Statistica Sinica 16(2006), 77-91

MEETING HAUSDORFF IN MONTE CARLO:
A SURPRISING TOUR WITH ANTIHYPE FRACTALS

Radu V. Craiu and Xiao-Li Meng
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Abstract: To many statistical researchers, fractals are aesthetically pleasing math-
ematical objects or ingredients of complex theoretical studies. This article docu-
ments an exception: during recent research on improving effectiveness of Markov
chain Monte Carlo (MCMC), we unexpectedly encountered a class of intriguing
fractals in the simple context of generating negatively correlated random variates
that achieve extreme antithesis. This class of antihype fractals enticed us to tour
the world of fractals, because it has intrinsic connections with classical fractals
such as Koch’s snowflake and it illustrates theoretical concepts such as Hausdorff
dimension in a very intuitive way. It also provides a practical example where a
sequence of uniform variables converges exponentially in the Kolmogorov-Smirnov
distance, yet fails to converge in other common distances, including total variation
distance and Hellinger distance. We also show that this non-convergence result ac-
tually holds for any sequence of (proper) uniform distributions on supports formed
by the generating process of a self-similar fractal. These negative results remind us
that the choice of metrics, e.g., for diagnosing convergence of MCMC algorithms,
do matter sometimes in practice.

Key words and phrases: Antithetic variates, extreme antithesis, fractals, Hausdorff
dimension, Koch’s curve, Latin hypercube sampling, Markov chain Monte Carlo,
self-similar fractals.

1. Getting Started - Fractals

The eye-pleasers of this tour are the fractals. Although it is difficult to define
precisely what constitutes a fractal, one may consider that any set with a high
degree of irregularity present at any scale would fit into this category. Benoit
Mandelbrot, the French mathematician who brought fractals into mainstream
science, emphasizes that such irregular geometric abstractions fit the physical
world better: “Clouds are not spheres, mountains are not cones, coastlines are
not circles, and bark is not smooth, nor does lightning travel in a straight line”
(Mandelbrot (1982)).

Besides their intricate and intriguing appearance, fractals also furthered
the exploration of mathematical concepts. For instance, consider the Koch’s
snowflake as discussed in Edgar (1990). Take an equilateral triangle and divide
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each of its sides into three equal parts. Replace the middle segment by the other
two sides of an equilateral triangle constructed on the middle segment. Continue
the same process on each of the remaining segments in the newly obtained figure.
The first two steps of the iterative process are sketched in Figure 1. The limit,
shown in Figure 2, is the remarkable Koch’s curve. It surrounds a finite area,
yet it has infinite length. It is continuous, yet nowhere differentiable. It is also
self-similar: under magnification, arbitrarily small regions look exactly the same
as the whole.

/\

Figure 1. Koch’s construction. Figure 2. Koch’s snowflake.

Soon after its discovery in 1906, there was a general recognition of the inade-
quacy of classical tools to deal with objects as irregular as the Koch’s snowflake.
Hausdorff (1919) extended the work of his contemporaries, Borel and Frechet, by
introducing the Hausdorff measure and dimension. In particular, it allows a non-
integer dimension which is, as we demonstrate, a very intuitive generalization of
the Euclidian dimension that we normally encounter in classical geometry.

To respect the tradition of good tourism, our tour combines information
and entertainment, the past and the future. We first visit the construction of
antihype fractals, unearthed while generating antithetic random variates via Latin
hypercube sampling. We then enter the world of Hausdorff dimension, starting
from its abstract land, with a detour to a visually attractive connection between
Koch’s snowflake and an antihype fractal. Leaving Hausdorff, we visit a few other
masters of abstraction, Kolmogorov, Smirnov, and Hellinger — if you wonder
why, please follow the guide!! (And please do pick up a couple of tour souvenirs
we prepared along the tour.)

