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Abstract: In this article, some models for random replication of character strings are

considered that involve random mutations, deletions and insertions of characters.

We derive some sufficient conditions on the replication process and the ancestor

chain that ensure stationarity and mixing properties of the replicated chain. We also

give examples of replication processes which lead to descendant chains not having

any mixing properties even if the ancestor chain is i.i.d. in nature. Stationarity and

mixing properties are two properties of dependent processes that are of fundamental

importance and well studied in the literature. These properties are quite useful in

generalizing many asymptotic results for i.i.d. processes to dependent processes and,

in many situations, they are useful in justifying statistical estimation and inference

based on dependent data. The presence of random deletions and insertions makes

our stochastic replication model considerably different from simpler models that

involve only mutations, and it leads to some interesting theoretical problems.

Key words and phrases: α-mixing property, exchangeable processes, hidden Markov

processes, Markov chains, stationary processes.

1. Introduction

Suppose that we have observed a random character string {Y1, Y2, . . .}, where
Yi ∈ A, a finite alphabet of symbols (= {α1, . . . , αk}, say). We assume that this
observed sequence is generated by a random replication process operating on a
(possibly unobserved) ancestor string {X1, X2, . . .} of characters from the same
alphabet. Such replication of character strings arises in molecular evolution of
nucleic acids and protein sequences. Several stochastic models for biological se-
quences (i.e., DNA, RNA and protein sequences) have been considered in the
literature, and their biological significance has been investigated by several au-
thors (see e.g., Churchill (1989), Durbin, Eddy, Krogh and Mitchison (1998),
Ewens and Grant (2001), Krogh, Brown, Mian, Solander and Hausler (1994),
Pevzner, Borodovsky and Mironov (1989a, 1989b), Schbath, Prum and Turck-
heim (1995) and Waterman (1995)). Among those models, Markov and hidden
Markov models are possibly the most extensively studied for biological sequences.
It is well known that a stationary Markov chain on a finite state space satisfies
the α-mixing property with a geometric rate of decay (see e.g., Billingsley (1986,
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1999)) if the chain is irreducible and aperiodic in nature. On the other hand,
for a hidden Markov process, where both the output process and the underlying
Markov process have finite state spaces, the output chain can be viewed as a
function of a Markov chain on a finite state space which can be taken to be the
Cartesian product of the state spaces of the output chain and the underlying
Markov chain (see e.g., Chaudhuri and Dasgupta (2005) for more details and
related results). Consequently, the stationarity and the mixing properties of the
output process will be a simple consequence of those properties of the Markov
chain on that product state space, and those can be ensured by appropriate
conditions on the output distributions and the distribution of the hidden chain.

Let us consider a situation where {Y1, Y2, Y3, . . .} is obtained by replicating
{X1, X2, . . .}, and the replication process is subject to random mutations, inser-

tions and deletions of characters at various positions. The main question that
we intend to address in this article is whether the stationarity and the mixing
properties hold for the descendant Y -sequence when similar properties are known
to hold for the ancestor X-sequence. Clearly, the answer to this question will
depend on the nature of the random replication process. We derive some suffi-
cient conditions for the replication process that will ensure a positive answer, and
present some interesting examples to show that the answer might be negative in
some simple yet important special cases.

If we view random replication as a stochastic transformation on the space
of sequences equipped with a probability measure governing the probability law
for the ancestor chain, the question raised in the preceding paragraph translates
into the problem of invariance or non-invariance of stationarity and mixing prop-
erties under such random transformations. We have specifically chosen to study
stationarity and mixing properties in this paper because these are of fundamen-
tal importance for the asymptotic results related to dependent sequences. As is
well known many asymptotic results, such as laws of large numbers and central
limit thorems for averages related to simple i.i.d. sequences, can be generalized
to stationary and mixing processes. In particular, as has been discussed in detail
in Waterman (1995), empirical distributions of words of finite length obtained
from finite state space stationary processes satisfying appropriate mixing condi-
tions lead to asymptotically consistent estimates of finite dimensional probability
distributions of that process. This is of critical importance in justifying various
asymptotic statistical estimation and inference techniques when they are applied
to dependent sequences.

