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Abstract: We consider parameter estimation in a regression model corresponding

to an i.i.d. sequence of censored observations of a finite state modulated renewal

process. The model assumes a similar form as in Cox regression except that the

baseline intensities are functions of the backwards recurrence time of the process

and a time dependent covariate. As a result of this it falls outside the class of

multiplicative intensity counting process models. We use kernel estimation to con-

struct estimates of the regression coefficients and baseline cumulative hazards. We

give conditions for consistency and asymptotic normality of estimates. Data from

a bone marrow transplant study are used to illustrate the results.
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1. Introduction

In medical and engineering applications it is common to consider a Markov

renewal process to model the lengths of time spent in consecutive stages of a

disease or lifetime of a piece of equipment. Denoting by J = {1, . . . , k} the set

of possible states, the process is described by a sequence of random variables

(T, J) = (Tm, Jm)m≥0, such that T0 < T1 < T2 < · · · are consecutive times of

entrances into states J0, . . . , Jm ∈ J. Under assumption of the Markov renewal

process, the sequence J = {Jm : m ≥ 0} of states visited forms a Markov chain

and given J , the sojourn times T1, T2−T1, . . . are independent with distributions

depending on the adjoining states. Associated with the sequence (T, J) is a

counting process {Ñij(t) : t ≥ 0, i, j ∈ J} whose components register each direct

i→ j transition,

Ñij(t) =
∑

m≥0

1(Tm+1 ≤ t, Jm+1 = i, Jm = j) .

Its compensator {Λij(t) : t ≥ 0, i, j ∈ J} relative to the self-exciting filtration is

given by

Λij(t) =

∫ t

0
1(J(s−) = i)dAij(L(s)) ,
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where J(t), t ≥ 0, is the state occupied at time t, L(t) = t − TÑ(t−), Ñ(t) =
∑

ij∈E Ñij(t) is the backwards recurrence time, and [Aij(x)]i,j∈J is a matrix of un-
known deterministic functions representing cumulative hazards of one-step tran-
sitions. Nonparametric estimation of this matrix and the associated semi-Markov
kernel of the process was considered by Lagakos, Sommer and Zelen (1978), Gill
(1980), Voelkel and Crowley (1984) and Phelan (1990), among others.

In this paper we consider estimation in a modulated renewal process, assum-
ing that components of the counting process {Ñij : (i, j) ∈ J} have intensities of
the form

Λij(t) =

∫ t

0
1(J(s−) = i)eβT Zij(s)αij(L(s), X(s))ds , (1.1)

where X(s) is a time dependent covariate, Z = {Zij(t) : t ≥ 0, i, j ∈ J} is
a vector of external transition specific covariates, and [αij ] is a matrix of two-
parameter baseline hazards. A model of this kind may arise for instance in
medical applications where survival status of a patient is characterized by an
illness process with baseline intensities dependent on the length of time spent in
each stage of a disease and a covariate X(s), possibly changing with time. In the
absence of this covariate, the model reduces to the modulated renewal process
proposed by Cox (1973) with cumulative intensities

Λij(t) =

∫ t

0
1(J(s−) = i)eβT Zij(s)αi,j(L(s))ds . (1.2)

Both models have several interesting features. The first one is that the event
times can be viewed as recorded on two simultaneously evolving time scales. In
the case of (1.2), the covariates depend on the calendar time t, whereas the matrix
α of baseline hazards depends on the duration scale. In the case of the (1.1), the
latter matrix depends both on the duration and calendar time scale. Further, if α
corresponds to a matrix of functions depending only on a Euclidean parameter θ,
then estimation of the pair (β, θ) based on an i.i.d. sample of modulated renewal
processes can be carried out using a counting process framework for analysis
of maximum likelihood or M estimates. However, if the matrix α is completely
unspecified, then its nonparametric maximum likelihood estimate falls outside the
class of statistics taking the form of stochastic integrals with respect to counting
processes (Gill (1980)). Similarly, in the case of (1.2), estimation of the regression
coefficient β can be in principle based on the solution to the score equation

Φn(β) =
n∑

`=1

∑

i,j∈J

∫
[Zij`(t) −

S(1)

S(0)
(t, β)]Ñij`(dt) = 0 , (1.3)

where S(p)(t, β) =
∑n

`=1 1(J`(t−) = i)Zp
ij`(t)e

βZij`(t), p = 0, 1. However, as a
result of the dependence of the compensators on the backwards recurrence time,
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the score function in (1.3), evaluated at the true parameter value β0, fails to

satisfy the identity EΦn(β0) = oP (1), and consequently the estimate of the re-

gression coefficient obtained by solving the equation Φn(β) = 0 cannot be con-

sistent. Several authors considered also the special case of the one-jump process
(1.1) and showed that estimation of regression coefficients requires smoothing

(Sasieni (1992), Dabrowska (1997), Nielsen, Linton and Bickel (1998) and Pons

and Vissier (2000)).

To circumvent difficulties arising in the analyses of renewal processes, Gill

(1980) and Oakes and Cui (1994) proposed the use of a random time-change

approach which replaces the calendar time scale t by the duration scale. Here

we consider an extension of this approach to analyse a simple case of (1.1),
assuming that the covariate X(s) is constant between the jumps of the process

Ñ(t) =
∑

ij Ñij(t), and {Zij(t) : i, j ∈ J, t ≥ 0} is a vector of external covariates.

In Section 3 we discuss kernel estimation in single-type models. In Section 4

we give examples multi-type models with a “small” state space to which the

results can also be applied. We use data from a bone marrow transplant study

to illustrate the results.

2. The Model

Throughout the paper we assume that (Ω,F , P ) is a complete probability

space and (Tm, Vm)m≥0 is a marked point process defined on it, with marks
taking on values in a measurable space (E,E ) and enlarged by the empty mark

∆. Thus T0 < T1 < · · · Tm < · · · is a sequence of random time points registering

occurrence of some events in time, and such that Tm are almost surely distinct

and Tm ↑ ∞ P-a.s. At time Tm we observe a variable Vm such that Vm ∈ E if

Tm <∞, and Vm = ∆ if Tm = ∞.

For any B ∈ E , let Ñ(t, B) =
∑

m≥0 1(Tm+1 ≤ t, Vm+1 ∈ B) be the process

counting observations falling into the set [0, t] × B. The internal history of the

process, {FN
t }t≥0, represents information collected on N until time t, and is given

by

FN
t = σ(1(Tm ≤ s, Vm ∈ B) : m ≥ 0, s ≤ t, B ∈ E ) .

Then {FN
t }t≥0 forms an increasing family of right-continuous σ-fields. Let Ft =

F0∨FN
t be the self-exciting filtration associated with the process Ñ , obtained by

adjoining to the internal history of the process, the P -null sets. The compensator

of the process Ñ(t, B), with respect to Ft is given by

Λ(t, B) = Λ(Tm, B) +

∫

(Tm,t]

Pm(d(s, v))

Pm([s,∞);E ∪ ∆)
for t ∈ (Tm, Tm+1] ,

where Pm(d(s, v)) is a version of a regular conditional distribution of (Tm+1,

Vm+1) given FTm (Jacod (1975)).
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In this paper we assume that the marks Vm have the form Vm =(Jm, Xm, Z̃m),

where Jm ∈ J is the state visited at time Tm and (Z̃m, Xm) are covariates taking

on value in E1 = Rd×[0, τ ], τ <∞. The pair (Z̃m, Xm) may represent some mea-

surements taken upon entrance into the state Jm. For any Borel set B of E1, let

µm+1(B, t, j) = Pr((Z̃m+1, Xm+1) ∈ B|Tm+1 = t, Jm+1 = j, (Tl, Jl, Z̃l, Xl)
m
l=0)

and suppose that

Pr(Tm+1 − Tm ≤ s, Jm+1 = j|(T`, J`, Z̃`, X`)
m
`=0)

= 1(Jm = i)

∫

[0,s]
exp[−

∑

`

∫ u

0
eβ

T Zi`m(v)αi`(v,Xm)dv]eβ
T Zijm(u)αij(u,Xm)du ,

where Zijm(u) = fm(u, Tl, Jl, Z̃l, Xl : l = 0, . . . ,m) is a fixed deterministic func-

tion fm, left continuous in u. The process Ñij(t, B) =
∑

m≥0 1(Tm+1 ≤ t,

Jm+1 = j, Jm = i, (Z̃m+1, Xm+1) ∈ B) has compensator given by

Λij(t, B) = Λij(Tm, B)

+

∫

(Tm ,t]
µm+1(B, u, j)1(Jm = i)eβ

T Zijm(u−Tm)αij(u− Tm, Xm)du .

In particular, setting B = E1 and using µm+1(E1, Tm+1, j)1(Tm+1 <∞) = 1,

Λij(t) = Λij(t, E) = Λij(Tm) +

∫

(Tm,t]
1(Jm = i)eβ

T Zijm(u−Tm)αij(u− Tm, Xm)du

is the compensator of the counting process Ñij(t) = Ñij(t, E) =
∑

m≥0 1(Tm+1 ≤
t, Jm+1 = j, Jm = i), registering transitions among the adjacent states of the

model.