2. Antihype Fractals

2.1. The Monte Carlo application

A well-known Monte Carlo technique is to use variates with negative corre-
lations. Let {Xj,..., X} be k exchangeable draws with Corr(X;, X;) = py and
Var(X;) = o2, Then, it is easy to show that

Var(Xy) Var< ZX) :% + (k= 1)px).
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Consequently, if p; < 0, the right-hand side is smaller than o2 /k, the variance
of Xj, when {Xi,..., X} are uncorrelated. In particular if, and only if, pp =
—(k —1)7%, then Var(X;) = 0. In general, for an arbitrary given marginal
distribution of X; and integer k, the smallest possible p; always exists but may
not reach —(k — 1)~! (e.g., for exponential distributions, as reported in Moran
(1967)). A vector {X1, ..., Xy} achieving the minimum possible py is said to have
the extreme antithesis (EA) property (Craiu and Meng (2005)). Since uniform
random variables are the most basic building blocks for simulation, we focus on
X = U ~ Uniform|0, 1] in this paper.

Suppose that we want to sample (U, U®?)) in [0,1]? with py = —1. Instead
of rushing to the obvious solution U = 1—U® one could envision the following
approach. At draw ¢t = 1,2,..., we sample randomly from the finite set {0, 1},
without replacement, and use the draws as the dyadic coefficients. That is, we
sample a; € {0,1} independently, set by = 1 — a4, then let

‘z(l):%+¥+“‘+%

2.1
‘7(2)_51 b2 bt (2.1)
TR T

Clearly, as t increases, the pair (f/t(l), f/t(Q)) converges to the well-known solution

(U,1 —U) because ‘7;(1) + ‘7;(2) =1—2"". This simple construction has a defect:

for any finite t, the marginal distribution of ‘7;(1') is not exactly Uniform(0,1).

However, we can easily correct for this because
) _ o, U .
Ut(z) = V;(Z) + 2—0t ~ Uniform(0,1), i=1,2, (2.2)

as long as U(gi) ~ Uniform(0,1) and it is independent of Vt(i).

2.2. Iterative Latin hypercube sampling

The construction () is suggestive for going beyond k& = 2: replace the
dyadic expansion in (1I) with the k-based expansion. Specifically, Craiu and
Meng (2005) constructed the following iterative scheme, to which (E2) is the
“time backward dual sequence” (when k = 2; see Section 5.1).

1. Set Uk = (Uél), cey ék))—r, where {Uéi)}lgigk are i.i.d. Uniform(0, 1).

2. Fort =1,..., draw a random permutation of {0, 1, ..., k—1}, Kt = (04(0),.. .,
o¢(k —1))7, which is independent of all previous draws. We then define
uf = (Ut(l), ce t(k))T via

1

utk-i-l = k

(K¢ +Up). (2.3)
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This iterative Latin hypercube sampling (ILHS) scheme is an iterative ver-
sion of the well-known Latin hypercube sampling (McKay, Beckman and Conover
(1979), Stein (1987), Owen (1992) and Iman (1999)). A more intuitive perspec-
tive on ILHS can be visualized in the case kK = 3. Figure 3 plots the supports
of U? for t = 1,2. Starting from the unit cube (0,1)3, the tth iteration of ILHS
divides the unit cube into 33 sub-cubes, each with volume 373!, and eliminates
the “most positive” three sub-sub-cubes from each of the sub-cubes that survived
after the previous iteration/elimination. For ¢ = 1, this is seen in the left plot
of Figure 3. Evidently, the three excluded sub-cubes induce the highest positive
correlation between any pair of the components of /3. The right plot repeats the
same process within each of the 33 — 3 sub-cubes that remain after the first elim-
ination; the total number of sub-cubes of volume 373 eliminated at ¢-th (¢ > 0)
iteration is 3(3% — 3)!~! = 8~13,

Figure 3. Evolution of the support of U for t = 1,2. The regions eliminated
at each step are shown in colors.

