a case-cohort design, suppose we select a subcohort of size n by simple

random sampling without replacement from a cohort study that consists of N

independent subjects. Each subject has the same probability p = n/N to be

selected into the subcohort. Let ξi be the subcohort indicator, taking value 1

if the ith subject is in the subcohort and zero otherwise, so pr(ξi = 1) = p.

The failure status ∆i is available for each subject. However, we only observe

the data (Xi, Zi) for the subjects in the subcohort (ξi = 1) and additional cases

outside the subcohort (∆i = 1 and ξi = 0). The conditional probability of

observing the complete covariates for the ith subject given the failure status is

∆i + (1 − ∆i)p. Motivated by the idea of weighting the incomplete data by

the inverse selection probabilities (Horvitz and Thompson (1952)), we define a

weight, namely ρij , to reflect the contribution of a pair of subjects i and j to the

estimating function. Specifically, ρij = ρiρj , where ρi = ∆i + (1 − ∆i)ξi/p. For

estimating the parameter vector θ, we consider the weighted estimating function

UN (θ, Ĝ) =

N
∑

i=1

N
∑

j=1,j 6=i

ρijwij(θ)η̇ij(θ)

[

∆jI{min(Xi, t0) ≥ Xj}
Ĝ2

n(Xj)
− ηij(θ)

]

, (1)

where η̇ij(θ) = ∂ηij(θ)/∂θ and Ĝn is the Kaplan-Meier estimator of the survival

function G for censoring time based on the subcohort data. We may obtain the

estimator θ̂ by solving the equation UN (θ, Ĝ) = 0. In the absence of censoring,

ηij(θ0) = E[I{min(Ti, t0) ≥ Tj}|Z i, Zj ]. Using the Kaplan-Meier estimate Ĝn to

account for censoring data based on the inverse censoring probability weighting

technique, the expectation of ∆jI{min(Xi, t0) ≥ Xj}/Ĝ2
n(Xj) − ηij(θ0) tends to

zero asymptotically. Thus, heuristically, (1) leads to an asymptotically unbiased

estimating equation. The detailed proof is given in Section 3.

Let h0 and β0 be the true values of h and β respectively. Denote the marginal

survival function of failure time by R(t) =
∫

z g
−1{h0(t) +Z ′β0}dH(z), where H

is the distribution of covariate vector Z. If s̃ is an index set of the subcohort, we

can estimate the marginal cumulative hazard function Λ associated with failure

time by Λ̂(t) = N−1
∑N

i=1

∫ t
0{ 1

n

∑

l∈s̃ I(Xl ≥ u)}−1dNi(u). Also, noting that

the conditional expected value E{I(Xi ≥ t)/G(t)|Z i} = g−1{h0(t) + Z ′
iβ0},

we can obtain an estimator of h0(t), ĥ(t), by solving the estimating equation
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V {h(t)} = 0, where

V {h(t)} =
N

∑

i=1

[

ρig
−1{h(t) + Z ′

iβ̂} − e−Λ̂(t)
]

.

Then the estimator of survival probability at a covariate vector z0 is given by

Ŝz0
(t) = g−1{ĥ(t) + z′0β̂}.

3. Asymptotic Results

Let s0 and s1 denote the index sets of all the censored observations and

failures in the cohort, and let s̃0 and s̃1 denote the corresponding sets for the

subcohort. Then the total subcohort set is s̃ = s̃0 ∪ s̃1, and the total cohort

set s = s0 ∪ s1. Let N0 and n0 be the numbers of censored observations in

the cohort and subcohort respectively, and let N1 and n1 be the corresponding

numbers of failures. Moreover, let F0 be the σ-algebra generated by {Xi, Zi,∆i =

0, i ∈ s0}, F1 be the σ-algebra generated by {Xi, Zi,∆i = 1, i ∈ s1}, and F be

the σ-algebra generated by {Xi, Zi,∆i = 1, i ∈ s}. Denote
∑m

i6=j as a double

summation for 1 ≤ i 6= j ≤ m, and similarly,
∑m

i6=j 6=k as a triple summation

for 1 ≤ i 6= j 6= k ≤ m. Also, we take the martingale associated with the

censoring time as M c
i (t) = I(∆i = 0, Xi ≤ t) −

∫ t
0 I(Xi ≥ u)dΛc(u) for the ith

subject, where Λc is the common cumulative hazard function for censoring time.

Naturally the conditions required for establishing the asymptotic distribution for

the full cohort estimator in Fine et al. (1998) are also required for the case-cohort

estimators. In addition, more conditions are necessary to ensure the desired

asymptotic behavior of certain subcohort quantities. Specifically, we assume the

following conditions for establishing the consistency and asymptotic normality of

case-cohort estimators.

A. Covariate vector Z is in a compact set L ∈ Rp.

B. Var{wij(θ0)η̇ij(θ0)[∆jI{min(Xi, t0) ≥ Xj}/G2(Xj) − ηij(θ0)]} > 0, ∀i, j =

1, . . . , N .

