
Statistica Sinica 16(2006), 287-302

SEMIPARAMETRIC ADDITIVE RISKS MODEL FOR

INTERVAL-CENSORED DATA

Donglin Zeng1, Jianwen Cai1 and Yu Shen2

1University of North Carolina at Chapel Hill and 2The University of Texas

Abstract: Interval-censored event time data often arise in medical and public health

studies. In such a setting, the exact time of the event of interest cannot be observed

and is only known to fall between two monitoring times. Our interest focuses on

the estimation of the effect of risk factors on interval-censored data under the

semiparametric additive hazards model. A nonparametric step-function is used to

characterize the baseline hazard function. The covariate coefficients are estimated

by maximizing the observed likelihood function, and their variances are obtained

using the profile likelihood approach. We show that the proposed estimates are con-

sistent and have asymptotic normal distributions. We also show that the estimator

obtained for the covariate coefficient is the most efficient estimator. Simulation

studies are conducted to assess the performance of the estimate. The method is

illustrated through application to a data set from an HIV study.
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1. Introduction

Incomplete follow-up data are often encountered in medical and public health

studies. In particular, the exact onset of the event of interest cannot be observed

directly, and is only known to fall in some interval. For example, although the

seroconversion time of an HIV patient is unlikely to be observed directly, it is

feasible to periodically monitor the patient’s status to determine the time interval

in which seroconversion may have occurred. A second example is the patient’s age

at onset of preclinical breast cancer; current technologies are unable to observe

the exact time of tumor onset, but cancer screening histories can yield an interval

of time during which it may have first occurred.

This type of survival data, consisting of time intervals monitored to assess

the onset of the event of interest when the actual event cannot be observed, is

called interval-censored data. When only one monitoring time is applied and

each patient is known to experience the onset of the event either before or after

this monitoring time, the data are called current status data, or interval-censored

data, case I. When more than one monitoring time is applied and each patient

is known to experience the onset of the event (also known as “failure”) either
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before the first monitoring time, between the two monitoring times, or after the

last monitoring time, such data are called interval-censored data, case II.

Although various statistical methods have been proposed to study the ef-

fects of covariates for current status data, e.g., Huang (1996), Satten, Datta and

Williamson (1998), Rossini and Tsiatis (1996), Lin, Oakes and Ying (1998) and

Ghosh (2001), studies of interval-censored data, case II in the literature have

been relatively limited. Among those available, Finkelstein (1986) studied the

proportional hazards model and Rabinowitz and Tsiatis (1995) considered the

accelerated failure time models. Some investigators have also looked into the

nonparametric test with interval-censored data, case II (Sun (1996) and Zhang,

Liu and Zhan (2001)).

For survival data, the additive and multiplicative risk models provide the

two principal frameworks for studying the association between risk factors and

event time, although the choice of these two models is more an empirical issue.

Compared with the multiplicative model (Cox (1972)), the additive risk model

is particularly useful for estimating the difference in hazards with the following

form: for a k-vector of possibly time-varying covariates z(·), the hazard rate

function of the event time is

h(t|z(s), 0 ≤ s ≤ t) = λ(t) + βT z(t), (1)

where λ(t) is the baseline hazard function and β is a k-vector regression coef-

ficient for covariate z(t). Other forms of the additive risk model besides (1)

have been eloquently advocated and successfully utilized for right-censored sur-

vival data by numerous authors, e.g., Andersen, Borgan, Gill, and Keiding (1993,

pp.563-566), Lin and Ying (1994), McKeague and Sasieni (1994), and Shen and

Cheng (1999). Furthermore, Lin, Oakes and Ying (1998) and Ghosh (2001) have

considered model (1) for current status data. However, such a model has not

been well studied for general interval-censored data; part of the reason is that

the martingale-based estimation, which was successfully used by Lin et al. (1998)

for current status data, cannot be generalized to interval-censored data, case II.