In the following we assume the random censorship model of Gill (1980).

Thus the times at which the process is observed is determined a process C(s) =∑
m≥1 1(Cm−1 < t ≤ Cm), where 0 = C0 ≤ C1 ≤ · · · ≤ Cm · · · is an increasing se-

quence such that Cm ∈ [Tm, Tm+1] are stopping times with respect to the history

{Ft}t≥0, and (Cm)m≥0 is conditionally independent of {(Tm, Jm, Z̃m, Xm)}m≥0

given (J0, Z̃0, X0). If Tm = Cm, then no information is available on either the

sojourn time Tm+1 − Tm, the states (Jm, Jm+1) or the covariates (Z̃m, Xm),

(Z̃m+1, Xm+1). If Cm = Tm+1, then the sojourn time Tm+1 − Tm, the ad-

joining states (Jm, Jm+1) and the covariates (Z̃m, Xm), (Z̃m+1, Xm+1) are ob-

servable. Finally, if Tm < Cm < Tm+1, then the state Jm and the covariates

(Z̃m, Xm) are visible while the sojourn time Tm+1 − Tm is only known to exceed

Cm − Tm. We also assume that the censoring process is monotone in the sense

that Tm ≤ Cm < Tm+1 ⇒ Cm′ = Tm′ for all m′ ≥ m. This condition stipulates

that the process terminates once censoring takes place. To construct estimates
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of the unknown parameters, we use a time transformation which replaces the

chronological (or calendar) time scale by the duration scale (Gill (1980) and
Oakes and Cui (1994)). For m ≥ 0, let

Nijm(v) = 1(Tm+1 − Tm ≤ v, Jm = i, Jm+1 = j, Tm = Cm+1) ,

Yim(v) = 1(Tm+1 − Tm ≥ v, Cm − Tm ≥ v, Jm = i) ,

Mijm(v) =Nijm(v) −
∫ v

0
Yim(u)eβ

T Zijm(u)α(u,Xm)du .

Lemma 2.1. Suppose that {ϕm(v),m ≥ 0, v ≥ 0} is a sequence of left-continuous

random functions such that the process ϕ ◦ L(t) =
∑

m≥0 ϕm(t − Tm)1(Tm <

t ≤ Tm+1) is predictable with respect to the filtration {Ft}t≥0 and E
∫∞
0 [ϕ ◦

L]2(s)Λij(ds) <∞. Then

E
∑

m

∫ ∞

0
ϕm(u)Nijm(du) = E

∑

m

∫ ∞

0
Ym(u)ϕm(u)eβ

T
0 Zmij(u)αij(u,Xm)du,

E[
∑

m

∫ ∞

0
ϕm(u)Mijm(du)]2 = E

∑

m

∫ ∞

0
Ym(u)ϕ2

m(u)eβ
T
0 Zmij(u)αij(u,Xm)du.

In addition, if {ϕ1m : m ≥ 0} and {ϕ2m : m ≥ 0} are two such sequences, then

E[
∑

m

∫
ϕ1m(u)Mijm(du)][

∑

m

∫
ϕ2m(u)Mklm(du)] = 0

for pairs (i, j) 6= (k, `).

Much in the same way as in Gill (1980), this lemma follows from the Domi-

nated Convergence Theorem, martingale properties of the processes M̃ij , and
∫ ∞

0
[ϕ ◦ L](s)C(s)Ñij(s) =

∑

m≥0

∫ ∞

0
ϕm(u)Nm(du)

∫ ∞

0
[ϕ ◦ L]k(s)C(s)Λij(ds) =

∑

m≥0

∫ ∞

0
ϕm(u)kYm(u)eβ

T
0 Zijm(u)αij(u,Xm)du .

The identies hold almost surely for k = 1, 2. We omit the details.

3. Estimation in Single-Type Event Processes

In this section we assume that all events are of a single type. To estimate the

baseline cumulative hazard function, we use conditional Aalen-Nelson estimator

(Beran (1981))

Â(v;x, β) =
1

na

∫ v

0

Ni(du, x)

S
(0)
−i (u, β, x)

,
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where S
(0)
−i (u, β, x) = 1/[(n− 1)a]

∑
j 6=i S

(0)
j (u, β, x) and for each i = 1, . . . , n,

Ni(u, x) =
∑

m

Kn(x,Xim)Nim(u),

S
(0)
i (u, β, x) =

∑

m

Yim(u)eβ
T Zim(u)Kn(x,Xim) .

Here Kn(x,w) is the boundary kernel of Müller and Wang (1994), given by

Kn(x,w) =





1(x− a ≤ w ≤ x+ a)K11(
x−w

a ) if a < x < τ − a

1(w ≤ (1 + q)a)K1q(q − w
a ) if 0 < x ≤ a

1(τ − a ≤ w ≤ (1 + a)p)Kp1(
τ−w

a − p) if τ − a ≤ x ≤ τ,

where

K11(r) = 2C(µ)(
1

2
)2µ+2(1 + r)µ(1 − r)µ (central region)

Kpq(r) (left boundary region)

= C(µ)(
1

p+ q
)2µ+2(p+ r)µ(q − r)µ−1[2r((p− q)µ− q) + µ(p− q)2 + 2q2]

Kpq(r) (right boundary region)

= C(µ)(
1

p+ q
)2µ+2(p+ r)µ−1(q − r)µ[2r((p− q)µ+ p) + µ(p− q)2 + 2p2] ,

p, q ∈ (0, 1), and C(µ) = 2(2µ+ 1)
(2µ−1

µ

)
. The kernels Kpq are Jacobi polynomi-

als, and for (p, q) = (1, 1), (1, q) and (p, 1), we have

∫ q

−p
Kpq(u)du = 1,

∫ q

−p
uKpq(u)du = 0,

∫ q

−p
u2Kpq(u)du <∞ .

Table 3.1 gives the form of these kernels for polynomials of degree 2, 4 and 6.

Table 3.1. Polynomial kernels of degree 2, 4 and 6.

µ = 1 interior (3/4)(1− x2)
left 6(p+ x)(p + q)−4[p2 − 2pq + 3q2 + 2x(p− q)]

right 6(q − x)(p+ q)−4[3p2 − 2pq + q2 + 2x(2p− q)]

µ = 2 interior (15/16)(1− x2)2

left 60(q − x)(p+ x)2(p+ q)−6[p2 − 2pq + 2q2 + (2p− 3q)x]

right 60(q − x)2(p+ x)(p+ q)−6[2p2 − 2pq + q2 + (3p− 2q)x]

µ = 3 interior (35/32)(1− x2)3

left 140(q − x)2(p+ x)3[3p2 − 6pq + 5q2 + 2(3p− 4q)x]

right 140(q − x)3(p+ x)2[5p2 − 6pq + 3q2 + 2(4p− 3q)x]
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In the following we assume that (u, x) ∈ R = [0, τ0] × [0, τ ], τ0 <∞, τ <∞.

To control the bias of the risk process and the Aalen-Nelson estimator, we need

the following regularity conditions.

Condition A

(i) The variables Xim have densities fm(x) with respect to Lebesgue measure

on [0, τ ].

(ii) There exists a bounded open neighbourhood B of the true parameter value

β0 such that E
∑

m[Zim(u)]⊗kYim(u) exp[βTZim(u)] <∞, for k = 0, 1, 2.

(iii) For k = 0, 1, 2, and β ∈ B, the functions

s(k)(u, β, w) =
∑

m

E([Zim(u)]⊗pYim(u) exp[βTZim(u)]|Xm = w)fm(w)

are uniformly bounded and twice differentiable with respect to β. In ad-

dition ∇s(0)(u, β, w) = s(1)(u, β, w),∇2s(0)(u, β, w) = s(2)(u, β, w), and the

functions s(k)(u, β, w), k = 0, 1, 2 are uniformly Lipshitz continuous in β.

(iv) The function α(u,w), (u,w) ∈ R is bounded.

(v.1) The functions s(u, β, w) = s(k)(u, β, w), k = 0, 1, 2, and α(u,w) satisfy

sup{|α(u,w1)−α(u,w2)| : (u,wj) ∈ R, |w1−w2| ≤ a, j = 1, 2} = O(a)

and sup{|s(u, β, w1) − s(u, β, w2)| : (u,wj) ∈ R, |w1 − w2| ≤ a, β ∈ B,

j = 1, 2} = O(a).

(v.2) s(u, β, w) and α(u,w) are twice differentiable with respect to w with

a uniformly bounded second derivatives s′′(u, β, w), α′′(u,w) such that

sup{|α′′(u,w1) − α′′(u,w2)| : (u,wj) ∈ R, |w1 − w2| ≤ a, j = 1, 2} = O(1)

and sup{|s′′(u, β, w1) − s′′(u, β, w2)| : (u,wj) ∈ R, |w1 − w2| ≤ a, β ∈ B,

j = 1, 2} = O(1).