C. There exists a compact set Θ of θ0 = (ζ0, β
′
0)

′ that satisfies

(i) Partial derivatives ∂F (u−Z ′
iβ)/∂u, ∂f(u−Z ′

iβ)/∂u and ∂2f(u−Z ′
iβ)/∂u2

exist on u ∈ (−∞, ζ) for all i = 1, . . . , N , and they are uniformly continuous

on Θ for any Z ∈ L; and

(ii) wij(θ) > 0 and ∂wij(θ)/∂θ, denoted by ẇij(θ), exists, wij and ẇij are

uniformly continuous on Θ for all (i, j).

D. (i) n/N → α (0 < α < 1) as n,N → ∞; (ii) N0/N → ν (0 < ν < 1) as

N0, N → ∞.

E. The limit of matrix N−2
∑

i6=j wij(θ0)η̇ij(θ0)η̇
′
ij(θ0) exists as N → ∞ and is

positive definite.
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F. (i) Λc(t0) <∞, and (ii) Λ(t0) <∞.

3.1. Asymptotic properties for θ̂

Three technical issues need to be carefully justified in the development of

the asymptotic properties of the estimator θ̂. First, the simple random sampling

of subcohort without replacement leads to lack of independence between the ob-

servations. Second, the sample size n1 or n0 is random, although the subcohort

size n is fixed. Third, the estimating function itself is a variant of traditional

U-statistic due to the use of the Kaplan-Meier estimator. By the Hoeffding de-

composition, we first approximate the case-cohort quantity by the full cohort

counterpart plus an additional term that is asymptotically uncorrelated to the

full cohort part. Asymptotic results for the full cohort part are then readily es-

tablished based on U-statistics theory, and the additional term can be handled by

asymptotic results on finite population sampling. The martingale representation

of the Kaplan-Meier estimator Ĝn is used to convert the estimating function to

a traditional U-statistic. Before we show the consistency of θ̂, we provide some

useful lemmas below. The corresponding proofs are given in the Appendix. Also,

we consider the sample size n0 as a fixed constant and delay the justification of

its randomness to the end of this section.

Lemma 1. Let Y 1, . . . , Y N be i.i.d. random vectors where Y i = (Xi,∆i, Z
′
i)
′,

and let φ(Y i, Y j) be any vector function of Y i and Y j with Var{φ(Y i, Y j)} <∞.

Define weight ρij as in Section 2. Then under condition D, we have

N− 3

2

N
∑

i6=j

ρijφ(Y i, Y j)

=N− 3

2

N
∑

i6=j

φ(Y i, Y j) +

√
N

n0

∑

i∈s̃0

{

φ∗N (Y i) −
1

N0

∑

k∈s0

φ∗N (Y k)
}

+ op(1),

where φ∗N (Y i) = [ν2/(N0 − 1)]
∑

j∈s0\i{φ(Y i, Y j) + φ(Y j , Y i)} + [ν(1 − ν)/N1]
∑

j∈s1
{φ(Y i, Y j)+φ(Y j, Y i)}. Furthermore, N−2

∑N
i6=j ρijφ(Y i, Y j)=N

−2
∑N

i 6=j

φ(Y i, Y j) + op(1).

Lemma 2. Let (ξ1, . . . , ξN ) be a random vector containing n ones and N − n

zeros, with each permutation equally likely and n/N → α ∈ (0, 1). Let Xi,

i = 1, . . . , N , be i.i.d. random variables. Let f and g be functions for which

N−1/2
∑N

i=1 f(Xi) converges to a normal distribution N(µf , σ
2
f ), and N−1/2

∑N
i=1

g(Xi) converges to a normal distribution N(0, σ2
g). Let GN (X) = N−1

∑N
i=1 g(Xi)
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and HN (X, ξ) = n−1
∑N

i=1 ξif(Xi) − f̄N , where f̄N = N−1
∑N

i=1 f(Xi). Then

√
N

(

GN (X)

HN (X, ξ)

)

D−→ BVN

{

0,

(

σ2
g 0

0 α−1(1 − α)σ2
f

)}

. (2)

Theorem 1. Under conditions (A)−(E), θ̂ is a root-n consistent estimator of

θ0.

Proof. The proof follows from the application of the Inverse Function Theorem,

as in Foutz (1977). Under conditions A and C(i), η̇ij(θ) and η̈ij(θ) exist and are

uniformly continuous in θ ∈ Θ, with η̇ij(θ) = (1, Z ′
j)

′ ∫ ζ
−∞{1−F (t+Z ′

iβ)}df(t+

Z ′
jβ) − (1, Z ′

i)
′ ∫ ζ

−∞ f(t + Z ′
iβ)dF (t + Z ′

jβ). This result, with condition C(ii),

ensures that ∂N−2UN (θ, Ĝ)/∂θ exists and is uniformly continuous on Θ. If dij =

∆jI{min(Xi, t0) ≥ Xj},

∂N−2UN (θ, Ĝ)

∂θ

=
1

N(N − 1)

N
∑

i6=j

ρij{ẇij(θ)η̇ij(θ) + wij(θ)η̈ij(θ)}
{ dij

Ĝ2
n(Xj)

− ηij(θ)
}

− 1

N(N − 1)

N
∑

i6=j

ρijwij(θ)η̇ij(θ)η̇
′
ij(θ).