We consider estimation for a semiparametric additive hazards model with

interval-censored data, case II. In the next section, we propose an efficient estima-

tor of the covariate effects by using the maximum likelihood estimation approach.

Furthermore, we obtain an estimator for the cumulative hazard function under

the additive risk model. In Section 4, we provide the results from simulation

studies and from the application of our model to a data example.

2. Maximum Likelihood Estimation

Typical observations of interval-censored data include a pair of non-negative

random variables U and V , where U is called the left examination time and V the
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right examination time. We assume that the examination times are independent

of the event time, T , and (U, V ) are random variables from a distribution with

support

X = {(u, v) : 0 < τu ≤ u, v ≤ τv < ∞, v ≥ u + ξ},

where ξ is a positive constant. Note that the support for this bivariate dis-

tribution requires that the right examination time is not the same as the left

examination time, a reasonable assumption when the exact failure times cannot

be observed in many biomedical studies.

The observation regarding the true event time T falls into one of the following

three exclusive categories: T is between U and V (interval-censored); T is larger

than V (right-censored); or T is less than U (left-censored). Let z(t) denote the

covariate information at time t. We define two indicator variables as δ1 = I(T ≤
U) and δ2 = I(U < T ≤ V ), then data from the ith subject can be expressed as

{δ1i = 1, Ui, zi(t), t ∈ [0, τv ]} , if subject i is left-censored,

{δ2i = 1, Ui, Vi, zi(t), t ∈ [0, τv ]} , if subject i is interval-censored,

{δ1i = δ2i = 0, Vi, zi(t), t ∈ [0, τv ]} , if subject i is right-censored.

For n i.i.d. subjects, the data can be equivalently summarized as

{

δ1i, δ2i, (δ1i + δ2i)Ui, (1 − δ1i)Vi, zi(t), t ∈ [τu, τv], i = 1, . . . , n
}

.

The additive risk model (1) can be also expressed in terms of the cumulative

hazard function, H(t|Z(s), 0 ≤ s ≤ t) = Λ(t)+βT Z(t), where Λ(t) is the baseline

cumulative hazard function, and Z(t) =
∫ t
0 z(s)ds. Let G(t) = e−Λ(t) define the

baseline survival function. The observed full likelihood can be expressed, by

forming the product over n i.i.d. subjects, as

n
∏

i=1

[1 − G(Ui)e
−βT Zi(Ui)]δ1i [G(Ui)e

−βT Zi(Ui) − G(Vi)e
−βT Zi(Vi)]δ2i

×[G(Vi)e
−βT Zi(Vi)]1−δ1i−δ2i .

Let ln(β,G) denote the logarithm of the observed likelihood function in terms of

the parameters, β and G(·). The maximum likelihood estimates for (β,G) can

be obtained by maximizing the observed log-likelihood function ln(β,G) over the

parameter space,

Θ = {(β,G) : β is in a compact set K of Rk, ‖β‖ ≤ B,

G(t) is a non-increasing function with G(0) = 1, G(t) > 0}.
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Since the observed likelihood function is clearly bounded by 1 and Θ is weakly

compact, the maximum likelihood estimate for (β,G) exists. We can specifically

choose the nonparametric estimate for G to be a non-increasing step-function

with jumps only at the observed examination times.

Computationally, the above optimization can be carried out as follows. Let

y(1) > · · · > y(m) denote the unique examination times from the largest to the

smallest, where m ≤ n +
∑n

i=1 δ2i. The maximum likelihood estimate can be

derived by maximizing

ln(β,G) =
n

∑

i=1

{

δ1i ln[1 − G(Ui)e
−βT Zi(Ui)] + δ2i ln[G(Ui)e

−βT Zi(Ui)