As proved in Craiu and Meng (2005), as t increases, the vector U[ gets closer
and closer to achieving EA, and the limit 2/ achieves EA exactly. Furthermore,
the support of Uff shrinks as ¢ increases, as seen in Figure 3. Indeed, each iteration
of ILHS eliminates p = k~*=1 portion of the volume left from the previous
iteration. Summing up all these volumes from ¢t = 1 to t = oo, that is, Y ;o p(1—
p)~!1 = 1, we see that the volume of the support of the limiting variable U , is
zero in terms of the usual Lebesgue measure. Somewhat remarkably, the marginal
uniformity of each Uéf,) is preserved. This Lebesgue null set is our antihype fractal
and is denoted by A*.

The properties of the A* are important to the study of efficient coupling
in the context of Markov chain Monte Carlo; see Section 6. Chatterjee and
Yilmaz (1992) is a good place to sample other connections between fractals and
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statistics. The bulk of interaction lies in the area of dynamical systems for
number generation (e.g., Palmore (1994) and Gerow and Holbrook (1996)), noise
reduction for reconstruction of time series data (e.g., Kostelich and Yorke (1988))
and fractal interpolation (Barnsley (1988)). The antihype fractal belongs to the
first category.

3. Fractal Dimensions
3.1. Defining the Hausdorff dimension

Sets of elementary geometry have an associated dimension, e.g., points have
dimension zero, curves one, surfaces two, and so on. Once we leave elementary
geometry we encounter sets that do not fall into any of the above categories, al-
though they “live” in the Euclidean space. For such sets, such as Koch’s curve or
antihype fractals, one needs to generalize the usual notion of dimension. Among
the several “fractal dimensions” in use, the definition of Hausdorff is the oldest
and, probably, the most important. This is also the dimension singled out by
Mandelbrot as the most effective in establishing interesting geometric properties,
although it is not always easy to compute. The formal definition of the Hausdorff
dimension of a fractal set, dimg(F), is given below.

Definition 1. Suppose that F is a subset in R

1. If {U;} is a countable collection of sets of diameter at most J, whose union
contains F, we say that {U;} is a d-cover of F. (The diameter of a set U is
defined as |U| = sup{|jz —y| : z,y € U}.)

2. Suppose s is a non-negative number. For any § > 0, define

H,s(F) = inf{z |U;|® - {U;} is a d-cover of F}.
i=1

Then we call Hy(F) = lims_.g Hy 5(F) the outer s-dimensional Hausdorff mea-
sure of F.
3. The Hausdorff dimension of the set F is defined by

dimpg (F) = inf{s : Hy(F) = 0} = sup{s : Hs(F) = oo}.

Despite its abstract formulation, the definition relies on a rather intuitive
principle. As an illustration, consider a line segment of length a. We want to
cover it with s-dimensional hypercubes of side-length equal to §. To do so most
effectively we need approximately a/d hypercubes. The Lebesgue measure of the
covering is then (a/d) x §°. One can see that as 6 — 0, the Lebesgue measure of
the covering converges to zero if s > 1, and to infinity if s < 1. In fact, only for
s = 1 does the measure converge to a positive real number. Therefore in this case
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the Hausdorff dimension is equal to the usual Euclidian dimension of a simple
line, that is, one. However, in the general case of sets with a highly irregular
structure, the above calculations may yield fractional values of s.