Surprisingly, though the statements of the main theorems that we formu-
late are simple and intuitive, the proofs require a combination of ideas related
to properties of finite Markov chains, including their large deviation properties.
The proofs also show the special role played by the Markov nature of the repli-
cation process, and we have not been able to generalize the results without it.
The organization of the paper is as follows. Section 2 introduces the necessary
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notation for the description of the replication model. The main mathematical
challenge lies in dealing appropriately with the randomness of positions intro-
duced by random insertions or deletions. Section 3 contains the main theorems
that give some sufficient conditions for the invariance of stationarity and mixing
properties. Section 3 also presents an example of an exchangeable replication
process to demonstrate lack of invariance of mixing properties in a special situa-
tion. The concluding section indicates some unresolved issues for further research
related to our proposed model for stochastic replication of character strings. All
proofs are in the Appendix.

2. A Model for Random Replication

We begin by describing a model for the random replication or copying mech-
anism that operates on the (possibly unobserved) ancestor sequence of the X’s to
produce the observed sequence of the Y ’s, using a stochastic process {Z1, Z2, Z3,
. . .}. We assume that the Z-process has state space {D, I,M}. In state D,
the replication process Z will delete the character in the X-sequence that it
encounters. In state I, the process Z will insert one letter from A into a po-
sition in the X-sequence that it encounters by randomly selecting that letter
from A according to the probability distribution P (“Inserted letter is αi”) = πi

(1 ≤ i ≤ k, πi > 0,
∑k

i=1 πi = 1) that depends neither on the X-sequence nor

on the Z-process. In state M , the process Z will mutate the character in the
X-sequence that it encounters according to a k × k transition probability ma-
trix ((θi,j)), which is assumed to be independent of the Z-process. Here for
1 ≤ i, j ≤ k, θi,j = the conditional probability P (“The letter is mutated into
αj in the descendent chain” | “The letter was αi in the ancestor chain”), and
∑k

j=1 θij = 1 for all 1 ≤ i ≤ k. We assume that θii > 0, so that even if the Z-
process is in state M , the corresponding character in the X-sequence may remain
unchanged with a positive probability.

Let Ti be the time of the ith visit of the Z-process to the state I or the state
M . To keep track of the index (i.e., the position of a letter) in the X-sequence
on which Zi operates, let

χi =

{

1, if Zi ∈ {M,D},

0, if Zi = I.
(1)

Also, let us define Sn =
∑n

k=1 χk. Then a letter in the observed Y -chain, which
is obtained by copying the ancestor X-chain using the Z-process, can be written
as

Yi =

{

αs with probility πs, if ZTi
= I ,

αs with probability θrs, if ZTi
= M and XSTi

= αr.
(2)

Remark. In the above notation if Z1 = Z2 = · · · = Zm = I, we have
ST1 = ST2 = · · · = STm = 0. Since the X-chain starts from X1, we need to
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define XST1
= · · · = XSTm

= X0 by introducing X0. This X0 is never oper-
ated upon by the Z-sequence because the effect of insertions at the beginning
is to shift the {X1, X2, . . .} part to the right, and as soon as we have the first
D or M according to the above notation, that acts on X1. Thus we consider
the {X0, X1, . . .} sequence, whose {X1, X2, . . .} part is to be replicated by the
{Z1, Z2, . . .}. Without loss of generality for all our subsequent mathematical re-
sults, we assume that {X0, X1, . . .} is a stationary sequence with the same finite
dimensional distributions as the stationary sequence {X1, X2, . . .}.

3. Invariance of Stationarity and Mixing Properties

Throughout this section the Z-process will be same as before, and we now
assume that it is an irreducible, aperiodic Markov chain with stationary transi-
tion probabilities. We also assume that the Z-sequence and the X-sequence are
independent.

Theorem 3.1. If the X-sequence and the sequence {ZT1 , ZT2 , ZT3 , . . . , } are both

stationary, the sequence {Y2, Y3, Y4, . . . , } is also stationary.

Note that the stationarity of the Z-process does not necessarily imply that
the ZT -process will be stationary, though it implies that the ZT -process will
be Markov with stationary transition probabilities and vice versa. However, if
the Z-process is i.i.d., so is the ZT -process. It is important to note that an
ergodic Z-process does not imply an ergodic ZT -process. For this reason, our
next theorem has been stated with an extra assumption. For a Markov chain,
such an assumption is satisfied if the entries of the transition probability matrix
are all positive, which in practical problems is not too restrictive a condition.

We now address the mixing properties of the ancestor X-chain and the de-
scendant Y -chain produced by the replication process. We follow the notation
and the terminology used in Billingsley (1986, 1999) and, in our next theorem, we
establish that under appropriate regularity conditions on the Z-process, α-mixing
of the ancestor chain is passed down to the descendant chain.