By a Taylor expansion of N−2UN (θ, Ĝ) around G,

N−2UN (θ, Ĝ)

=
1

N(N − 1)

N
∑

i6=j

ρijwij(θ)η̇ij(θ)

{

dij

G2(Xj)
− ηij(θ)

}

(3)

− 1

N(N − 1)

N
∑

i6=j

ρijwij(θ)η̇ij(θ)

[

2dij

G3(Xj)
{Ĝn(Xj) −G(Xj)}

]

(4)

+op(N
− 1

2 ).

From the uniform consistency of the Kaplan-Meier estimator on t ∈ [0, t0] (Flem-

ing and Harrington (1991, p.115), and application of convergence results for fi-

nite population sampling, Ĝn(t) converges in probability to G(t) uniformly in t ∈
[0, t0] under D(i). Moreover, wij(θ) and η̇ij(θ) are bounded on Θ due to condition

C. Hence, (4) converges to zero almost surely as n,N → ∞. Furthermore, we may

apply Lemma 1 to (3) by setting φ(Y i, Y j) = wij(θ)η̇ij(θ){dij/G
2(Xj) − ηij(θ)}

under conditions B-D. As a result, N−2UN (θ, Ĝ) is asymptotically equivalent to
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{N(N − 1)}−1
∑N

i6=j wij(θ)η̇ij(θ){dij/G
2(Xj) − ηij(θ)}, which converges almost

surely to
∫

z1,z2
w12(θ)η̇12(θ){η12(θ0)−η12(θ)}dH(z1)dH(z2) by the Strong Law of

Large Numbers for U-statistics. It then follows that N−2UN (θ0, Ĝ)
p−→ 0. Simi-

larly, we may show that −N−2∂UN (θ, Ĝ)/∂θ converges pointwise in probability

to a deterministic function I(θ) as n,N → ∞, where I(θ) is equal to

−
∫

z1,z2

[

{ẇ12(θ)η̇12(θ) +w12(θ)η̈12(θ)}{η12(θ0) − η12(θ)}w12(θ)η̇12(θ)η̇
′
12(θ)

]

dH(z1)dH(z2).

Note that −N−2∂UN (θ, Ĝ)/∂θ is itself a U-process indexed by θ with bounded

kernel because η̈ij(θ) and ẇij(θ) are uniformly continuous on compact set Θ by

condition C. It follows from the Uniform Law of Large Numbers for U-statistics

with bounded kernel function (Sherman (1994)) that −N−2∂UN (θ, Ĝ)/∂θ con-

verges uniformly to I(θ) in θ ∈ Θ. Furthermore, −N−2∂UN (θ, Ĝ)/∂θ|θ=θ0
is

positive definite by condition E. The assumptions of Theorem 2 in Foutz (1977)

are verified and we may conclude that θ̂ is a root-n consistent estimator.

Theorem 2. Let Y i = (Xi,∆i, Z
′
i)
′. Under conditions A, C and F(i), N−3/2UN

(θ0, Ĝ) can be expressed as

N− 3

2UN,f (θ0) +
√
N

{ 1

n0

∑

i∈s̃0

ϕN (Y i) −
1

N0

∑

i∈s0

ϕN (Y i)
}

+2
√
N

{ 1

n

∑

k∈s̃

∫ t0

0

q(t)

π(t)
dM c

k(t) − 1

N

N
∑

k=1

∫ t0

0

q(t)

π(t)
dM c

k(t)
}

+ op(1),

where UN,f (θ0) =

N
∑

i6=j

ψ(Y i, Y j) + 2N

N
∑

k=1

∫ t0

0

q(t)

π(t)
dM c

k(t),

ψ(Y i, Y j) = wij(θ0)η̇ij(θ0)
[∆jI{min(Xi, t0) ≥ Xj}

G2(Xj)
− ηij(θ0)

]

,

ϕN (Y i) =
ν2

N0 − 1

∑

j∈s0\i
[ψ(Y i, Y j) + ψ(Y j , Y i)]

+
ν(1 − ν)

N1

∑

j∈s1

[ψ(Y i, Y j) + ψ(Y j , Y i)],

aij(θ0) = wij(θ0)η̇ij(θ0)
I{min(Xi, t0) ≥ Xj}

G2(Xj)
, π(t) = lim

N→∞
1

N

N
∑

l=1

I(Xl ≥ t),

q(t) = lim
N→∞

1

N(N − 1)

N
∑

i6=j

aij(θ0)∆jI(Xj ≥ t).
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Proof. According to a Taylor series expansion of UN (θ0, Ĝ) around G,

N− 3

2UN (θ0, Ĝ) = N− 3

2UN (θ0, G)+2
√
N

1

N(N − 1)

N
∑

i,j∈s,i6=j

ρijψ1(Yi, Yj)+op(1),

where ψ1(Yi, Yj) = wij(θ)η̇ij(θ)[(dij/G
3(Xj)){G(Xj) − Ĝn(Xj)}]. Using Gill’s

martingale representation of the Kaplan-Meier estimator (Gill (1980, p.37)),

G(Xj) − Ĝn(Xj)