3.2. Computing the Hausdorff dimension

Hausdorff dimensions are difficult to compute in general. There is, however,
a particular class of fractals for which the task is made easier thanks to the
work of Moran (1946) and Hutchinson (1981). A self-similar fractal, F, is one
in which the set itself can be partitioned, ad infinitum, into smaller sets, all
of them having the same geometrical shape as F. Both Koch’s snowflake and
the antihype fractal are self-similar. In fact, both are attractors of two different
iterated function systems (IF'S, Barnsley (1988)). The main ingredient of an IFS
consists of functions that alter the size of a set without changing its shape. Such
functions are called similitudes and have associated a shrinking factor or ratio r.
For example, a similitude with ratio 1/3 will transform an equilateral triangle of
sidelength [ into a similar equilateral triangle with sidelength [/3. A fractal set
F is the attractor of an IFS (f1,..., f,) with corresponding ratios (ry,...,r,) if

F = fl(]:) U fg(]:) U...u fn(]:)

If, in addition, the IFS satisfies Moran’s (1946) open set condition, that is, there
exists an open set V C R? such that the images {f;(V),1 < j < n} are disjoint
subsets, then the Hausdorff dimension of F is the positive number s such that

f:rf =1 (3.1)
=1

For Koch’s snowflake, it can be shown that the Hausdorff dimension is s =
log4/log 3 (Falconer, 2003). This number is in agreement with the fact that the
curve is “larger than 1-dimensional” since it has infinite length, and it is “smaller
than two-dimensional” because it has zero area. In the next section we define an
IFS that allows us to compute the Hausdorff dimension of our antihype fractals,
a derivation that also provides an intuitive explanation of (BII).

4. Geometric Properties of Antihype Fractals
4.1. A connection with Koch’s curve

Figure 4 presents four views of the support of &3, that illustrate the self-
similarity of A3. It consists of six smaller parts but with the same shape, and
each of these six replicates consists of six even smaller ones, and so on. It turns
out that there is a close connection between A% and Koch’s curve, a connection
that also helps to illustrate the concept of self-similarity.
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Figure 4. Four spatial views of the A3.

Specifically, the right image from the first row of Figure 4 shows that A3
inhabits a hexagon with infinitely many holes. Each of these holes apparently
is bounded by a Koch’s curve — seeking a rigorous proof of this assertion is too
much of a detour for our tour and the task is left as a souvenir puzzle for those
with inquisitive minds. Here we just use the self-similarity to prove a weaker
result: the area of the largest hole is the same as the area inside the Koch’s curve
generated by the triangle depicted in the image. The conclusion then holds for
all holes by self-similarity.

To prove this, let A be the area of the triangle in Figure 1 that generates
the Koch’s curve. By induction, at tth iteration, the snowflake curve consists
of 3 x 4! line segments, and the area of each triangle to be added to each line
segment is A/9t. Consequently, at the ¢-th iteration the area inside the snowflake
is Ay = A;_1+3 x471A/9t. This implies that the Koch’s curve encloses an area
equal to A, = 8A/5. Returning to Figure 4, if we denote by A the area of the
triangle, we see that the area of the largest hole, denoted by H, is the same as
A+3B, where B is the area of any of the three regions between the three triangle’s
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sides and A3. By symmetry, B is also the area of any of the six regions between
the A% and the six hexagon’s sides. Clearly, the area of the whole hexagon is
6A, and the area of the hexagon excluding the aforementioned six regions is the
same as

6 62
H+ <§>H+ (5) H+ - =3H,
because every iteration of ILHS forms six smaller rosaries, each of which has
the largest hole with area equal to one ninth of the area of the corresponding
“parental” one. Consequently, we have 6A — 68 = 3H. Together with H =

A + 3B, this implies H = 8A /5 = A, our desired result.

4.2. Dimension of the antihype fractals

The self-similarity of A* also allows us to prove that AF is invariant for a
particular set of IFS that satisfies the open set condition, which in turn allows
an easy calculation of its Hausdorff dimension. Specifically, for any permutation
o of {0,...,k — 1}, we can define a transformation, 1, : A* — A*, by

N e )

Each v, is a similitude with contraction ratio 1/k, corresponding to one realiza-
tion of ). Indeed, A itself is just the union of all these images, as proved in
Appendix:

Us o (AF) = AR, (4.1)

where the union is taken over all k! possible permutations of {0,...,k — 1}.
Evidently, all k! images, ¢, (.A¥), are identical in shape to A* but with a shrinking
factor 1/k, as demonstrated in Figure 4.