Theorem 3.2. Let the X-sequence be stationary and have the α-mixing property

with geometric decay, and let the Z-sequence be Markov such that {ZT1 , ZT2 , . . .}

is stationary with an irreducible and aperiodic transition matrix. Then the Y -

sequence is also stationary, and it possesses the α-mixing property with geometric

decay.

3.1. Exchangeable replication process and lack of invariance of mixing

properties

Consider an exchangeable Z-sequence, i.e., a sequence that is distributionally

invariant under any finite permutation of the Zi’s. It is a well known result

(see e.g., Feller (1971)) that any such exchangeable process with a finite state
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space is a mixture of i.i.d. processes with the same state space. Clearly, an

exchangeable process is stationary in nature. However, it is fairly easy to see

that an exchangeable sequence with a finite state space will not satisfy the α-

mixing property, nor any other standard mixing properties, unless the sequence

is actually i.i.d..

Suppose now that the ancestor X-sequence is i.i.d.. In this case, the descen-

dant Y -sequence will be an exchangeable sequence if the Z-sequence is. This

follows easily from the fact that a random sequence with a finite state space is

exchangeable in nature if and only if it is conditionally an i.i.d. sequences with

the same state space given the tail σ-field of the exchangeable process (see e.g.

Feller (1971)). Consequently, given the tail σ-field of the Z-process, the X-, the

Z- and hence the Y -processes will be conditionally i.i.d.. This implies that, un-

conditionally, the Y -sequence will be exchangeable in nature. In other words,

even if the ancestor sequence is a purely i.i.d. sequence, the descendant sequence,

though stationary in nature, may fail to satisfy any standard mixing properties,

including the α-mixing property, when the replication process is exchangeable

but not i.i.d..

4. Concluding Remarks

We have modeled the replication of a biological sequence and the changes

that gradually occur, leading to biological evolution, by a Z-process involving

random mutations, deletions and insertions. Under this model, we have investi-

gated the invariance of certain key properties of the family of probability models

for character strings. This invariance is important as it ensures that the ancestor

and the descendant sequences are driven by the same type of probability laws,

which in turn ensures certain consistency of the probability models involved as

the ancestor string itself is created by replication of its predecessor. Further,

distributions of DNA words lead to useful statistical tools for analysis of DNA

sequences resulting in biologically significant discoveries (see e.g., Basu, Burma

and Chaudhuri (2003), Chaudhuri and Das (2001), Karlin and Ladunga (1994),

Karlin, Ladunga and Blaisdell (1994) and Nussinov (1984a, 1984b)), and asymp-

totic distributions of word frequencies obtained from large DNA sequences can

be conveniently derived when stationarity and mixing properties of such large

sequences hold.

We conclude by making an interesting observation. When there is a single

ancestor chain (the X-chain), as in our stochastic replication model, and it is

replicated by two independent replication processes (say, the Z (1)-process and

the Z(2)-process), the paired descendant chain (say, the (Y (1), Y (2))-chain) is in

general not stationary as a bivariate process even if all the X- and the Z-processes

are i.i.d. in nature. For example, consider i.i.d. X’s as well as two i.i.d. copying
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processes, all mutually independent. Assume that there is no insertion, so that

STi
= Ti for all i ≥ 1. Let µ1 and µ2 denote the mutation transformations that

operate on characters in the X-sequence replicated by the Z (1)-process and the

Z(2)-process in their mutation states, respectively. Then, using the i.i.d. nature

of the X’s, it can be verified that

P
{

Y
(1)
1+k = α1, Y

(2)
1+k = α2

}

= P
{

Z
(1)

T
(1)
1+k

=M,Z
(2)

T
(2)
1+k

=M,T
(1)
1+k 6= T

(2)
1+k

}

P
{

µ1(X1)=α1

}

P
{

µ2(X2)=α2

}

+P
{

Z
(1)

T
(1)
1+k

= M,Z
(2)

T
(2)
1+k

= M,T
(1)
1+k = T

(2)
1+k

}

P {µ1(X1) = α1, µ2(X1) = α2}

= P {µ1(X1) = α1}P {µ2(X2) = α2} + P
{

T
(1)
1+k = T

(2)
1+k

}

× [P {µ1(X1) = α1, µ2(X1) = α2} − P {µ1(X1) = α1}P {µ2(X2) = α2}] .