We refer to this condition as A.1 or A.2, depending on whether the assump-

tion (v.1) or (v.2) is in force. For k = 1, 2, let S
(k)
−i (u, β, x) = ∇kS

(0)
−i (u, β, x) be

the vector and matrix of first and second derivatives of the risk process S
(0)
−i with

respect to β. Set s(k)(u, β, x) = a−1ES
(k)
i (u, β, x), n(u, x) = ENi(u, x) and

A(v;x, β0) =

∫ v

0

n(du;x)

s(0)(u, β0, x)
.

Proposition 3.2. Under assumptions A we have s(k)(u, β, x) − s(k)(u, β, w) =

O(ar) for k = 0, 1, 2, uniformly in (u, x) ∈ R and β ∈ B, and A(v;x, β0) −
A0(v;x) = O(ar) uniformly in (v, x) ∈ R. Here r = 1 under condition A.1 and

r = 2 under condition A.2.
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Proof. Dropping the superscript k, in the central region we have

1

a
ESi(u, β, x)=a

−1

∫ x+a

x−a
K11(

x− w

a
)s(u, β, w)dw=

∫ 1

−1
K11(r)s(u, β, x − ra)dr.

In the left and right boundary regions, the expectation a−1ESi(u, β, x) is

a−1

∫ x+a

x−qa
K1q(

x− w

a
)s(u, β, w)dw =

∫ q

−1
K1q(r)s(u, β, x− ra)dr,

a−1

∫ x−pa

x−a
Kp1(

x− w

a
)s(u, β, w)dw =

∫ 1

−p
Kp1(r)s(u, β, x− ra)dr.

In the left boundary region, q = x/a and in the right-boundary region, p =

(τ − x)/a. Under condition (v.1), we have |a−1ESi(u, β, x) − s(u, β, x)| = O(a),

uniformly in (u, x) ∈ R and β ∈ B. Under condition (v.2), we have

a−1
ESi(u, β, x) − s(u, β, x) =

a2

2
s′′(u, β, x)

∫ q

−p
r2Kpq(r)dr +O(a2) .

Similarly n(u, x) =
∫ u
0

∫ q
−p s

(0)(v, β0, x − ra)α(v, w − ra)Kpq(r)drdv. Therefore,

if one of the two functions (s or α) is Lipschitz of order 1, then n(u, x) −∫ u
0 s(v, β0, x)α(v, x)dv = O(a), whereas if both functions are twice differentiable

in x, then the bias is

a2

2

∫ u

0

{
∂2

∂x2
[s(0)(v, β0, x))α(v, x)]

}
dv

∫ q

−p
r2Kpq(r)dr +O(a2).

We also have A(v;x, β0)−A(v;x) =
∫ v
0 γ(u, x)A(du;x), where γ(u, x) = [n(du, x)

/s(0)(u, β0, x)α(u,w)] − 1. Thus the bias is of order O(ar), r = 1, 2.

We turn now to estimation of the regression coefficients. The first method

corresponds to an M-estimator obtained by solving the score equation Φ̃n(β) = 0,

where

Φ̃n(β) =
1

n

n∑

i=1

∑

m

∫ τ0

0
[Zim(u)S

(0)
−i (u, β,Xim) − S

(1)
−i (u, β,Xim)]Nim(du) .

The analysis of this score equation requires only smoothness conditions A.1 and

second moment bounds on the risk processes. For the sake of convenience, these

moment bounds are given in the appendix. Let

V (u, β, x) = [
s(2)

s(0)
− (

s(1)

s(0)
)⊗2](u, β, x).
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Proposition 3.3. Suppose that the conditions A.1 and D.2 (i)−(ii) hold. Let

Σ1(β0) =
∫
R(V [s(0)]2)(u, β0, x)α(u, x)dudx and Σ2(β0) =

∫
R(V [s(0)]3)(u, β0, x)

α(u, x)dudx. Suppose that Σ1(β0) is a non-singular matrix, that na2 ↓ 0 and

na ↑ ∞. With probability tending to 1, the score equation Φ̃(β) = 0 has a unique

root β̃ and
√
n(β̃ − β0) converges in distribution to a mean zero normal variable

with covariance Σ−1
1 (β0)Σ2(β0))[Σ

−1
1 (β0)]

T .

The proof is given in Appendix D. The next Proposition deals with asymp-

totic normality of the Aalen-Nelson estimator. We need the following consistency

assumption on the risk function.

Condition B. Suppose that inf{s(0)(u, β, w) : u ≤ τ0, β ∈ B, w ∈ [0∨x−an, x+

an ∧ τ ]} > 0. Moreover, that under assumption A.r, r = 1, 2, we have

max
i

E sup
β∈B,u≤τ0

|S
(0)
−i − s(0)

s(0)
|(u, β, x) → 0

for a bandwidth sequence a = an ↓ 0 such that na ↑ ∞ and na2r+1 ↓ 0.

Proposition 3.4. Suppose that conditions A.r(r = 1, 2), B and D.1 are sat-

isfied. For any root-n consistent estimate β̂ of the parameter β0, the process

[
√
na[A(v;x, β̂) −A(v;x)], v ≤ τ0] converges weakly in `∞([0, τ0]) to a mean zero

Gaussian process G(v, x) with covariance

Cov [G(v, x), G(v′ , x)] = dp(x),q(x)(K)

∫

[0,v∧v′]

A(du, x)

s(0)(u, β0, x)
.

Here r = 1 under condition A.1 and r = 2 under assumptions of condition A.2.

Moreover, dpq(K) =
∫ q
−pK

2
pq(w)dw and p(x) = q(x) = 1 if a < x < τ − a,

p = 1, q(x) = a−1x if 0 < x < a and p(x) = a−1(τ−x), q(x) = 1 if τ−a < x < τ .

Finally, we consider a partial score likelihood estimate of the regression co-

efficient. It is obtained by solving the the score equation Φn(β) = 0, where

Φn(β) =
1

n

∑

m

n∑

i=1

∫ τ0

0
[Zim(u) − S

(1)
−i

S
(0)
−i

(u, β,Xim)]Nim(du) .

Note that this score function is similar to that arising in the standard Cox regres-

sion, except that we use leave-one-out risk processes. The choice of risk processes

S(k) =
∑n

j=1 S
(k)
j , k = 1, 2, is also possible. In both cases the resulting score func-

tions form an approximate V process of degree 4 and the difference between them

converges in probability to 0, but only under stronger moment conditions than

those considered in Appendix D.
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To analyze the score function Φn(β), we require condition A.2, moment

conditions, and the following uniform consistency assumption.

Condition C. Suppose that inf{s(0)(u, β, x) : (u, x) ∈ R, β ∈ B} > 0. Moreover,

that

max
i

E sup
(u,x)∈R,β∈B

|S
(0)
−i − s(0)

s(0)
|(u, β, x)| → 0

for a bandwidth sequence an ↓ 0, na2
n ↑ ∞, na4

n ↓ 0.

Proposition 3.5. Suppose that conditions A.2, C, D.2 are satisfied and the

matrix Σ(β0) =
∫
R(V s(0))(u, β0, x)α(u, x)dudx is non-singular. With probability

tending to 1, the score equation Φn(β) = 0 has a unique root β̂, and
√
n(β̂ − β0)

converges in distribution to a mean zero normal variable with covariance Σ−1(β0).

The proofs of these propositions are given in Appendices B−D. Similar to

the approach of Pons and Visser (2000), we use U-process theory. Whereas

in their setting asymptotic normality results for the estimate β̂ were obtained

based on analysis of U-statistics of degree 2, in our case the term R1n of their

Proposition 3 satisfies only R1n =
√
nOp(1) supβ,(u,x) |S(0) − s(0)|(u, β, x). (Here

S(0) = (na)−1
∑
S

(0)
i .) In the case of one jump processes with bounded time

independent covariates, say, results of Einmahl and Mason (2000) imply that

the supremum is of order O(
√

log a−1/na) a.s., so that the term R1n diverges to

infinity. In the following we therefore use expansions of higher order.

Except for moment bounds, the proofs of these propositions do not use any

special properties of the Z process, and we do not require uniform consistency of

the derivatives S
(k)
−i , k = 1, 2. On the other hand, assumptions B and C require a

more detailed specification of the covariate Z in order to apply inequalities from

empirical process theory. The following proposition gives one set of conditions

under which these assumptions hold. We consider the assumption C only. Let

R1n = {(u, x) ∈ R : a ≤ x ≤ τ − a}, R2n = {(u, x) ∈ R : 0 < x ≤ a} and

R3n = {(u, x) ∈ R : τ−a < x ≤ τ}. Let Hpn = {h(u, β, x) : (u, x) ∈ Rpn, β ∈ B},
p = 1, 2, 3, where h(u, β, x) = s−1(u, β, x)

∑
m Ym(u)eβ

T Zm(u)Kn(x,Xm). Note

that for large n

max
i

E sup
(u,x)∈Rpn

β∈B

|S
(0)
−i − s(0)

s(0)
|(u, β, x)

is of the same order as µpn = E sup{|h− Eh|(u, β, x) : (u, x) ∈ Rpn, β ∈ B}.
Proposition 3.6. Suppose that for some r > 2 the bandwidth sequence satisfies

an ↓ 0, nan ↑ ∞ bn = log a−1
n /(nan) ↓ 0, a−1

n b
r/2−1
n = O(1) and there exists
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a random variable H1n, such that (1) EHr
1n = O(1); (2) ‖h(u, β, x)‖L2(P ) ≤√

an‖H1n‖L2(P ) and (3) N[](ε‖H1n‖L2(P ),H1n, ‖ · ‖L2(P )) ≤ [Aε−1]V for some fi-

nite constants A and V not depending on n and ε ∈ (0, 1). Then µ1n = O(
√
bn).