G(Xj)
=

∫ Xj

0

I(Yn(t) > 0)

Yn(t)

n
∑

k=1

dM c
k(t)

with Yn(t) =
∑

l∈s̃ I(Xl ≥ t). We then may write

N− 3

2UN (θ0, Ĝ) = N− 3

2UN (θ0, G) +
2
√
N

n

∑

k∈s̃

∫ t0

0

qN (t)

πn(t)
dM c

k(t) + op(1), (5)

where qN (t) = [1/(N(N − 1))]
∑N

i6=j ρijwij(θ0)η̇ij(θ0)(dij/G
2(Xj))I{Xj ≥ t} and

πn(t) = (1/n)
∑

l∈s̃ I(Xl ≥ t).

The integral with respect to the martingale in (5) is no longer a martingale

since the integrand is not a predictable process, but we show in the appendix

that
∥

∥

∥

1√
n

∑

k∈s̃

∫ t0

0

{

qN (t)

πn(t)
− q(t)

π(t)

}

dM c
k(t)

∥

∥

∥

p−→ 0, as n,N → ∞. (6)

Thus, we can further rewrite quantity (5) as

N− 3

2UN (θ0, G) +
2
√
N

n

∑

k∈s̃

∫ t0

0

q(t)

π(t)
dM c

k(t) + op(1).

After the use of Lemma 1 for the first term N−3/2UN (θ0, G) with φ(Y i, Y j) =

ψ(Y i, Y j) and some simple algebra manipulations, we have Theorem 2.

Theorem 3. N−3/2U(θ0, Ĝ) is asymptotically normally distributed with mean

zero and variance matrix Σ(θ0) = Σ0(θ0) + ∆(θ0), where

Σ0(θ0) = E
[ 1

N3

N
∑

i6=j 6=k

{ψ(Y i, Y j) + ψ(Y j , Y i)}{ψ(Y i, Y k) + ψ(Y k, Y i)}′
]

−4

∫ t0

0

q(t)q′(t)
π(t)

dΛc(t),

∆(θ0) =
1 − α

αν
E

[ 1

N0

∑

i∈s0

{ϕ(Y i) −
1

N0

∑

k∈s0

ϕ(Y k)}{ϕ(Y i) −
1

N0

∑

k∈s0

ϕ(Y k)}′
]

+4
1 − α

α

∫ t0

0

{q(t) − ν(1 − ν)q01(t)}q′(t)
π(t)

dΛc(t),
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and q01(t) = limN0,N1→∞[1/(N0N1)]
∑

i∈s0

∑

j∈s1
aij(θ0)∆jI(Xj ≥ t).

Proof. The result in Theorem 2 can be written as

N− 3

2UN (θ0, Ĝ) =N− 3

2UN,f (θ0) + Un0,N0
+ Un1,N1

+ op(1), where

Un0,N0
=

√
N{ 1

n0

∑

i∈s̃0

ϕN (Y i) −
1

N0

∑

i∈s0

ϕN (Y i)}

+
2n0

√
N

n

{ 1

n0

∑

i∈s̃0

∫ t0

0

q(t)

π(t)
dM c

i (t)− 1

N0

∑

i∈s0

∫ t0

0

q(t)

π(t)
dM c

i (t)
}

,

Un1,N1
=

2n1

√
N

n

{ 1

n1

∑

k∈s̃1

∫ t0

0

q(t)

π(t)
dM c

k(t)− 1

N1

∑

k∈s1

∫ t0

0

q(t)

π(t)
dM c

k(t)
}

.

The first term N−3/2UN,f (θ0) is a U-statistic with kernel of degree two. It follows

from the Central Limit Theorem for U-statistics that N−3/2UN,f (θ0) converges to

a zero mean normal distribution. Note that both Un0,N0
and Un1,N1

represent the

difference in certain averages between the random sample and the corresponding

population counterpart. Thus, by Hájek’s Central Limit Theorem (1960) for

finite population sampling, they are each asymptotically normal conditional on

F0 and F1, respectively. Moreover, Un0,N0
is uncorrelated with Un1,N1

given

fixed sample size n0, and both Un0,N0
and Un1,N1

are uncorrelated with the full

cohort quantity UN,f (θ0) by Lemma 2. As a result, UN,f (θ0), Un0,N0
and Un1,N1

are mutually independent and they jointly converge to a normally distributed

random vector. Hence, N−3/2UN (θ0, Ĝ) is asymptotically normal with mean

zero. We omit the calculation of variance for brevity.

The matrix Σ0(θ0) is in fact the variance matrix corresponding to the full

cohort counterpart, and matrix ∆(θ0) accounts for the extra variability due to

the case-cohort design. By virtue of the Taylor expansion of UN (θ̂, Ĝ) around θ0

and the consistency of θ̂, we obtain the asymptotic distribution for estimator θ̂.