As all the Z’s are i.i.d., the renewal times of the state M are sums of i.i.d. geo-

metric random variables. In other words, T
(1)
1+k and T

(2)
1+k are two i.i.d. negative

binomial random variables each with index 1 + k. Hence, the above probability

depends on k, violating stationarity whenever

P {µ1(X1) = α1, µ2(X1) = α2} − P {µ1(X1) = α1}P {µ2(X2) = α2} 6= 0 .

This is a problem that needs to be tackled in our probabilistic modeling before

we can study multiple descendants of a common ancestor. We intend to pursue

this in a future paper.
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Appendix. Mathematical Details and Proofs of Theorems

From now on we use the i.i.d. sequence {J1, J2, . . .} to describe the characters

inserted during the replication process. To be more precise, Ji is the letter

inserted if ZTi
= I (i.e., Yi = Ji), and Ji = αj with probability πj. Further,

for 1 ≤ i ≤ k, we define an i.i.d. sequence of random characters Ri
n’s generated

according to the probability distribution of the ith row of the mutation matrix

((θij)) described in Section 2.
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Using the above notation, we next observe that

Yn = g(ZTn , XSTn
, Un), (3)

where the Un’s are i.i.d. and completely independent of {(ZTn , XSTn
)}, and g is a

deterministic function of its arguments. Here, Un consists of (k +1) independent

components (recall that k is the number of characters in the alphabet A). The

i-th component of Un is Ri
n, 1 ≤ i ≤ k, and the (k + 1)-st component of Un is

Jn. The g function in this case takes the value Jn if ZTn = I, and takes the

value Ri
n if ZTn = M and XSTn

= αi. This representation reduces the proofs

of stationarity and mixing of {Yn} to the proofs of stationarity and mixing of

{(ZTn , XSTn
)}.

A.1. Proof of stationarity

Denote (ap, ap+1, . . . , aq) by {a}q
p. Further, we write

{T}q
p = (Tp, . . . , Tq), {ZT }

q
p = (ZTp , . . . , ZTq ), {XST

}q
p = (XSTp

, . . . , XSTq
), etc.,

and this notation is used throughout.

Proof of Theorem 3.1. We want to show that for any given k ≥ 1, the dis-

tribution of (Yn+1, . . . , Yn+k) is the same for all n ≥ 1. Using the representation

(3), it is enough to show that for each fixed k, the distribution of

(ZTn+1 , . . . , ZTn+k
, XSTn+1

, . . . , XSTn+k
)

is the same for any n ≥ 1. We do this next.

Condition on Tn = tn, STn = stn , and ZTn = I (or ZTn = M). Take ZTn = I

(ZTn = M). From index tn + 1, the Z-chain evolves as an independent Markov

chain with the same transition probabilities as the original Z-chain, tempered by

the initial condition ZTn = I (ZTn = M). We denote the evolution of this chain

by primed variables, e.g., Z ′
1, Z

′
T ′

1
, etc. Corresponding probabilities are denoted

by PI (PM ). Also note that STn+1 = stn + S′
T ′

1
, STn+2 = stn + S′

T ′

2
, etc. Then, we

have

P ({ZT }
n+k
n+1 = {z}k

1 , {XST
}n+k

n+1 = {x}k
1)

=
∑

1P (Tn = tn, STn = stn , ZTn = I)
∑

2PI({T
′}k

1 ={t′}k
1 , {S

′
T ′}={s′t′}

k
1 , {Z

′
T ′}k

1 ={z}k
1)P ({Xstn+s′

t′
}k
1 ={x}k

1)

+
∑

1P (Tn = tn, STn = stn , ZTn = M)
∑

2PM ({T ′}k
1 ={t′}k

1 , {S′
T ′}={s′t′}

k
1 , {Z

′
T ′}k

1 ={z}k
1)P ({Xstn+s′

t′
}k
1 ={x}k

1), (4)

where the sum
∑

1 is over (tn, stn) and
∑

2 is over the primed variables (t′n, s′t′n
).