If in addition there exist random variables Hpn, p = 2, 3, such that (4) EH2
pn =

O(a) and (5) N[](ε‖Hpn‖L2(P ),Hpn, ‖ · ‖L2(P )) ≤ [Apε
−1]Vp for some finite con-

stants Ap and Vp not depending on n and ε ∈ (0, 1), then in the boundary regions

we have µpn = O((nan)−1/2), p = 2, 3.

Here ‖ · ‖L2(P ) is the L2(P ) norm, and N[](η,Hpn, ‖ · ‖L2(P )) is the minimal

number of brackets of L2(P )-size η covering the class Hpn.

Proof. By Theorem 2.14.2 in van der Vaart and Wellner (1996, p.240), in the

central region we have

µ1n ≤ 1

an
√
n
J[](

√
an,H1n, ‖ · ‖L2(P )) + a−1

n EH1n1(H1n ≥ √
nc(

√
an)), (3.1)

where J[](δ,H, ‖·‖L2(P )) =
∫ δ
0 [1+logN[](ε‖H‖L2(P ),H, ‖·‖L2(P ))]

1/2dε and c(δ) =

δ‖H‖L2(P )/[1 + logN[](δ‖H‖L2(P ),H, ‖ · ‖L2(P ))]
−1/2. For δ =

√
an the first term

of (3.1) is of order O(
√
bn). Since c(

√
an) = O(

√
an/ log a−1

n ), the second term

is bounded by a−1
n (

√
nc(

√
an))1−rEHr

1n = O(
√
bn)O(a−1

n b
r/2−1
n ) = O(

√
bn). The

same theorem in van der Vaart and Wellner (1996) implies that in the boundary

regions we have µpn = n−1/2a−1
n O(J[](1,Hnp, ‖·‖L2(P ))‖H‖L2(P ) = O((nan)−1/2),

p = 2, 3.

Using a somewhat tedious argument, it is not difficult to show that conditions

of this proposition are satisfied in the case of covariates not dependent on u.

Under added envelope conditions, the proposition is also satisfied by Lipshitz

continuous covariates, covariates that form functions of bounded variation, etc.

4. Multi-Type Event Processes

The results of the previous section extend to the multistate setting provided

the state space of the process is “small”. An example is provided by an illness-

death process in which a person in “healthy” state (0) can either progress to a

“death” state (2), or can first develop a reversible disease (state 1) and subse-

quently die. In the absence of censoring, the cumulative transitions rates are

given by

Λij(t) = Λij(Tm) + 1(Jm = i)

∫

(Tm ,t]
eβ

T Zijm(s−Tm)αij(s− Tm, Xm)ds



104 DOROTA M. DABROWSKA AND WAI TUNG HO

for t ∈ (Tm, Tm+1]. Similarly to multi-type processes in Andersen et al. (1993),

estimation of regression coefficients can be based on the score function

Φn(β) =
1

n

n∑

i=1

∑

h

∑

m

∫
[Zihm(u) −

S
(1)
−ih

S
(0)
−ih

(u, β,Xim)]Nihm(du) ,

where the sum extends over pairs h = (0, 1), (0, 2), (1, 2), (2, 1) of possible one-

step transitions,

S
(0)
−ih(u, β, x) =

1

ah

∑

j 6=i

Yjhm(u)eβ
T Zjhm(u)Kn(x,Xim) ,

and S
(1)
ih is the derivative of this process with respect to β. Note that the band-

width sequence ah = anh is taken here to depend on the transition type h. The

orthogonality relations of Lemma 2.1 imply that the score function is asymp-

totically normal with covariance matrix
∑

h Σh(β), where matrices Σh assume a

similar form as in Proposition 3.5. The M-estimator of Proposition 3.3 provides

an alternative estimate.

Another example of a multi-type process is provided by progressive multi-

state models. In this case a subject may move among a finite number of transient

states, but each such state can be visited at most once. As an example of such

a model we consider data on 3020 bone marrow transplant (BMT) recipients for

acute myelogeneous leukemia (AML) and acute lymphoblastic leukemia (ALL).

The data were collected by the International Bone Marrow Transplant Registry

(IBMTR) during the period 1991-2000. Only first transplants in remission are

considered and all patients received transplant from an HLA-identical sibling.

Transplant recipients first received high doses of chemotherapy and radiation to

destroy malignant cells in bone marrow and elsewhere. To rescue them from the

toxicity of this therapy, they subsequently received bone marrow cells from a

suitably matched donor.

In the following we donote by TX the transplant state. It can be followed

by a number of complications, among them graft–versus–host disease (GVHD),

relapse and death in remission. Two forms of GVHD are usually distinguished.

Acute GVHD (AGVHD) occurs in the first 2–3 months following transplant,

whereas chronic GVHD (CGVHD) occurs later in time. We use time independent

covariates corresponding to X= square root of patient’s age at transplant, and

binary covariates represting donor–recipient sex–match, (Z), disease type and

GVHD prophylaxis treatment. The square-root transformation of age serves to

reduce skewness of the data. Removal of T–cells from the donor’s bone marrow
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and posttransplant administration of immune supressive drugs are the major

GVHD prophylactic treatments.

We are interested in the dependence of the intensities of one-step transitions

on age. In Figures 4.1-4.3 we show plots of the baseline cumulative hazards

Aij(v|x) as functions of x . Note that for fixed x, Aij(v|x) is an increasing

function of v, but for fixed v this function may assume a variety of forms. Figure

4.1 shows that cumulative hazards of transitions TX → AGVHD, TX → CGVHD

and AGVHD → CGVHD are increasing functions of age, and this monotonicity

pattern is most pronounced in the case of transitions into the CGVHD state. The

cumulative hazards of transitions TX → death and CGVHD → death are both

U-shaped functions, suggesting higher incidence of death among older and very

young patients. Finally, the graphs of cumulative hazards of transitions into the

relapse state are decreasing functions of age, though nearly constant in age in the

upper tail. Note that in the case of transitions originating from the TX state,

all 3020 subjects enter into the risk process. However, transitions originating

from the GVHD states use only those subjects who progress to the AGVHD

and/or CGVHD state. In particular, a total of 560 patients progressed into the

CGVHD state. Subsequently 100 developed relapse and 170 died in remission.

Thus transitions from the CGVHD state are heavily censored. The relatively

small number of relapses accounts for the noisy graphs of the cumulative hazards

of the CGVHD → relapse state.
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Figure 4.1 Baseline cumulative hazards of transitions originating from the
transplant state versus age. The labels of states are 1 − transplant (TX), 2
− AGVHD, 3 − CGVHD, 4 − relapse and 5 − death.
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Figure 4.2 Baseline cumulative hazards of transitions originating from the
AGVHD state versus age. The labels of states are 2 − AGVHD, 3 −
CGVHD, 4 − relapse and 5 − death.
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Figure 4.3 Baseline cumulative hazards of transitions originating from the
CGVHD state versus age. The labels of states are 3 − CGVHD, 4 − relapse
and 5 − death.

The regression coefficients for the model are reported in Table 4.1. As in

any multistate analysis based on the proportional hazard model, the regression

coefficients do not have a clear meaning. For example, male recipients receiving

transplant from a female donor are at higher risk for progression from the trans-

plant state into the AGVHD and CGVHD state, but are also at lower risk for

direct (one-step) transition from the transplant into the relapse state. The overall

effect of this covariate on the occurrence of death in remission or relapse cannot

be, however, directly assessed based on regression coefficients because patients

who develop AGVHD are at higher risk for death in remission, and also female-
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to-male transplant increases the risk of CGVHD to relapse transition. Likewise,

the direction of the regression coefficients corresponding to each of the GVHD

prophylactic treatments varies from one transition to another. Examples of pa-

rameters which can be used to summarize effects of covariates on the occurrence

of endpoint events were discussed in Klein, Keiding and Copelan (1993), Arjas

and Eerola (1993) and Dabrowska, Sun and Horowitz (1994). Their extension to

the present setting is beyond the scope of this paper.

Table 4.1. Regression estimates and standard errors of direct transitions.