Equation () implies that, if the dimension of AF is s, then a Hausdorff
measure Hy should satisfy

k! k! HS(Ak)
HS(-Ak) = ZHS(T/}UE (-Ak)) = Z ks (4.2)
i=1 i=1

The additivity holds here because, for oy # 02, Vg, (A¥) N1hg, (A*¥) = 0. The
last identity in (E2) is equivalent to a change of variable formula in which the
Jacobian term is from a linear transformation with contracting coefficient 1/k
but in dimension s. This is the intuitive principle behind (BI).

Evidently, in order for (B2 to hold for an s such that 0 < H,(AF) < oo, we

must set
k! 1
> =1 (4.3)
i=1



MEETING HAUSDORFF IN MONTE CARLO 85

Solving (@3 for s we deduce that the Hausdorff dimension for A* is

dimpy (AF) = 11(; gg ((]:)) . (4.4)

4.3. Projections of antihype fractals

The above method can be used to study A, a projection of A* into one
of the r-dimensional hypercubes (2 < r < k). Due to exchangeability, A¥ has
the same geometrical properties no matter which of the k!/(r!(k — r)!) possible
r-dimensional subspaces we choose to project into, as partially demonstrated in
the second row of panels in Figure 4. In this case, because the dimension is
reduced by only one, from k = 3 to r = 2, the number of similar pieces remains
equal to six for each two-dimensional projection of A3. Clearly, the self-similarity
of the original fractal is preserved by each of these projections. The left panel in
the first row of Figure 4 shows A3 from a different point of view. In fact, if we
moved the point of view a little to the right we would have observed only one
line. This is because all the points in A% are on the plane z +y + z = 3/2, which
is just a graphical confirmation of the fact that &3, achieves EA.

To calculate the Hausdorff dimension of A, we first notice that because the
projection and the linear mapping ¢, commute, (Il implies that

Uty (A7) = Ay (4.5)

Unlike (ET), however, ¥y, (AF) = 1,,(A¥) even if o1 # 09, as long as the two
permutations agree on all the components that are within the projected space.
Since for each o, there are (k—r)! such equivalences, the total number of mutually
exclusive ¥, (A¥) in the left-hand side of () is k!/(k — r)!. Consequently, (E=3)
needs to be replaced by the more general

k!
(k—r)!

1
— =1, (4.6)
=1 ke

which yields a generalization of (2) (i.e., (2 is special case of the following

ED) with r = k),

log(k!) — log[(k — r)!]
log (k) '

Interestingly, we note that for any fired r > 2, dimy(A*) — r as k — oo.

This implies that A¥ becomes dense in [0,1]" while remaining a Lebesgue null
set in R" as k — oo, much like the set of all rational numbers is dense in R!

dimy (AF) = (4.7)
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but with Lebesgue measure zero. Figure 5 illustrates this phenomena by showing
that A§ is much more dense in the unit square than A3. We also remind the
reader that when k = 2, dimgy(A2%) = 1, i.e., the Hausdorff measure is the same
as the Lebesgue measure on R!'. This holds intuitively because U2 is just the
usual quantile coupling using (Uy, 1 — Uy), which sits on the line z +y = 1 in R
This is a simple demonstration that Hausdorff dimension correctly captures the
geometric properties of Lebesgue null sets.

k=3 k=4
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Figure 5. Coordinate two—dimensional projection of the A* for different values of k.