Since stn is fixed, we use the stationarity of the X-sequence to replace
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P ({Xstn+s′
t′
}k
1 = {x}k

1) by P ({Xs′
t′
}k
1 = {x}k

1). Now, consider the indepen-

dent Z ′-chain = {Z ′
0 = Ztn , Z ′

1 = Ztn+1, Z
′
2 = Ztn+2 · · · }, which has the same

stationary transition probabilities as our Z-chain, and Z ′
0 is restricted to be I

or M . The chain {Z ′
1, Z

′
2, . . .} operates on {Xstn

, Xstn+1, . . .}, which has the

same distribution as {X0, X1, X2, . . .}, in view of the assumed stationarity of the

X-process. It is then clear that the inside sum
∑

2 reduces to respective prob-

abilities of events involving (Z ′
T ′

1
, . . . , Z ′

T ′

k

, XS′

T ′

1

, . . . , XS′

T ′

k

) with the additional

condition that Z ′
0 = I (M). We denote these probabilities with appropriate

suffices. Summation over (tn, stn) leads to

P ({ZT }
n+k
n+1 = {z}k

1 , {XST
}n+k

n+1 = {x}k
1)

= P (ZTn = I)PI({Z
′
T ′}k

1 = {z}k
1 , {XS′

T ′

}k
1 = {x}k

1)

+P (ZTn = M)PM ({Z ′
T ′}k

1 = {z}k
1 , {XS′

T ′

}k
1 = {x}k

1). (5)

The assumed stationarity of ZTn concludes the proof of stationarity for simple

events of the above form. For a general event B involving (ZTn+1 , . . . , ZTn+k
,

XSTn+1
, . . . , XSTn+k

), decomposition into disjoint union of such simple events

and then summation leads to

P (B) = P (ZTn = I)PI(B) + P (ZTn = M)PM (B). (6)

This concludes the proof of stationarity of (ZTn , XSTn
).

A.2. Proof of mixing property

Since the arguments required to prove Theorem 3.2 are somewhat complex

(primarily due to the notation needed to write such a proof rigorously with all

relevant details), we will first prove a simpler result (Proposition 3.1), which is a

result on the α-mixing property of the ancestor and the descendant chains, when

the Z-process is assumed to be i.i.d.. The main idea of the proof is to use α-mixing

property of the X-process when STn+k
− STk

is large, and to use large deviation

inequalities when STn+k
− STk

is small. After the reader sees the main ideas in

a simpler setting, Theorem 3.2 will be presented as an extension of Proposition

3.1, and the proof of Theorem 3.2 will provide the necessary modification of the

arguments and the mathematical results used in the proof of the Proposition 3.1

when the Z-sequence is Markovian.

A.2.1. Some useful notation and representation

In the proof of the mixing property one needs an expression for P (A∩B)−

P (A)P (B), where A is an event that is describable in terms of ZT1 , . . . , ZTk
, XST1

,

. . . , XSTk
, and B is an event that is describable in terms of finitely many of the
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variables ZTn+k+1
, · · · , XSTn+k+1

, · · · . We first write A = {(ZT1 , . . . , ZTk
, XST1

,

. . . , XSTk
) ∈ C}, where C is a set of 2k-tuples, of which the first k entries are

letters from the set {I,M}, and the latter k entries are letters from the alphabet

A. We write C as a disjoint union over the first k coordinates {c}k
1 times its {c}k

1

section given the first k coordinates C{c}k
1

(a set of k-tuples). In other words,

C = ∪{{c}k
1} × C{c}k

1
, (7)

where the union is over disjoint sets, each of which is the Cartesian product of

a singleton set (i.e., {{c}k
1}) and a set of k-tuples of letters from the alphabet A

(i.e., C{c}k
1
).

The event A is broken up in terms of values of ZTi
, Ti, STi

. For this, we

select 1 ≤ t1 < · · · < tk, a permissible k-tuple from {M, I}k (allowed by the

representation (7) of A), say {c}k
1 , and permissible values for 0 ≤ st1 ≤ · · · ≤ stk

(governed by the two previous constraints and following the definition of the Sn-

sequence). Clearly, for the event A, given {Zt}
k
1 = {c}k

1 , the sequence {Xst}
k
1 is

forced to lie in the section C{c}k
1
, which is a finite set as the alphabet is finite.

Then, using the independence of the X-and the Z-sequences, we have

P (A) =
∑

P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1)P ({Xst}
k
1 ∈ C{c}k

1
),

(8)

where the summation
∑

is over the 3k-tuples ({t}k
1 , {st}

k
1 , {c}

k
1)’s allowed by A.

Now, let B denote an event that is describable in terms of

ZTn+k+1
, . . . , ZTn+k+l

, XSTn+k+l
, . . . , XSTn+k+l

.