Theorem 4.
√
N(θ̂− θ0) is asymptotically normal with mean zero and variance

matrix I−1(θ0)Σ(θ0)I
−1(θ0), where I(θ0) =

∫

z1,z2
w12(θ0)η̇12(θ0)η̇

′
12(θ0)dH(z1)

dH(z2).

Remark. Let m denote the random sample size and M be the fixed sample size.

It is known that the Central Limit Theorem holds for m whenever it holds for

M if (i) m/M
p−→ C(> 0) and (ii) Anscombe’s (1952) condition holds. In the

case-cohort design we considered, M = nν and m = n0, so m/M
p−→ 1(> 0).

Anscombe’s condition is itself a by-product of the tightness part of the weak con-

vergence of partial sum processes (Sen and Singer (1993, p.337)). Thus, the in-

variance principles for U-statistics given in Sen (1981) imply that the Anscombe’s
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condition is satisfied for U-statistics based on finite population sampling. Now

we may conclude that the asymptotic results stated previously remain in force

when n0 is random.

3.2. Asymptotic properties for Ŝz0
(t)

We need two more lemmas.

Lemma 3. Let Ai, i = 1, . . . , N , be i.i.d. stochastic processes with nondecreasing

sample paths, indexed by an interval [0, τ ]. If EA2
i (0) < ∞ and EA2

i (τ) < ∞,

then (1/
√
N)

∑N
i=1{Ai −E(Ai)} converges weakly in l∞[0, τ ] to a tight Gaussian

process.

Lemma 4. Let (ξ1, . . . , ξN ) be a random vector containing n ones and N − n

zeros, with each permutation equally likely. Let A1(t), . . . , AN (t) be i.i.d. random

processes on [0, τ ] with nondecreasing sample paths, where EA2
i (0) < ∞ and

EA2
i (τ) < ∞. Then (1/

√
N)

∑N
i=1 ξi{Ai − E(Ai)} converges weakly in l∞[0, τ ]

to a tight Gaussian process.

Lemma 3 is given as Example 2.11.16 in van der Vaart and Wellner (1996,

p.215). Its proof relies on the bracketing central limit theorem. Lemma 4 is given

as a proposition in Kulich and Lin (2000).

Theorem 5. Ŝz0
(t) is a monotone function in t and is a uniformly consistent

estimator on t ∈ [0, t0].

Proof. Recall that Ŝz0
(t) = g−1{ĥ(t) + z′0β̂}. Since we have shown that β̂ is

a consistent estimator, it suffices to show that ĥ(t) is monotone in t and is a

uniformly consistent estimator. The estimating equation V {h(t)} = 0 implies

that N−1
∑N

i=1 ρig
−1{ĥ(t) +Z ′

iβ̂} = e−Λ̂(t). Since Λ̂(t) is nondecreasing in t and

g−1 = 1 − F is nonincreasing, ĥ(t) is nondecreasing in t. To show the uniform

consistency of ĥ(t), it suffices to show that Λ̂(t) is a consistent estimator of Λ(t)

on t ∈ [0, t0]. Let Mi(u) = Ni(u)−
∫ u
0 I(Xi ≥ s)dΛ(s), Yn(u) =

∑

j∈s̃ I(Xj ≥ u),

and YN (u) =
∑

j∈s I(Xj ≥ u). Then
√
N{Λ̂(t) − Λ(t)} is equal to

∫ t

0

1√
N

∑N
i=1 dMi(u)

πn(u)
−

√
N

∫ t

0

{ 1
nYn(u) − 1

N YN (u)}dΛ(u)

πn(u)
. (7)

By the Martingale Central Limit Theorem, (1/
√
N)

∑N
i=1 dMi(u) converges

weakly to a tight Gaussian process under condition F(ii). Moreover, N 1/2
∫ t
0{n−1

Yn(u) − N−1YN (u)}dΛ(u) converges weakly to a tight Gaussian process by the

Functional Central Limit Theorem, as we note that N 1/2{n−1Yn(u)−N−1YN (u)}
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converges weakly to a tight Gaussian process by Lemma 4 and Λ(u) is bounded

in u ∈ [0, t0]. Therefore it follows, from arguments as in the proof of (6), that

(7) is equal to

∫ t

0

1√
N

∑N
i=1 dMi(u)

π(u)
−
√
N

∫ t

0

{ 1
nYn(u) − 1

N YN (u)}dΛ(u)

π(u)
+ op(1),

which further implies that

Λ̂(t) − Λ(t) =

∫ t

0

1
N

∑N
i=1 dMi(u)

π(u)
(8)

−
∫ t

0

{ 1
nYn(u) − 1

N YN (u)}dΛ(u)

π(u)
+ op(

1√
N

). (9)