5. A Cautionary Tale of Distributional Convergence Distances
5.1. Geometric convergence in Kolmogorov-Smirnov distance

Besides offering another connection between Monte Carlo and fractal geom-
etry, ILHS also provides an intriguing example that is of pedagogical value. We
start by considering the bivariate sequence B; = (Utl),Ut(z)), t > 1, resulting
from (Z3). By the definition of (Z3)), we have

Ki K Ko uk
U=+ =+t oy (5.1)
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To properly define Z/{(fo and hence B, we need the “time backward dual sequence”

K K K, Uk
“f:f+k_22+"'+k_f+k_g‘ (5.2)

Clearly Uf = (Ut(l),...,Ut(k))T and UF = (Ut(l),...,[j't(k))T have identical k-
dimensional joint distributions for any ¢. The advantage of the Z;{f sequence is
that Z:{f converges point-wise, on the infinite product space defined by {IC¢, ¢ > 1},
to the well-defined limit 4% = >7°, K;/k'. Note ([ZZ) is the special case of (52
when k = 2.

Now for each 4, indexing the ith component of Z;{f , because oy(1 — 1) < k—1,
it is easy to show that |U%) — Ut(i)\ <Yk = 1)/K + /K = 2/k = «.
Consequently, if we let Fj(u,v) be the bivariate CDF of B; (or B;) for any t,
including t = oo, we have

—[Fi(u,v) — Fi(u—e€,v—€)] < Fo(u,v) — Fr(u,v) < Fy(u+ €, v+ €) — Fy(u,v).

(5.3)
Because |F(u+ o, v+ ) — F(u,v)| < |Fp(u+ o) — Fp(u)| + [Fy(v + ) — Fy(v)]
for any «, 8 > 0, where I, and F}, are the two marginal CDF's of F', and because
marginally Ut(i) ~ Uniform|0, 1], (B3) implies that |F(u,v) — Foo(u,v)| < 2¢ =
4/kt. Since this bound is free of u and v, we can conclude that B, converges to By
geometrically with respect to Kolmogorov-Smirnov (KS) distance (Kolmogorov
(1933)) as t — oo, because

D(t,OO)E sup ]Ft(u,v)—Foo(u,v)] <
(u,v)ER?

|

. (5.4)

Incidentally, by a much more complex argument, Craiu and Meng (2005)
proved a tighter bound than (BI):

D(t,t+m) <k Dk -1 forany t > 1 and m > 0. (5.5)

5.2. Non-convergence in total variation and Hellinger distances

The geometric convergence in KS distance of By to By is a rather strong re-
sult, which might tempt one to guess that B; also converges under other common
metrics, especially in view of the fact that (BH) holds even when (Ut(l), t(z)) is
replaced by (gl(Ut(l)), gg(Ut(z))) for any monotone functions g;,i = 1,2, as proved
in Craiu and Meng (2005). The following general result, which should not be
unexpected for an astute reader who noticed the shrinking of distributional sup-

ports, shows that such an intuition can be quite misleading.
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Lemma 1. Let {S;,t = 0,1,2,...} be a sequence of p-measurable sets in R?
such that for all t, (a) Siy1 C Si, and (b) p(Sit1) = (1 — p)u(Sy) for some
t-independent constant 0 < p < 1, where 0 < u(So) < oo. Let Y; be a uniform
random variable on Sy (with respect to p). Then Yy does not converge in the
metrics defined by the Hellinger distance or L distances, for any r > 1.

Proof. Without loss of generality we assume pu(Sg) = 1, hence u(S;) = (1 — p)*
and the density for Y; is fi(y) = 1s,(y)(1 — p) . The Hellinger distance between

ftem and f is

Hitt+m) = [WEGD VTPt =21 [ VRG]

p(Stm)
:2[1 - 7} — o1 — /I —p),
w(St)
which stays as a positive constant when ¢ — co. Consequently, Y; is not a Cauchy
sequence, and therefore cannot converge, in Hellinger distance.