With a representation analogous to (7) given as E = ∪{{e}l
1} × E{e}l

1
, and

following the same notational convention, we can write

P (B) =
∑

P ({T}n+k+l
n+k+1 ={t}n+k+l

n+k+1, {ST }
n+k+l
n+k+1 ={st}

n+k+l
n+k+1, {ZT }

n+k+l
n+k+1 ={e}l

1)

×P ({Xst}
n+k+l
n+k+1 ∈ E{e}l

1
). (9)

Assume the Z-sequence to be i.i.d. in nature and, as in the proof of Theorem

3.1, primes will denote an independent chain after a visit of the Z-chain to the

state of mutation (M) or insertion (I). Then, using stationarity, P (B) is also

obtained from (9) as

P (B)=
∑

2P ({T ′}l
1 ={t′}l

1, {S
′
T ′}l

1 ={s′t′}
l
1, {Z

′
T ′}l

1 = {e}l
1)P ({Xs′

t′
}l
1 ∈ E{e}l

1
).

(10)
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Also, we can write (Tn+k+j, STn+k+j
) = (Tn+k, STn+k

) + (T ′
j , S

′
T ′

j
). Now, from the

descriptions of A and B combined with the previous observation,

P (A ∩ B)

=
∑

1

∑

3

∑

2P ({T}k
1 = {t}k

1 , {ST }
k
1 ={st}

k
1 , {ZT }

k
1 ={c}k

1 , Tn+k = tn+k,

STn+k
=stn+k

) × P ({T ′}l
1 = {t′}l

1, {S
′
T ′}l

1 = {s′t′}
l
1, {Z

′
T ′}l

1 = {e}l
1)

×P (({Xst}
k
1 ∈ C{c}k

1
) ∩ ({Xst}

n+k+l
n+k+1 ∈ E{e}l

1
)), (11)

where (i) the sum
∑

1 needs to be taken over the 3k-tuples ({t}k
1 , {st}

k
1 , {c}

k
1)

allowed by the event A; (ii) the sum
∑

2 needs to be taken over the 3l-tuples

({t′}l
1, {s

′
t′}

l
1, {e}

l
1) allowed by the event B; and (iii) the third summation

∑

3

needs to be taken over (tn+k, stn+k
) (with the notational convention (tn+k+j,

stn+k+j
) = (tn+k, stn+k

) + (t′j , s
′
t′j

)).

A.2.2. Some preliminary results

With the preceding results at hand, we can state and prove the following.

Lemma 3.1. Assume that the X-sequence is stationary, the Z-sequence is i.i.d.,

and the events A and B are as before. Then we have

P (A ∩ B) − P (A)P (B)

=
∑

1

∑

2

∑

3P ({T}k
1 ={t}k

1 , {ST }
k
1 ={st}

k
1 , {ZT }

k
1 ={c}k

1 , Tn+k = tn+k,

STn+k
=stn+k

) × P ({T ′}l
1 = {t′}l

1, {S
′
T ′}l

1 = {s′t′}
l
1, {Z

′
T ′}l

1 = {e}l
1)

×
{

P (({Xst}
k
1 ∈ C{c}k

1
) ∩ ({Xst}

n+k+l
n+k+1 ∈ E{e}l

1
))

−P (({Xst}
k
1 ∈ C{c}k

1
)P ({Xst}

n+k+l
n+k+1 ∈ E{e}l

1
))

}

, (12)

where the sums
∑

1,
∑

2,
∑

3 are taken over the respective items as listed after

(11).

Proof. The proof of Theorem 3.1 shows that the sequence {(ZTn , XSTn
)} is

stationary (note that in the present case the ZT ’s are actually i.i.d.). Then, from

the expressions for P (A) and P (B) as in (8) and (10), we have

P (A)P (B)

=
∑

1P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1)P ({Xst}
k
1 ∈ C{c}k

1
)

×
∑

2P ({T ′}l
1 ={t′}l

1, {S
′
T ′}l

1 ={s′t′}
l
1, {Z

′
T ′}l

1 ={e}l
1)P ({Xs′

t′
}l
1∈E{e}l

1
). (13)

We now proceed as follows in order to compare (11) with (13). Notice that

(Tn+k−Tk, STn+k
−STk

) is independent of (Tk, STk
) and has the same distribution
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as (Tn, STn). Suppose that (T ′′
n , S′′

T ′′

n
) is an independent copy of (Tn, STn). Since

∑

P (T ′′
n = t′′n, S′′

T ′′

n
= s′′t′′n

) = 1, where the sum
∑

is over all possible (t′′n, s′′t′′n
), we

have

P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1)

= P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1) ×
∑

P (T ′′
n = t′′n, S′′

T ′′

n
= s′′t′′n)