TX → AGVHD TX → CGVHD AGVHD → CGVHD

sex–match 0.08 (0.05) 0.12 (0.05)

CSA 0.46 (0.08) 0.18 (0.12)

Trem -0.58 (0.13) -0.42 (0.15) -0.28 (0.24)

MTX 0.38 (0.20) -0.40. (0.31)

disease 0.12 (0.07) -0.13 (0.13)

TX → relapse AGVHD → relapse CGVHD → relapse

sex–match -0.11 (0.10) 0.21 (0.10)

CSA -0.52 (0.31)

Trem 0.20 (0.12) -0.75 (0.59) 0.40 (0.31)

MTX 0.32 (0.23) 0.67 (0.56)

disease 0.14 (0.10)

TX → death AGVHD → death CGVHD → death

Trem 0.23 (0.15) 0.57 (0.20) 0.48 (0.25)

CSA -0.25 (0.18)

MTX -1.06 (0.58) -0.82 (0.71)

disease 0.21 (0.13)

prior AGVHD 0.75 (0.16)

The covariates are binary 0-1 variables: Sex–match = 1 if the donor is
a female and the recipient is a male; Disease = 1 if the disease type is
ALL; Prior AGVHD = 1 if AGVHD occurs prior to CGVHD. The GVHD
prophylactic treatments are labeled as cyclosporin (CSA =1), T cell removal
(Trem = 1) and methotraxate (MTX=1).

Appenidx A. Preliminaries

Let W1, . . . ,Wn be i.i.d. random variables with some distribution P. An

(asymmetric) U statistics of degree m,m ≥ 1 is denoted by

Un,m(h) =
(n−m)!

n!

∑

(i1,...,im)∈Im
n

h(Wi1 , . . . ,Wim),
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where Im
n is the collection of vectors (i1, . . . , im) with distinct coordinates, each in

{1, . . . , n}. Assuming that the kernel h satisfies E|h(W1, . . . ,Wm)| <∞, the Ho-

effding projection of degree m of the kernel h is denoted by πmh(W1, . . . ,Wm).

We have πmh(W1, . . . ,Wm) =
∑

A⊂{1,...,m}(−1)m−|A|EAh(W1, . . . ,Wm), where

for ∅ 6= A = {i1, . . . , ip}, 1 ≤ p ≤ m, EA denotes conditional expectation with re-

spect to variables {Wj , j ∈ A} and E∅h(W1, . . . ,Wm) = Eh(W1, . . . ,Wm). Then

Un,m(πmh) forms a canonical U statistics of degree m. For canonical U-processes

indexed by classes of kernels changing with n, Lemma 3.5.2, Remarks 3.5.4 and

inequality (5.4.3) in de la Peña and Gine (1999) provide the following.

Lemma A.7. Let {Un,m(h) : h ∈ Hn} be a canonical U–process over a measur-

able class class Hn of (asymmetric) kernels of degree m. If Hn forms a Euclidean

class of functions for a square integrable envelope Hn, then Enm/2‖Un,m(h)‖Hn =

O(E[Hn(W1, . . . ,Wm)2]1/2).

A measurable class of functions H defined on some measure space (Ω,A) is

Euclidean for envelope H is h ≤ H for all h ∈ H, and there exist constants A

and V such that N(ε‖H‖L2(P ),H, ‖ · ‖L2(P )) ≤ (A/ε)V for all ε ∈ (0, 1) and all

probability measures P such that ‖H‖L2(P ) < ∞ (Nolan and Pollard (1987)).

Here ‖ · ‖L2(P ) is the L2(P ) norm and N(η,H, ‖ · ‖L2(P )) is the minimal number

of L2(P )–bals of radius η covering the class H. In the case of classes Hn changing

with n, the Euclidean constants A and V are taken to be independent of n.

In the following we use U processes of degree m ≤ 1, 2, 3, 4. Finally, in our

case for each subject i, the sequence Wi represents the total number of events

observed in the interval [0, τ0], their times of the occurrence, types and covariates

observed at each jump time. The Euclidean property of the classes of functions

appearing in the remainder of the text can be easily verified based on results

of Nolan and Pollard (1987), Pakes and Pollard (1989) and Giné and Guillou

(1999).

Appendix B. Regularity Conditions and Two Lemmas

We give some additional regularity conditions.

Condition D.0 (i) For sequences (m) = (m1,m2), m1 6= m2, of nonnegative

integers, the variables X(m) = (Xm1 , Xm2) have joint density f(m) with respect

to Lebesgue measure on [0, τ ]2.

(ii) For sequences [m] = (m1,m2,m3) of distinct nonnegative integers, the

variables X[m] = (Xm1 , Xm2 , Xm3) have joint densities f[m] with respect to

Lebesgue measure on [0, τ ]3.

For any vector, we denote by | · | the `1 norm. Without loss of generality we

assume that the neighbourhood B surrounding the true parameter β0 corresponds

to a ball B = {β : |β − β0| ≤ cB}.
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For nonnegative integers p and m define θ
(p)
m (u) = |Zm(u)|pYm(u)

e[|β0|+cB ]|Zm(u)| and θ
(p)
m (u, β) = |Zm(u)|pYm(u)eβ

T Zm(u). For u ∈ [0, τ0], u =

(u1, u2) ∈ [0, τ0]
2, u = (u1, u2, u3) ∈ [0, τ0]

3, and w ∈ [0, τ ], w = (w1, w2) ∈ [0, τ ]2,

w = (w1, w2, w3) ∈ [0, τ ]3, let

σp1,p2(u,w) =
∑

m

E[

2∏

j=1

θ
(pj)
m (uj)|Xm = w]fm(w) ,

ρp1,p2(u,w) =
∑

(m)

E[

2∏

j=1

θ
(pj)
m (uj)|X(m) = w]f(m)(w) ,

κ1;p(u,w) =
∑

m

E[θ(p)
m (u1, β0)

3∏

j=2

θ(0)
m (uj , β0)|Xm = w]fm(w) ,

κ2;p(u,w) =
∑

(m)

E[θ(p)
m1

(u3, β0)

2∏

j=1

θ(0)
mj

(uj , β0)|X(m) = w]f(m)(w) ,

κ3;p(u,w) =
∑

[m]

E[θ(p)
m1

(u1, β0)
3∏

j=2

θ(0)
mj

(uj , β0)|X[m] = w]f[m](w) ,

s0;2(u,w) =
∑

(m)

E[θ(0)
m1

(u, β0)|X(m) = w]f(m)(w) ,

s0;3(u,w) =
∑

[m]

E[θ(0)
m1

(u, β0)|X[m] = w]f[m](w) .

Under conditions D.1 and D.2 these expectations exist, at least in local neigh-

bourhoods of a point x ∈ [0, τ ]. Such local neighbourhoods correspond to sets

R(x) = {(u,w) ∈ R : |w − x| ≤ a}.
Conidtion D.1 (i) The condition D.0 (i) is satisfied and, for integers p1, p2 such

that pj ≥ 0, p1 + p2 ≤ 4, we have

sup{σp1,p2(u,w) : (u1, w) ∈ R(x), (u2, w) ∈ R(x)} = O(1) ,

sup{|ρp1,p2(u,w))| : (uj , wj) ∈ R(x), j = 1, 2} = O(1) .

(ii) The condition D.0 (ii) is sastisfied, and

sup{κ1;0(u,w) : (uj, w) ∈ R(x), j = 1, 2, 3} = O(1) ,

sup{κ2;0(u,w) : (u1, w1) ∈ R(x), (u2, w2) ∈ R(x), (u3, w1) ∈ R(x)} = O(1) ,

sup{κ3;0(u,w) : (uj, wj) ∈ R(x), j = 1, 2, 3} = O(1) ,

sup{s0;2(u,w) : (u,wj) ∈ R(x), j = 1, 2} = O(1) ,

sup{s0;3(u,w) : (u,wj) ∈ R(x), j = 1, 2, 3} = O(1) .
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Condition D.2 (i) The condition D.0 (i) is satisfied and, for integers p1, p2 such

that pj ≥ 0, p1 + p2 ≤ 4, we have

sup{σp1,p2(u,w) : (u1, w) ∈ R, (u2, w) ∈ R} = O(1) ,

sup{|ρp1,p2(u,w))| : (uj , wj) ∈ R, |w2 − w1| ≤ a, j = 1, 2} = O(1) .

(ii) The condition D.0 (ii) is satisfied and, for p = 0, 1, we have

sup{κ1;p(u,w) : (uj, w) ∈ R, j = 1, 2, 3} = O(1) ,

sup{κ2;p(u,w) : (u1, w1) ∈ R, (u2, w2) ∈ R, (u3, w1) ∈ R, |w2 − w1| ≤ a} = O(1) ,

sup{κ3;p(u,w) : (uj, wj) ∈ R, |w2 − w1| ≤ a, |w3 − w2|, j = 1, 2, 3} = O(1) .

We now give two lemmas which collect bounds on certain random variables

arising in the analysis of the Aalen-Nelson estimate. Both lemmas can be verfied

using elementary algebra, Hölder’s inequality and conditions A and D.

Lemma B.8. Suppose that inf{s(0)(u, β, x) : β ∈ B, u ≤ τ0} > 0. For k = 0, 1, 2,

let fkni(u, β, x) = [s(0)(u, β, x)]−1
∑

m θ(k)(u, β)|Kn(x,Xim)| and f ∗kni(u, β, x) =

[s(0)(u, β, x)]−1
∑

m θ(k)(u, β)α(u,Xim)|Kn(x,Xim)|. If conditions A and D.1 (i)

hold, then a−1E
∏2

p=1 fkpni(up, β, x) = O(1) and a−1E
∏2

p=1 f
∗
kpni(up, β, x) =

O(1), uniformly in u1, u2 ≤ τ0 and β ∈ B. If in addition the condition D.1

(ii) holds, then a−1E
∏3

p=1 f
∗
kpni(up, β0, x) = O(1) uniformly in u1, u2, u3 ≤ τ0.