For L" distance, let I,.(t,t +m) = [[{f:(y) — firm(y)} p(dy)]"/". Then

p(dy) + /
S¢NS¢

t+m

T

I 1 1
1(St)  p(Stm) u(Si)
~ u(Se) = 1(Stam) §11(St) — p(Stgm) 771
- 1 () { [ p(St+m) ] * 1}

N 11_—(;)?—?2: { [(1 —1p)m - 1} e 1}'

This result shows that lim;_,o ,-(t,¢ +m) = oo when r > 1, and limy_.o I3 (¢, ¢ +
m) = 2[1 — (1 —p)™] > 0 for any m > 0. Hence Y; cannot converge in terms of
L™ distance for any r > 1.

[Mm+mW=/ u(dy)

Sttm

If we take S; to be the support of By, then conditions (a) and (b) in Lemma 1
hold with p = k~!. Since the TV distance is half of the L; distance (e.g.,
Lindvall (1992)), Lemma 1 implies that B; does not converge in TV distance,
Hellinger distance or any L" distance with r > 1, even though it converges
geometrically in the Kolmogorov-Smirnov distance. (Obviously, this lemma is
applicable to Z/lf itself, as well as to any uniform random variables on supports
formed by the iterative process of generating any self-similar fractal contained
in a p-finite set, where p does not have to be Lebesgue measure.) However,
for many practical applications in Monte Carlo, the distribution of By is very
close to the distribution of By, even for t ~ 5 (see Craiu and Meng (2005)).
This raises the question of whether convergence in the TV distance is a too
stringent criteria for measuring convergence in some practical situations. For
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example, had we insisted on using the TV distance, we might have abandoned
ILHS because we would have wrongly believed that EA can never be effectively
achieved with any finite number of iterations. This question is worth further
investigation because TV distance is the standard metric for many theoretical
results regarding convergence in MCMC (e.g., Rosenthal (1995); Marchev and
Hobert (2004)). See Gibbs and Su (2001) for more comparisons between different
metrics and possible applications to MCMC.

6. An End-of-tour Souvenir

In practice, the U} generated by ILHS will be part of the arguments for some
general functions. In general, the negative correlations may not be preserved even
if these functions are monotone. However, the L{tk generated by ILHS has the
nice property called negative association (Joag-Dev and Proschan (1983)), which
means that the non-positiveness property of the correlation is preserved under
monotone transformations; see Craiu and Meng (2005) for details. In order to
extend this property to U~ | we need to show that any component-wise monotone
(all in the same direction) function on R¥ is almost surely continuous with respect
to a (non-trivial) Hausdorff measure on the support of % . Although it is quite
well-known that monotone functions on R* are almost surely continuous with
respect to Lebesgue measure, whether this result holds for a Hausdorff measure
on AF is currently unclear. We would certainly invite anyone who is interested
in such theoretical investigations to take this puzzle home after leaving our tour.
If the result holds, then ILHS indeed has all the desirable properties anticipated
in Craiu and Meng (2005). If not, then there would be yet another “tourist
attraction” for this tour, one that will show how easily our intuition can mislead
us in the strangely fascinating world of fractals.
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Appendix

We prove that if Py is the set of all possible permutations of {0,1,...,k—1},
then
Uoep, o (A") = A, (A1)
First, by the construction of ILHS, we have the representation

o0

Ak:{iz(ml,...,xk)T:wj:Z%}, (A.2)

t=1
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where oy are i.i.d. permutations of {0,1,...,k — 1}.
To prove ([A]), we first note that for any & € A*, we can let § = (y1,...,yx)
with -
- or+1(4 — 1)
Yi= Z kt :
t=1
Clearly, by [(A2), 7 € A*¥ because (0411(0),...,0011(k — 1)), t = 1,2,... are
also i.i.d. permutations of {0,...,k — 1}. Furthermore, if we let ¢* = (01(0),. ..,

o1(k — 1)) then 9, (§) = by our construction. Therefore A¥ C Uyep, 1 (A").
On the other hand, if # € Uyep, 1 (A¥), then there exists i € A* such that
for at least one o € Py, we have & = 1),(7). Using the characterization of the set

AF given in [(A2), & = ¢, () € A*.
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