The term (8) converges to zero in probability due to the martingale property. The

term (9) is a difference between the subcohort average and cohort average, it also

converges to zero in probability because n−1Yn(u) −N−1YN (u)
p−→ 0 uniformly

in u, Λ(u) is bounded, and π(u) is bounded away from zero on u ∈ [0, t0]. Thus,

Λ̂(t) converges pointwise to true Λ(t). Furthermore, this convergence is uniform

in t ∈ [0, t0] because Λ̂(t) is monotone and bounded, and Λ(t) is bounded and

continuous. Consequently, we have that e−Λ̂(t) p−→ e−Λ(t). Using the large sample

property of finite population sampling, we may show that as n0, N0 → ∞,

1

N

N
∑

i=1

ρig
−1{ĥ(t) + Z ′

iβ̂} −
1

N

N
∑

i=1

g−1{ĥ(t) + Z ′
iβ̂}

p−→ 0. (10)

In addition, N−1
∑N

i=1 g
−1{h0(t) + Z ′

iβ0}
p−→ e−Λ(t) by the Law of Large Num-

bers. Thus,

1

N

N
∑

i=1

g−1{ĥ(t) + Z ′
iβ̂} −

1

N

N
∑

i=1

g−1{h0(t) + Z ′
iβ0}

p−→ 0, as n0, N0, N → ∞.

This implies that ĥ(t) uniformly converges to h0(t) in t ∈ [0, t0] because β̂ is a

consistent estimator, and ĥ(t) is monotone and bounded.

Theorem 6. Wz0
(t) =

√
N [g{Ŝz0

(t)} − g{Sz0
(t)}] converges weakly in l∞[0, t0]

to a Gaussian process with zero drift.
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Proof. A Taylor expansion of V {ĥ(t)} around h0(t) and β0 yields

N− 1

2V {ĥ(t)}

=N− 1

2V {h0(t)} −N
1

2 {ĥ(t) − h0(t)}N−1
N

∑

i=1

ρif{h0(t) + Z ′
iβ̂} + op(1)

=N− 1

2

N
∑

i=1

[

ρiSzi
(t) − ρif{h0(t) + Z ′

iβ0}Z ′
i(β̂ − β0) − e−Λ̂(t)

]

−N−1
N

∑

i=1

ρif{h0(t) + Z ′
iβ0}N

1

2 {ĥ(t) − h0(t)} + op(1).

Similar to the result in (10), we have that

N−1
N

∑

i=1

ρif{h0(t) + Z ′
iβ0} → a(t) = lim

N→∞
N−1

N
∑

i=1

f{h0(t) + Z ′
iβ0} and

−N−1
∑N

i=1 ρiZif{h0(t) + Z ′
iβ0} → b(t) = − limN→∞N−1

∑N
i=1 Zif{h0(t) +

Z ′
iβ0} in probability as n0, N0 → ∞. Therefore, it follows from V {ĥ(t)} = 0 and

Taylor expansion of e−Λ̂(t) around Λ(t) that

a(t)N
1

2 {ĥ(t) − h0(t)} =N− 1

2

N
∑

i=1

{ρiSzi
(t)} + b′(t)N

1

2 (β̂ − β0)

−N 1

2 e−Λ(t) +N
1

2 e−Λ(t){Λ̂(t) − Λ(t)} + op(1).

As previously shown, N 1/2(θ̂− θ) is equivalent to N−3/2I−1(θ0)UN (θ0), so N1/2

(β̂−β0) is equivalent to N−3/2H(θ0)UN (θ0), where H(θ0) is obtained by remov-

ing the first row from the matrix I−1(θ0). It then follows from some algebraic

manipulation that

Wz0
(t) =

√
N [g{Ŝz0

(t)} − g{Sz0
(t)}] =

√
N [ĥ(t) − h0(t) + z′0(β̂ − β0)]

=
1

a(t)

{

[b(t) + a(t)z0]
′H(θ0)N

− 3

2UN (θ0)
}

+W1(t) +W2(t) + op(1),

where W1(t) =
1

a(t)
{U (1)

N (t) + νU
(1)
n0,N0

(t)},

W2(t) =
S(t)

a(t)

{

U
(2)
N (t) −

∫ t

0

U
(2)
n,N (u)

π(u)
dΛ(u)

}

,
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U
(1)
N (t) =

1√
N

N
∑

i=1

{Szi
(t) − S(t)}, S(t) = exp{−Λ(t)},

U
(1)
n0,N0

(t) =
√
N{ 1

n0

∑

i∈s̃0

Szi
(t) − 1

N0

∑

i∈s0

Szi
(t)},

U
(2)
N (t) =

1√
N

N
∑

i=1

∫ t

0

1

π(u)
dMi(u),

U
(2)
n,N (u) =

√
N{ 1

n
Yn(u) − 1

N
YN (u)}.

By similar arguments as in the proof of Theorem 3, Wz0
(t) converges to a normal

distribution at given t. The finite-dimensional distribution convergence is satis-

fied by Crámer-Wold device. To prove the tightness of Wz0
, it suffices to show

that W1(t) andW2(t) are tight because a(t) and b(t) are not random. Application

of Lemma 3 implies that the process U
(1)
N (t) is tight because Szi

(t) is a monotone

process and is bounded on t ∈ [0, t0]. The process U
(2)
N (t) is a martingale and

the finite-dimensional distribution convergence of martingale ensures tightness

(Sen (1981), Corollary 2.4.4.1). By virtue of Lemma 4, U
(1)
n0,N0

(t) and U
(2)
n,N (t)

each converge to a tight Gaussian process conditional on F0 and F , respectively.