−G(Vi)e
−βT Zi(Vi)] + (1 − δ1i − δ2i) ln[G(Vi)e

−βT Zi(Vi)]
}

under the constraint that 0 ≤ x(1) < · · · ≤ x(m), where G(y(j)) = x(j) for j =

1, . . . ,m. To ensure the positivity and the monotonicity of {x(j), j = 1, . . . ,m},
we use the following transformed parameters in the optimization: w1 = log x(1),

wj = log(x(j) − x(j−1)), j = 2, . . . ,m. The gradient and the Hessian matrix of

the log-likelihood function with respect to these parameters can be evaluated

and utilized in calculating the maximum likelihood estimates. When m is not

large, Newton-Raphson iteration can be used to solve the score equations for β

and {wi, i = 1, . . . ,m}. When m is large, the Nelder-Mead simplex method is

used to search for the optimum. Particularly, at each step of the search, a new

point in or near the current simplex is generated and the function value at the

new point is compared with the function’s values at the vertices of the simplex.

The algorithm is run until the diameter of the simplex is less than the specified

tolerance. Such an algorithm is implicated in a built-in function “fminsearch” or

“fminunc” in MATLAB software.

3. Asymptotic Properties

With the described model and method of estimation, we can derive large

sample properties for the proposed estimators under the following assumptions.

(A.1) The true value for β, denoted as β0, is in the interior of a compact set K,

‖β0‖ ≤ B for a constant B > 0, and supt∈[τu,τv ] ‖z(t)‖ ≤ M/(τv − τu), a.s., for a

given constant M > 0.

(A.2) The interval censoring times (U, V ) have a positive bivariate density,

fU,V (u, v), in the support X and the density has a bounded second order deriva-

tive.

(A.3) The underlying parameter function (β0, G0) satisfies −[dG0(t)/dt][1/G0(t)]

+βT
0 z(t) > 0, a.s., where G0 has bounded second order derivatives in [τu, τv].
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(A.4) If there exist a constant c0 and a k-vector γ such that γT z(t) = c0 for any

t ∈ [τu, τv] with probability 1, then γ ≡ 0 and c0 ≡ 0.

(A.5) P (T < τu|z(t), t > 0) and P (T > τv|z(t), t > 0) have a positive lower

boundary with probability 1.

Assumption (A.3) ensures that the underlying hazard rate function is a posi-

tive function; (A.4) is simply equivalent to the identification condition in a linear

model; (A.5) stipulates that event times may occur outside of the support of the

censoring times. Under the above conditions, we can obtain asymptotic proper-

ties of the proposed maximum likelihood estimator (β̂n, Ĝn).

Theorem 1. Under (A.1)−(A.5), ‖β̂n − β0‖ → 0 and supt∈(τu,τv) |Ĝn(t) −
G0(t)| → 0 with probability one. Furthermore,

√
n(β̂n − β0) has an asymptotic

normal distribution with mean zero and a variance that attains the semiparamet-

ric efficiency bound for β0.

For a definition of the semiparametric efficiency bound, see Chapter 3 of

Bickel, Klaassen, Ritov and Wellner (1993). We sketch a proof for Theorem 1 in

the appendix.

From Theorem 1, we conclude that β̂n is the most efficient estimator for β0.

We wish to estimate the asymptotic covariance for
√

n(β̂n − β0), denote by Σ.

In the appendix, we find Σ = E[l∗βl∗β
T ]−1, where l∗β is the efficient score function

for β0. Particularly, l∗β = lβ − lG[g∗], where lβ is the score for β0 and lG[g∗] is the

score function for G0 along the direction of g∗ given by

lG[g∗] =
−δ1g

∗(U)e−β0
T Z(U)

1 − G0(U)e−β0
T Z(U)

+
δ2(g

∗(U)e−β0
T Z(U) − g∗(V )e−β0

T Z(V ))

G0(U)e−β0
T Z(U) − G0(V )e−β0

T Z(V )

+
(1 − δ1 − δ2)g

∗(V )

G0(V )
.