=
∑

3P ({T}k
1 ={t}k

1 , {ST }
k
1 ={st}

k
1 , {ZT }

k
1 ={c}k

1 , Tn+k = tn+k, STn+k
=stn+k

),

where we have assumed tk + t′′n = tn+k and stk + s′′t′′n
= stn+k

. This shows that

(13) can be written as

P (A)P (B) =
∑

1

∑

3P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 ,

Tn+k = tn+k, STn+k
= stn+k

) × P ({Xst}
k
1 ∈ C{c}k

1
)

×
∑

2P ({T ′}l
1 = {t′}l

1, {S
′
T ′}l

1 = {s′t′}
l
1, {Z

′
T ′}l

1 = {e}l
1)

P ({Xs′
t′
}l
1 ∈ E{e}l

1
). (14)

Given (Tn+k, STn+k
) = (tn+k, stn+k

) and (Tn+k+j, STn+k+j
) = (tn+k+j, stn+k+j

),

consider (t′j, s
′
t′j

) obtained from (tn+k+j, stn+k+j
) = (tn+k, stn+k

) + (t′j , s
′
t′j

). Using

the stationarity of the X-sequence, we have

P ({Xs′
t′
}l
1 ∈ E{e}l

1
) = P ({Xst}

n+k+l
n+k+1 ∈ E{e}l

1
). (15)

We use (15) to replace P ({Xs′
t′
}l
1 ∈ E{e}l

1
) in (14). Combining (11), (13), (14)

and (15), we get the required (12).

Proposition 3.1. Let the X-sequence be stationary and satisfy the α-mixing

property with geometric decay, and let the Z-sequence be i.i.d.. Then the Y -

sequence is stationary and possesses the α-mixing property with geometric decay.

Proof of Proposition 3.1. Stationarity of the Y -sequence follows from the

previous Theorem 3.1. We prove the appropriate mixing property of the sequence

{(ZTn , XSTn
)}. Then the desired mixing property of the sequence {Yn} follows

from (3).

To prove the mixing property of the sequence {(ZTn , XSTn
)}, consider (12)

for P (A ∩ B) − P (A)P (B) as derived in Lemma 3.1. We divide this expression

into two parts by intersecting the event ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 =

{c}k
1 , Tn+k = tn+k, STn+k

= stn+k
) with the events {STn+k

− STk
> nβ} and

{STn+k
− STk

≤ nβ} respectively, where 0 < β < 1 remains to be chosen.

Using the stationarity and the α-mixing property with geometric decay of the

X-process, the absolute value of the expression that involves intersection with
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{STn+k
− STk

> nβ} will be bounded above by

φ[nβ] ×
∑

1

∑

3

∑

2P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 ,

Tn+k = tn+k, STn+k
= stn+k

, STn+k
− STk

> nβ)

×P ({T ′}l
1 = {t′}l

1, {S
′
T ′}l

1 = {s′t′}
l
1, {Z

′
T ′}l

1 = {e}l
1)

≤ φ[nβ]P (STn+k
− STk

> nβ) (16)

for sufficiently large n. Here φ ∈ (0, 1) is such that for each n ≥ 1, the X-

process satisfies α(n) ≤ φn, and [nβ] is the greatest integer smaller than or

equal to nβ. Here, for the summation convention, the reader may check (8) and

(11). The absolute value of the other expression that involves intersection of

({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 , Tn+k = tn+k, STn+k
= stn+k

) with

{STn+k
− STk

≤ nβ} is obviously bounded by

P (STn+k
− STk

≤ nβ) × 2. (17)

Combining (12), (16) and (17), we get

|P (A ∩ B) − P (A)P (B)| ≤ φ[nβ] + 2P (STn+k
− STk

≤ nβ) . (18)

Notice that

P (STn+k
− STk

≤ nβ) = P (χTk+1 + χTk+2 + · · · + χTn+k
≤ nβ)

≤ P (χTk+1
+ χTk+2

+ · · · + χTn+k
≤ nβ). (19)

Since the χTi
’s are independent 0 − 1 valued random variables, by Hoeffding’s

inequality (see Hoeffding (1963)), there exist β > 0 and 0 < θ < 1 such that

P (χTk+1
+ χTk+2

+ · · · + χTn+k
≤ nβ) ≤ θn, (20)

whenever 0 < P (χTi
= 1) < 1. Combining (18), (19) and (20), the proof of

α-mixing with geometric decay is complete.