Also, U
(1)
n0,N0

(t) and U
(2)
n,N (t) are tight unconditionally by similar arguments as in

the proof of Lemma 2 and characteristic function methods. Noting that function

Λ(.) is absolutely continuous with respect to Lebesgue measure, and the fact that

linear functional of the Gaussian process is Gaussian,
∫ t
0 U

(2)
n,N (u){π(u)}−1dΛ(u)

is tight too. Now we may conclude that Wz0
(t) converges weakly in l∞[0, t0] to

a Gaussian process.
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Appendix

Proof of Lemma 1. Since n0/N → να as n0, N → ∞, and N−2 − N−1(N −
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1)−1 → 0 as N → ∞, it suffices to show that

1

N(N − 1)

N
∑

i6=j

ρijφ(Y i, Y j) (11)

=
1

N(N − 1)

N
∑

i6=j

φ(Y i, Y j)+
1

n0

∑

i∈s̃0

{φ∗N (Y i)−
1

N0

∑

k∈s0

φ∗N (Y k)}+op(n
− 1

2

0 ).

Substituting the realization of ρij into (11) yields

1

N(N − 1)

[1

p

∑

i∈s̃0

∑

j∈s1

{φ(Y i, Y j) + φ(Y j, Y i)} +
1

p2

∑

i,j∈s̃0,i6=j

φ(Y i, Y j)

+
∑

i,j∈s1,i6=j

φ(Y i, Y j)
]

.

The second summation term is related to a U-statistic based on a simple random

sample of size n0, namely Un0,n0
= n−1

0 (n0 −1)−1
∑

i,j∈s̃0,i6=j φ(Y i, Y j). The cor-

responding symmetric kernel is φ+(Y i, Y j) = {φ(Y i, Y j) + φ(Y j , Y i)}/2. Define

the population counterpart of Un0,n0
, UN0,N0

= N−1
0 (N0 − 1)−1

∑

i,j∈s0,i6=j φ(Y i,

Y j). Under the conditions that Var{φ(Y i, Y j)} <∞, n/N → α and N0/N → ν

as n,N0, N → ∞, the Hoeffding Decomposition of U n0,n0
yields

Un0,n0
=

2

n0

n0
∑

i=1

[φ∗1(Y i) − UN0,N0
] + UN0,N0

+ op(n
− 1

2

0 )

=
2

n0(N0 − 1)

∑

i∈s̃0

∑

j∈s0\i
{φ+(Y i, Y j)} − UN0,N0

+ op(n
− 1

2

0 ),

where φ∗1(Y i) = E[φ+(Y i, Y j)|Y i] = (N0 − 1)−1
∑

j∈s0\i φ
+(Y i, Y j). Further-

more, with UN,N = N−1(N − 1)−1
∑N

i6=j φ(Y i, Y j), (11) is equal to

UN,N − 2

N(N − 1)

[

∑

i6=j,i,j∈s0

{φ+(Y i, Y j)} +
∑

i∈s0

∑

j∈s1

{φ+(Y i, Y j)}
]

+
2

N(N − 1)p

∑

i∈s̃0

∑

j∈s\i
{φ+(Y i, Y j)} + op(n

− 1

2

0 )

= UN,N +
2

N(N − 1)

[ 1

α

∑

i∈s̃0

∑

j∈s\i
{φ+(Y i, Y j)} −

∑

i∈s0

∑

j∈s\i
{φ+(Y i, Y j)}

]

+op(n
− 1

2

0 ).

Define φn0,N0
(Y i) = 2(N0 − 1)−1

∑

j∈s0\i{φ
+(Y i, Y j)} and φn0,N1

(Y i) = 2N−1
1

∑

j∈s1
{φ+(Y i, Y j)} for i ∈ s̃0. Then E{φn0,N0

(Y i)|F0} = 2UN0,N0
and E{φn0,N1
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(Y i)|F0} = 2(N0N1)
−1

∑

i∈s0

∑

j∈s1
{φ+(Y i, Y j)}. Now we rewrite N−1(N −

1)−1
∑N

i6=j ρijφ(Y i, Y j) as

UN,N +
1

N(N − 1)

{

N0(N0 − 1)
1

n0

∑

i∈s̃0

[φn0,N0
(Y i) −E{φn0,N0

(Y i)|F0}]

+N0N1
1

n0

∑

i∈s̃0

[φn0,N1
(Y i) −E{φn0,N1

(Y i)|F0}]
}

+ op(n
− 1

2

0 )

= UN,N +
1

n0

∑

i∈s̃0

{φ∗N (Y i) −
1

N0

∑

k∈s0

φ∗N (Y k)} + op(n
− 1

2

0 ),

where φ∗N (Y i) = ν2φn0,N0
(Y i)+ν(1−ν)φn0,N1

(Y i). This concludes the first part

of Lemma 1. By the asymptotic convergence result of finite population sampling,

conditional on F0,

1

n0

∑

i∈s̃0

{φ∗N (Y i) −
1

N0

∑

k∈s0

φ∗N (Y k)} → 0

in probability as n0/N0 → α. This result implies the second part of Lemma 1.