If inf{s(0)(u, β, x) : β ∈ B, (x, u) ∈ R} > 0 and conditions D.2 hold, then these

bounds are also uniform in x, x ∈ [0, τ ].

Lemma B.9. Supose that inf{s(0)(u, β0, w) : u ≤ τ, β ∈ B, w ∈ [x − an ∨ 0, x +

an ∧ τ ]} > 0. Set

fni(u, x) = [s(0)(u, x)]−2[S
(2)
i (u, x) + S

(1)
i (u, x)s(1)(u, x)] ,

S
(p)
i (u, x) =

∑

m

θ
(p)
im(u)|Kn(x,Xim)| ,

s(0)(u, x) =
∑

m

EYim(u) exp([−|β0| − cB ]|Zim(u))|Xim = x)fm(x) ,

s(1)(u, x) =
∑

m

E(θ
(p)
m |Xim = x)fm(x) ,

gnj(v, x) =
∑

m

∫ v

0
|Kn(x,Xjm)|[s(0)(u, x)]−1Njm(du) ,
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gin(u, β, x) =
∑

m

∫ u

0
|Kn(x,Xim)|[s(0)(u, β, x)]−1Nim(du) ,

H0n(Wi) = a
−1
2 [gni(τ0, β0, x) +

∫ τ0

0
f∗0ni(u, β0, x)du] ,

H1n(Wi) = a
−1
2

∑

m

∫ τ0

0

|Kn(x,Xim)|
s(0)(u, β0, x)

Yim(u)eβ
T
0 Zim(u)

× |α(u,Xim) − α(u, x)|du ,

H2n(Wi,Wj) =
1

a
√
na

∫ τ0

0
f0ni(u, β0, x)gnj(u, β0, x) ,

H3n(Wi) = a
−1
2

∫ τ0

0

|s(0) − s(0)|
s(0)

(u, β0, x)gni(du, β0, x) ,

H4n(Wi) = a
−1
2

∫ τ0

0
fni(u, β0, x)|α(u, x)du − EN(du, x)

s(0)(u, β0, x)
| ,

H5n(Wi,Wj) =
1

na2

∫ τ0

0
f1ni(u, β0, x)gnj(du, β0, x) ,

+
cB
na2

∫ τ0

0
fni(u, x)gnj(du, x) .

If conditions A.r(r = 1, 2) and D.1 hold, then EH 2
0n(W1) = O(1), EH3

0n(W1) =

O(a−1/2), EH2
1n(W1) = O(a2), EH3n(W1)

2 = O(a2r) and EH4n(W1)
2 = O(a2r).

We also have EH2
2n(W1,W2) = O((na)−1), EH2

5n(W1,W2) = O((na)−2) and

nE[E{1}H5n(W1,W2)]
2 = O((na)−1) = nE[E{2}H5n(W1,W2)]

2.

Appendix C. Proof of Proposition 3.4

Set

b(v, x) =

∫ v

0

α(u, x)

s(0)(u, β0, x)
[γ(u, x) − s(0)(u, β0, x)]du ,

where s(0)(u, β0, x) = ES
(0)
−i (u, β0, x), γ(u, x) = n(du, x)/α(u, x), and n(v, x) =

ΣmENim(v)Kn(x,Xim). Then
√
na[Â(v;x, β0)−A0(v, x) − b(v, x)] = Ẑn(v, x) +

Rn(v, x), where

Ẑn(v, x) =

√
n

a

n∑

i=1

∑

m

∫ v

0

Kn(x,Xim)

s(0)(u, β0, x)
Mim(du) +Rn(v, x) ,

and Rn(v, x) is a remainder term given below. Under conditions A.r, r = 1, 2, we

have
√
nab(v, x) = O(

√
naar) = o(1). Therefore it is enough to show that the

process Ẑn(v, x) converges in `∞([0, τ0]) to a time transformed Brownian motion

and the remainder term Rn is asymptotically negligible.
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We have Ẑn(v, x) =
√
n[Pn − P ]hn,v where

hn,v(Wi) = a
−1
2

∑

m

∫ v

0

Kn(x,Xim)

s(0)(u, β0, x)
Mim(du) .

The class Hn = {hn,v : v ≤ τ0} consists of functions that can be represented as
a linear combination of at most four monotone functions with respect to v and
has envelope 4H0n(Wi). By Lemma B.9 we have (i) EH2

0n(W1) = O(1), and (ii)
EH0n(W1)1(H0n(W1) > η

√
n) ≤ EH3

0n(W1)(η
√
na)−1 → 0 for any η > 0. Also

(iii) for any 0 < v1 < v2 ≤ τ0, the difference |hnv1 − hnv2 |(Wi) is bounded by

a
−1
2

∑

m

∫ v2

v1

|Kn(x,Xim)|
s(0)(u, β0, x)

Mim(du) +
2√
a

∫ v2

v1

f∗0ni(u, β0, x)du .

Using (x+ y)2 ≤ 2(x2 + y2) and Lemma 2.1, E|hnv1 − hnv2 |2(W1) is bounded by

2

a

∫ v2

v1

∫ τ

0

[s(0)α](u, β0, w)

s(0)(u, β0, x)2
K2

n(x,w)dwdu+
8

a

∫ v2

v1

∫ v2

v1

E

2∏

p=1

f∗0ni(up, β0, x)du1du2 ,

and is of order O(|v2 − v1| + |v2 − v1]
2). Lemmas 2.1 and 3.2, imply (iv)

Var [Ẑn(v1, x)] = dp(x),q(x)(K)

∫ v1

0

α(u, x)

s(0)(u, x, β0)
du+O(a) ,

and cov[Ẑn(v1, x), Ẑn(v2, x)−Ẑn(v1, x)] = O(a). Finally, (v) the class of functions
{hnv : v ≤ τ0} has polynomial bracketing number. Properties (i)−(v) and Theo-
rem 2.11.23 in van der Vaart and Wellner (1996) imply that {Ẑn(v, x) : v ∈ τ0}
converges weakly `∞([0, τ0]) to a tight Gaussian process.

The remainder term Rn(v, x) is given by Rn(v, x) =
∑5

j=1Rjn(v, x), where

R1n(v, x) =
1√
na

n∑

i=1

∫ v

0
f̃ni(u, x)du −√

nab(v, x) ,

R2n(v, x) = −
√
na

n(n− 1)a2

∑

i6=j

∫ v

0
[fni − Efni](u, x)[gnj − Egnj](du, x)] ,

R3n(v, x) = − 1√
na

n∑

i=1

∫ v

0
[
s(0) − s(0)

s(0)
](u, β0, x)[gni − Egni](du, x) ,

R4n(v, x) =
1√
na

n∑

i=1

∫ v

0
([fni − Efni]s

(0))(u, β0, x)α(u, x)du − EN(du, x)] ,

R5n(v, x) =
1√
na

∫ v

0
[s(0) − s(0)](u, β0, x)

[
α(u, x)du − EN(du, x)

s(0)(u, β0, x)

]
,

R6n(v, x) =
√
na

n∑

i=1

∫ v

0

[S
(0)
−i (u, β0, x) − s(0)(u, β0, x)]

2

S
(0)
−i (u, β0, x)s2(u, β0, x)

N i(du, x) ,
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where

fni(u, x) = [s(0)(u, β0, x)]
−1
∑

m

Yim(u)eβ
T
0 Zim(u)Kn(x,Xim) ,

f̃ni(u, x) = [s(0)(u, β0, x)]
−1
∑

m

[α(u,Xim)−α(u, x)]Yim(u)eβ
T
0 Zim(u)Kn(x,Xim),

gni(u, x) =
∑

m

∫ u

0
Kn(x,Xim)[s(0)(v, β0, x)]

−1Nim(dv) .