5.2.3. Proof of Theorem 3.2

We now consider the case where the X-sequence is stationary and possesses

the α-mixing property with geometric decay, and the ZT -sequence is stationary

and Markov. Since we use some of the main ideas of the previous proof and their

necessary modifications for handling a Markov replication process, the next proof

refers to the previous proof for the analogous parts.

We first derive a modification of the expression for P (A ∩ B) − P (A)P (B)

as in Lemma 3.1 when the Z-process is Markov instead of being i.i.d.. The main
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difference is that we have to condition on the event ZTn+k
= I (respectively M).

First, we have, using the representation (6) from Theorem 3.1,

P (B) = P (ZTn+k
= I)PI(B) + P (ZTn+k

= M)PM (B).

Using the fact that the X-sequence is independent of the Z-sequence, we can

conclude that

P (A ∩ {ZTn+k
= I} ∩ B) − P (A)P (ZTn+k

= I)PI(B) (21)

can be written as the sum of two terms:

∑

1

∑

3

∑

2P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 ,

Tn+k = tn+k, STn+k
= stn+k

, ZTn+k
= I)

× PI({T
′}l

1 = {t′}l
1, {S

′
T ′}l

1 = {s′t′}
l
1, {Z

′
T ′}l

1 = {e}l
1)

×
{

P (({Xst}
k
1 ∈ C{c}k

1
) ∩ ({Xst}

n+k+l
n+k+1 ∈ E{e}l

1
))

−P (({Xst}
k
1 ∈ C{c}k

1
)P ({Xst}

n+k+l
n+k+1 ∈ E{e}l

1
))

}

; (22)

∑

1

∑

3

{

P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 ,

Tn+k = tn+k, STn+k
= stn+k

, ZTn+k
= I)

− P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 , Tn+k = tn+k, STn+k
= stn+k

)

× P (ZTn+k
= I)

}

× P ({Xst}
k
1 ∈ C{c}k

1
)

× PI(B). (23)

In order to verify the above assertions, we need to show that the negative term

in (22) is the positive term in (23), so that (22) plus (23) is (21). For this, after

removal of the curly brackets in (22), we use the stationarity of the X-sequence

(as we did in (15)), to write P ({Xst}
n+k+l
n+k+1 ∈ E{e}l

1
) = P ({Xs′

t′
}l
1 ∈ E{e}l

1
), and

perform the
∑

2 summation in the negative term of (22) to get

∑

2PI({T
′}l

1 ={t′}l
1, {S

′
T ′}l

1 ={s′t′}
l
1, {Z

′
T ′}l

1 ={e}l
1)×P ({Xs′

t′
}l
1∈E{e}l

1
)=PI(B).

Here as before, we use (tn+k+j, stn+k+j
) = (tn+k, stn+k

) + (t′j , s
′
t′j

), j = 1, . . . , l.

Also, in this case, because of the conditioning on the event ZTn+k
= I, summation

over the primed variables leads to PI(B) and not P (B). This completes the proof

that (22) plus (23) is (21).

If we sum over (tn+k, stn+k
) while keeping ZTn+k

= I, the term within curly
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brackets (after
∑

3) of (23) becomes

=
∑

1

{

P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 , ZTn+k
= I)

−P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1)P (ZTn+k
= I)

}

=
∑

1P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 , ZTk
= I)

{P (ZTn+k
= I|ZTk

= I) − ΠI}

+
∑

1P ({T}k
1 = {t}k

1 , {ST }
k
1 = {st}

k
1 , {ZT }

k
1 = {c}k

1 , ZTk
= M)

{P (ZTn+k
= I|ZTk

= M) − ΠI}. (24)

Here we use the assumed stationarity of ZTn+k
to denote P (ZTn+k

= I) by ΠI ,

which does not depend on n or k. The expression (22) can be handled in the

same way as in Proposition 3.1 using large deviation bounds (see Theorem 3.1 of

Ellis (1984)) for the crucial observation that the ZT ’s (and hence the χT ’s, which

are one-one functions of the ZT ’s) now form a Markov chain.

If the ZT ’s form an irreducible, aperiodic and stationary Markov chain, the

absolute values of the terms enclosed within curly brackets in (24) are less than

or equal to Kγn (see Billingsley (1986), p.128), where K > 0 and 0 < γ <

1 are constants related to the transition probability matrix of the ZT -chain.

Applying this to (24) and combining it with (23), we get that (23) is smaller in

absolute value than KγnP (A)PI(B). This, and the previous paragraph, give a

geometrically decreasing bound for (21). The intersection with ZTn+k
= M can

be handled similarly. This completes the proof.
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