Proof of the convergence result in (6). First, we may use Lemma 1 with

φ(Y i, Y j) = wij(θ0)η̇ij(θ0)dijI{Xj ≥ t}/G2(Xj), and the Strong Law of Large

Numbers for U-statistics to show that qN (t) converges to q(t) almost surely at

given t. Moreover, qN (t) converges to q(t) uniformly on [0, t0] because qN (t) is

a nonincreasing function in t on a finite interval [0, t0], and it is bounded by

conditions A, C and F(i). Let πN (t) be the full cohort counterpart of πn(t),

i.e., πN (t) = N−1
∑N

l=1 I(Xl ≥ t). By the Gilvenko-Cantelli theorem, πN (t)

converges uniformly to π(t) on [0, t0]. At given time point t, πn(t) converges

to πN (t) by asymptotic results of finite population sampling. Also, πn(t) is

monotonic and bounded, so πn(t) converges to πN (t) uniformly in t. This im-

plies that πn(t) converges uniformly to π(t) on [0, t0]. Thus, as n,N → ∞,

sup0≤t≤t0 ‖qN (t)/πn(t) − q(t)/π(t)‖ p−→ 0 due to the uniform convergence of

qN (t) and πn(t), and the boundness of π(t) and qN (t).

Under condition F(i), it follows from the Martingale Central Limit Theorem

that the martingale process N−1/2
∑

k∈sM
c
k(t) based on the full cohort data

converges weakly to a tight zero-mean Gaussian process. It also follows from

Hájek’s Central Limit Theorem for finite population sampling, and arguments

about tightness in Example 3.6.14 of van der Varrt and Wellner (1996), that the

subcohort quantity n−1/2
∑

k∈s̃M
c
k(t) also converges weakly to a tight Gaussian

process. Write Bn(t) = n−1/2
∑

k∈s̃M
c
k(t), t ∈ [0, t0]. The tightness of Bn(t)

implies that (Sen and Singer (1993, p.330)) for any ε, η > 0, pr{Wδ(Bn) > ε} < η
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for every δ > 0 as n → ∞, where Wδ(Bn) = sup{|Bn(t) − Bn(u)| : 0 ≤ u < t <

u+ δ ≤ t0}. Suppose we partition [0, t0] with 0 = p0 < p1 < · · · < ph = τ where

hδ∗ = t0 <∞, and write HN (t) = qN (t)/πn(t) and H(t) = q(t)/π(t). Then

∫ t0

0
{HN (t) −H(t)}dBn(t)

=
h−1
∑

i=0

∫ pi+1

pi

{HN (t) −H(t)}d{Bn(t) −Bn(pi)}

=
h−1
∑

i=0

[{HN (t) −H(t)}{Bn(t) −Bn(pi)}]pi+1
pi

−
h−1
∑

i=0

∫ pi+1

pi

{Bn(t) −Bn(pi)}d{HN (t) −H(t)}

= (I) + (II), say.

Note that max0≤i≤h−1 |Bn(pi+1) − Bn(pi)| ≤ Wδ∗(Bn), where for n ≥ n0(ε, η),

pr{Wδ∗(Bn) ≤ ε} > 1−η. Also, max0≤i≤h ‖HN (pi)−H(pi)‖ ≤ supt∈[0,t0] ‖HN (t)

−H(t)‖ p−→ 0. Thus, term (I)
p−→ 0 as n → ∞. As previously stated, qN (t),

πn(t), q(t) and π(t) are all nonincreasing and of bounded variation on [0, t0].

Hence, term (II) can be shown to converge to zero in probability as n → ∞ by

the Dominated Convergence Theorem.

Proof of Lemma 2. Self and Prentice (1988) gave a proposition similar to this

lemma. We prove it using a different approach. Note that given F , GN (X)

is fixed while the distribution of HN (X, ξ) is generated by the
(N

n

)

equally

likely choices of ξ. Thus, the characteristic function φ(λ1, λ2) of the vector

{N1/2GN (X), N1/2HN (X, ξ)} is

E{eitλ1N
1
2 GN (X)eitλ2N

1
2 HN (X,ξ)} = E

{

eitλ1N
1
2 GN (X)E[eitλ2N

1
2 HN (X,ξ)|F ]

}

.

It follows from Hájek’s Central Limit Theorem for finite population sampling

that, conditional on F , n1/2HN (X, ξ) converges to a normal distribution N{0,
(1 − α)σ2

f}. Thus,

φ(λ1, λ2) ≈ e
1

2
(λ2t)2(1−α)α−1σ2

fE{eitλ1N
1
2 GN (X)} ≈ e

1

2
t2[λ2

2
(1−α)α−1σ2

f
+λ2

1
σ2

g ],

where the approximate sign indicates asymptotic equivalence. Since the right

hand side represents the characteristic function of a bivariate normal distribution

with null mean vector and a diagonal dispersion matrix as defined in (2), the proof

is complete.
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