The term R1n has mean zero. By decomposing the integrands and the in-
tegrators into their positive and negative parts, we have (na)−1/2R1n(v, x) +
b(v, x) = Pnh1nv, where h1nv(Wi) is a sum of four monotone functions, bounded
by H1n(Wi). Thus R1n(v, x) is a normalized empirical process over a Euclidean
class of functions for envelope 4H1n(Wi). By Lemmas B.9 and A.7, we have
EH1n(W1)

2 = O(a2) and E supv |R1n(v, x)| = O(a). Similarly, using envelopes
H3n and H4n, we can show that E supv |R3n(v, x)| = O(ar) = E supv |R4n(v, x)|
and R5n(v, x) = O(

√
naa2r) a.s.uniformly in v ≤ τ0. The term term R2n is

easily seen to form a canonical U-process of degree 2 over a Euclidean class
of functions with envelope H ′

2n(Wi,Wj) = H2n(Wi,Wj) + E{1}H2n(Wi,Wj) +
E{2}H2n(Wi,Wj)+EH2n(Wi,Wj). Lemmas B.9 and A.7 imply E supv |R2n(v, x)|
= O((na)−1/2)), since EH2

2n(Wi,Wj) = O((na)−1) and E[H ′
2n]2(W1,W2) is of the

same order.
Next define

R7n =
1√
na

n∑

i=1

∫ τ0

0
(
S

(0)
−i − s(0)

s(0)
)2(u, β0, x)gni(du, β0, x)

≤ 2
√
naO(a2r)

1

na

n∑

i=1

gni(τ0, β0, x) +O(1)(R7n;1 +R7n;2) ,

where R7n;1 =
√
naa−3Un,3(h), R7n;2 =

√
na(na3)−1Un,2(h),

h(Wi,Wj ,Wk) =

∫ τ0

0
[(f0nj − Ef0nj)(f0nk − Ef0nk)](u, β0, x)gni(du, β0, x)

and h(Wi,Wj) = h(Wi,Wj ,Wj). The first term is of order Op(
√
naa2r). We have

EH(W1,W2,W3) = 0 and, using Lemmas B.9 and A.7, E(na)1/2a−3|Un,3(π3h)| =
O((na)−1) and E(na)1/2a−2|Un,2(π2[E{23}h])| = O((na)−1/2). The remaining

projections are 0. In the case of the term R7n;2, we have ER7n;2 = O((na)−1/2)
and the expected E|R7n;2| is of the same order.

We consider now term R6n. For ε ∈ (0, 1), define

Ωn(ε) =
{ 1

1 + ε
≤ min

i
inf

u≤τ0
β∈B

s(0)

S
(0)
−i

(u, β, x) ≤ max
i

sup
u≤τ0
β∈B

s(0)

S
(0)
−i

(u, β, x) ≤ 1

1 − ε

}
.
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We have P (Ωn(ε)) ≤ mini P (supu≤τ |S(0)
−i /s

(0) − 1|(u, β, x)| ≤ ε) → 1, by con-

dition B and Markov’s inequality. On the event Ωn(ε), we also have supv≤τ0

|R6n(v, x)| ≤ (1 − ε)−1R7n. Therefore P (supv≤τ0 |R6n(v, x)| > η) ≤ P (Ωc
n(ε)) +

P (supv≤τ0 |R6n(v, x)| > η,Ωn(ε)) ≤ P (Ωc
n(ε)) + P (R7n > (1 − ε)η) → 0 for any

η > 0.

Finally, suppose that β̂ is a
√
n consistent estimate of the parameter β. Then

√
na[Â(v, x, β̂) − Â(v, x, β0)]

=
√
n[β̂ − β0]

√
a

∫ v

0

S
(1)
−i

[S
(0)
−i ]2

(u, β∗, x)Ni(du, x) , (C.1)

where β∗ is between β0 and β̂. Let In(β) = a−2Un2(hβ), where hβ(Wi,Wj) =∫ τ0
0 f1ni(u, β, x)gnj(du, β, x). It is easy to see that EIn(β) = O(1). By Lipschitz

continuity of the function hβ with respect to β, In(β) is a U-process of degree

2 over a Eulidean class of functions for envelope H5n(Wi,Wj). By Lemmas

B.9 and A.7, E supβ∈B |a−2Un,2(π2hβ)| = O([EH5n(W1,W2)
2]1/2) = O((na)−1),

E supβ∈B |a−2U1n(π1E{1}hβ)| = O((na)−1/2)), E supβ∈B |a−2U1n(π1E{2}hβ)| =

O((na)−1/2)). Therefore supβ∈B |In(β)| = Op(1). Further, if β̂ is a
√
n con-

sistent estimate of β0, then
√
n[β̂ − β0] = Op(1). To show that the right–hand

side of (6.1) is of order Op(
√
a), it is enough to note that for any ε ∈ (0, 1), the

supremum sup{|
∫ v
0 S

(1)
−i [S

(0)
−i ]−2(u, β, x)Ni(du, x)| : v ≤ τ0, β ∈ B} is bounded by

(1 − ε)−2 supβ∈B In(β) on the event Ω(ε).

Appendix D. Proof of Propositions 3.3 and 3.5

Define

Φ̃0n(β0) =
1√
n

n∑

i=1

∑

m

∫
[Zim(u)s

(0)
−i (u, β0, Xim) − s

(1)
−i (u, β0, Xim)]Mim(du) ,

Σ̃n(β) =
1

n

n∑

i=1

∑

m

∫
[S(2)(u, β,Xim) − Zim(u) ⊗ S(1)(u, β,Xim)]Nim(du) ,

Φ0n(β0) =
1√
n

n∑

i=1

∑

m

∫
[Zim(u) − s(1)

s(0)
(u, β0, Xim)]Mim(du) ,

Σ0n(β) =
1

n

n∑

i=1

∑

m

∫
[
s(2)

s(0)
−
(
s(1)

s(0)

)⊗2

](u, β,Xim)Nim(du) ,
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Φ1n(β0) =
1√
n

∑

m

∫ τ0

0
[Zim(u)

S
(0)
−i

s(0)
(u, β0, Xim) − S

(1)
−i

s(0)
(u, β0, Xim)]Nim(du) ,

Φ2n(β0) = − 1√
n

n∑

i=1

∑

m

∫ τ0

0
[Zim(u) − s(1)

s(0)
(u, β0, Xim)]

× (
S

(0)
−i − s(0)

s(0)
)(u, β0, Xim)Nim(du) ,

Φ3n(β0) =
1√
n

n∑

i=1

∑

m

∫ τ0

0
(
S

(1)
−i − s(1)

s(0)
)(
S

(0))
−i − s(0)

s(0)
)(u, β0, Xim)Nim(du) ,

Φ4n(β0) = − 1√
n

n∑

i=1

∑

m

∫ τ0

0

S
(1)
−i

s
[(
S

(0)
−i

s(0)
− 1)2

s(0)

S
(0)
−i

](u, β0, Xim)Nim(du) ,

Σ1n(β) =
1

n

n∑

i=1

∑

m

∫
[
S

(2)
−i − s(2)

s(0)
− ψ−i − ψT

−i](u, β,Xim)Nim(du) ,

Σ2n(β) = − 1

n

n∑

i=1

∑

m

∫
[
S

(1)
−i − s(1)

s(0)
]⊗2(u, β,Xim)Nim(du) ,

Σ3n(β) =
1

n

n∑

i=1

∑

m

∫
[V̂−i − Ṽ−i](u, β,Xim)Nim(du) ,

where ψ̂−i = (S
(1)
−i − s−1) ⊗ s(1)/[s(0)]2, V̂−i = S

(2)
−i /S

(0)
−i − (S

(1)
−i /S

(0)
−i )⊗2 and

Ṽ−i = S
(2)
−i /s

(0) − (S
(1)
−i /s

(0))⊗2.

Under assumptions of Proposition 2.3, Σ̃n(β) is the negative derivative of the

score function Φ̃n(β). Similarly, under assumptions of Proposition 2.5, we have

Φn(β0) = Σ4
j=1Φjn(β0) and Σn(β) =

∑3
j=1 Σnj(β) is the negative derivative of

the score function Φn(β). The proof of both propositions amounts to application

of the following lemma and results of Bickel et al. (1993, p.517).

Lemma D.10.

(i) Under assumptions of Proposition 2.3 we have Φ̃0n(β0) ⇒ N (0,Σ2(β0)),

Σ̃n(β0) →P Σ1(β0), Φ̃n(β0) − Φ̃0n(β0) →P 0, and sup{|Σ̃n(β) − Σ̃(β0)| :

|β − β0| ≤ εn} →P 0.

(ii) Under assumptions of Proposition 2.5 we have Φ0n(β0) ⇒ N (0,Σ(β0)), Σ0n

(β0) →P Σ(β0), Φ1n(β0) − Φ0n(β0) →P 0, Φkn(β0) →P 0 for k = 2, 3, 4,

Σkn(β0) →P 0 for k = 1, 2, 3, and sup{|Σkn(β) − Σkn(β0)| : |β − β0| ≤
εn} →P 0 for k = 0, 1, 2, 3.

Proof. First note that under the assumed regularity conditions, asymptotic

normality of the terms Φ̃0n(β0) and Φ0n(β0) follows from the CLT.
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We show that Φ̃n(β0) − Φ̃0n(β0) →P 0 and Φ1n(β0) − Φ0n(β0) →P 0. For

any bounded function ϕ(u, x), let Gϕ
ij = Gϕ(Wi,Wj) be given by

Gϕ
ij =

∑

m

∫ τ0

0
ϕ(u,Xim)[Zim(u)S

(0)
j (u, β,Xim) − S

(1)
j (u, β,Xim)]Nim(du).

Under assumptions of Proposition 2.3, we have Φ̃n(β0) = Φ̃0n(β0) +OP (
√
na) +

Un,2(π2G
ϕ)) for ϕ ≡ 1. Similarly, under assumptions of Proposition 2.5, we have

Φ1n(β0) = Φ0n(β0) + OP (
√
na2) + Un,2(π2G

ϕ) for ϕ(u, x) = [s(0)(u, β0, x)]
−1.

Thus it is enough to show that in both cases EUn,2(π2G
ϕ) = O((na)−1/2). Choose

ϕ = [s(0)]−1 for instance, and define

Gn(Wi,Wj)) = a−1
1∑

p=0

∑

m

∫
|Zim(u)|pf1−pjn(u, β0, Xim)Mim(du)

+a−1
1∑

p=0

∫ ∑

m

|Zim|p(u)Yim(u)eβ0Zim(u)f1−p,jn(u, β0, Xim)α(u,Xim)du

a−1
∑

m

∫ τ0

0
[|Zim(u)|f 0nj(u, β0, Xim) + f1,nj(u, β0, Xim)]Nim(du) .

We have EUn,2(π2G
ϕ)) = O(n−1/2(EG

2
n(W1,W2))

1/2) = O((na)−1/2) because,

by Lemma 2.1, the expectation EG
2
n(W1,W2) is bounded by

4

a2

1∑

p=0

∫ τ0

0

∫ τ

0
σp,p(u, u, x)E[f 1−p,jn(u, β0, x)]

2α(u, x)dudx

+

∫ τ0

0

∫ τ0

0

∫ τ

0
σp,p(u1, u2, x)E[

2∏

l=1

f1−p,jn(ul, β0, x)]
2∏

l=1

α(ul, x)du1du2dx

+

∫ τ0

0

∫ τ0

0

∫ τ

0

∫ τ

0
ρp;p(u, x)E[

2∏

l=1

f1−p,jn(ul, β0, xl)]
2∏

l=1

α(ul, xl)duldxl.

Here in the last line u = (u1, u2) and x = (x1, x2). By Lemma B.8, the bound is

of order O(a−1). It follows now that Φ1n(β0) − Φ0n(β0) →P 0.

The same argument applied to the function ϕ(u, x) ≡ 1 shows that Φ̃n(β0)−
Φ̃0n →P 0. Changing the risk processes S

(k)
j −S(k+1)

j , k = 0, 1, in the definition

of Gϕ(Wi,Wj), we also obtain

Σ̃n(β0) − Σ1(β0)

= n−1
∑

m

∫ τ0

0
Zim(u)s(1)(u, β0, Xim) − s(2)(u, β0, Xim)Mim(du) + op(1)
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The Strong Law of Large Numbers implies that Σ̃(β0) →P Σ1(β0). Components
of the matrix Σ̃(β) are Lipschitz continuous in β, and it is easy to verify that
|Σ̃n(β) − Σ̃n(β′)| ≤ |β − β′|Un,2(G2n) where G2n is a kernel degree 2 satisfying

E|Un,2(G2n)| = O(1). This completes the proof of the first part of the proposition.
Further, the terms Φ2n(β0) and Σ1n(β0) are U-statistics of degree 2. Using

similar algebra as in the case of the difference Φ1n −Φ0n, we can show that they

converge to 0 in probability.
Next define

H1n =
1

n

n∑

i=1

∑

m

∫ τ0

0
ϕ(u,Xim)

2∏

k=1

(
S

(p)
−i − s(p)

s(0)
S

(q)
−i − s(q)

s(0)
)(u, β0, Xim)Nim(du),

where ϕ(u, x) is a bounded function and p, q = 0 or 1. We have
√
nH1n =

Op(
√
na2) +O(1)[

√
na−2Un,3(H) +

√
n(na2)−1Un,2(H)], where

H(Wi,Wj ,Wk)=
∑

m

∫ τ0

0
ϕ(u,Xim)[fpjn−Efpjn][fqkn−Efqkn](u, β0, Xim)Nim(du)

and H(Wi,Wj) = H(Wi,Wj ,Wj). We have EH(W1,W2,W3) = 0. Lemmas A.7,
B.8 and B.9 imply that E

√
na−2|Un,3(π3H)| = O((na)−1) and O((na)−1/2) =

E
√
n(na2)−1|Un,2(π2E{23}H)|, while the remaining projections are 0. Further,√

n(na2)−1EUn,2(H) = O((na2)−1/2) =
√
n(na2)−1Un,2(|H |), so that the condi-

tion na2 ↑ ∞ implies asymptotic negligibility of the third term of
√
nH1n.

The choice of ϕ ≡ 1, p = 1, q = 0 implies that if na4 ↓ 0 and na2 ↑ ∞ then

Φ3n(β0) →P 0. The choice of ϕ ≡ 1 and p = q = 1 implies Σ2n(β0) →P 0.
To handle the term Φ4n(β0) define

H2n =
1

n

n∑

i=1

∑

m

∫ τ0

0
(
f1n

s(0)
(
S

(0)
−i − s(0)

s(0)
)2)(u, β0, Xim)Nim(du) .

Using (x + y)2 ≤ 2x2 + 2y2, we have
√
n|H2n| ≤ 2Op(

√
na4) + 2

√
nH2n;1 +

2
√
nH2n;2, where H2n;1 corresponds to the sum H1n applied with function ϕ =

Ef1ni/s
(0), and H2n;2 is a V statistics of degree 4: H2n;2 = O(1)[a−3Un,4(h) +

(a3n)−1Un,3(h) + 2(na3)−1Un,3(h
′) + (n2a3)−1Un,2(h

′′)], where

h(Wi,Wj ,Wk,Wl) =
∑

m

∫ τ0

0
[f1jn−Ef1jn]

∏

p=k,`

[f0pn−Ef0pn](u, β0, Xim)Nim(du)

and h(Wi,Wj,Wk) = h(Wi,Wj ,Wk,Wk), h
′(Wi,Wj,Wk) = h(Wi,Wj,Wj ,Wk),

h′′(Wi,Wj) = h(Wi,Wj ,Wj ,Wj). We have E|√n(n2a3)−1Un,2(h
′′)| ≤ √

n(na3)−1

EUn,2|h′′|, which is bounded by
√
n

n2a3

∫

R
E|[f1jn − Ef1jn][f0jn − Ef0jn]2|(u, β0, x)s

(0)(u, β0, x)α(u, x)dudx.
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Under conditions D.2 (ii), this bound is of order O(n−3/2a−2) and tends to 0

if na2 ↑ ∞. A similar argument shows also that the second and third term of√
nH2n;2 have expectation tending to 0 when na2 ↑ ∞ and na4 ↓ 0. The first

term has expectation 0. By Lemmas A.7 and B.9, we have E
√
na−3|U4nπ4h| =

O((na)−3/2), E
√
na−3|Un,3(π3E{234}h)| = O((na)−1), while the remaining pro-

jections are 0.

Further, for ε ∈ (0, 1), define

Ωn(ε) =
{ 1

1 + ε
≤ min

i
inf

(u,x)∈R

β∈B

s(0)

S
(0)
−i

(u, β, x) ≤ max
i

sup
(u,x)∈R

β∈B

s(0)

S
(0)
−i

(u, β, x) ≤ 1

1 − ε

}
.

As in the proof of Proposition 3.4, the condition C implies P (Ωn(ε)) → 1. Also

on the event Ωn(ε), the term Φ4n(β0) satisfies |Φ4n(β0| ≤ (1 − ε)−1√nH2n. For

any η > 0, we have P (|Φ4n(β0)| > η) ≤ P (
√
nH2n > η,Ω(ε)) + P (Ωc

n(ε)) ≤
P (

√
nH2n > (1 − ε)η) + P (Ωc

n(ε)) → 0.

Application of the condition C shows also that Σ3n(β0) →P 0. Finally, it is

easy to verify that the matrices Σnk, k = 0, 1, 2, 3, satisfy |Σnk(β) − Σnk(β0)| ≤
|β − β′|OP (1), which completes the proof of the lemma.

Acknowledgement

We thank an anonymous reviewer and Editor Jane Ling Wang for comments.

Research was supported by grants from the National Science Foundation and

National Cancer Institute. The data presented here were obtained from the

Statistical Center of the International Blood and Marrow Transplant Registry.

The analysis has not been reviewed or approved by the Advisory Committee of

the IBMTR.

References

Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on

Counting Processes. Springer Verlag, New York.

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large

sample study. Ann. Statist. 10, 1100-1120.

Arjas, E. and Eerola, M. (1993). On predictive causality in longitudinal studies. J. Statist.

Plann. Inference 34, 361-384.

Beran, R. (1981). Nonparametric regression with randomly censored survival data. Tech.

Report, University of California, Berkeley.

Bickel, P. J., Klaassen, C., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estima-

tion in Transformation Models. Johns Hopkins University Press.

Cox, D. R. (1973). The statistical analysis of dependencies in point processes. In Symposium

on Point Processes (Edited by Lewis, P. A. W.). Wiley, New York.

Dabrowska, D. M., Sun, G. W. and Horowitz, M. M. (1994). Cox regression in a Markov renewal

model: an application to the analysis of bone marrow transplant data. J. Amer. Statist.

Assoc. 89, 867-877.



A MODULATED RENEWAL PROCESS 119

Dabrowska, D. M. (1997). Smoothed Cox regression. Ann. Statist. 25, 1510-1540.
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