Furthermore, if SZ(t) = G0(t) exp{−βT Z(t)}, then g∗ is the unique solution to

the integral equation

−a(x)g(x) +

∫

y
b(x, y)g(y)dy = c(x), (2)

where

a(x) = fU(x)E
[( 1

1 − SZ(U)
+

1

SZ(U) − SZ(V )

)

e−2β0
T Z(U)|U = x

]

+fV (x)E
[( 1

SZ(U) − SZ(V )
+

1

SZ(V )

)

e−2β0
T Z(V )|V = x

]

,
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b(x, y) = fU,V (x, y)E
[e−β0

T (Z(U)+Z(V ))

SZ(U) − SZ(V )
|U = x, V = y

]

+fU,V (y, x)E
[e−β0

T (Z(U)+Z(V ))

SZ(U) − SZ(V )
|U = y, V = x

]

,

c(x) = fU(x)E
[(SZ(U)Z(U)

1 − SZ(U)
+

SZ(U)Z(U) − SZ(V )Z(V )

SZ(U) − SZ(V )

)

e−β0
T Z(U)|U = x

]

+fV (x)E
[(

Z(V ) − SZ(U)Z(U) − SZ(V )Z(V )

SZ(U) − SZ(V )

)

e−β0
T Z(V )|V = x

]

,

and fU and fV are the marginal densities for U and V , respectively. Equation

(2) normally does not have an explicit solution, and a numerical solution may be

complicated. Instead, we propose to estimate the asymptotic variance based on

a difference involving the profile log-likelihood function, defined as

pln(β) =
1

n
max
G∈Θ

ln(β,G).

Let ~es be the vector in Rk with 1 at the sth position and 0 elsewhere. The

asymptotic variance matrix of
√

n(β̂n − β0), Σ, is approximated by using

−pln(β̂n + hn~es − hn~el) − pln(β̂n + hn~es) − pln(β̂n − hn~el) + pln(β̂n)

h2
n

≈ Σsl,

where Σsl is the (s, l)th element of Σ and hn is a constant with order of n−1/2.

The theoretical justification of the profile likelihood estimation can be found in

Murphy and van der Vaart (2000).

3. Numerical Studies and An Example

To assess the behavior of the proposed method with moderate sample sizes,

we perform two simulation studies. Assume there are two independent covariates,

Z1 ∼ Bernoulli(0.5, 0, 1) and Z2 ∼ Uniform(0, 1). In the first simulation study,

conditional on these covariates, the hazard function for the underlying failure

time T is additive to the baseline hazard, given by 0.2+β01Z1+β02Z2 where β01 =

0.5 and β02 = 0.2. In the second simulation study, we allow a time-dependent

covariate in the model, where the hazard function is 0.1+β01Z1+β02Z2t, β01 = 0.5

and β02 = 0.2. For both studies, the left censoring time U and the right censoring

time V are uniformly generated from the region {(u, v) : 0.1 ≤ u ≤ 2, u + 0.5 ≤
v ≤ 4}. With the above specifications, the proportion of left censoring, interval

censoring, and right censoring is about 40%, 32%, and 28%, respectively.

For each choice of sample size n = 100 or n = 200, we use the optimization al-

gorithm in MatLab 6.01 to calculate the maximum likelihood estimates of β1 and



SEMIPARAMETRIC ADDITIVE RISKS MODEL 293

β2. In the calculation, when the initial values are chosen to be close to the true
values, the optimum search usually converges within 20 iterations. The profile
likelihood approach, described in Section 3, is used to estimate their variances.
To assess the robustness of the variance estimates to the choice of the oscillation
parameter hn in the profile likelihood approach, we let hn be {2/(25n)}−1/2 or
{8/(25n)}−1/2 , where the scale 1/25 was chosen arbitrarily.

Table 1 summarizes the simulation results from 500 repetitions. Column
“est” is the average of the estimates for β01 and β02 from 500 repetitions; col-
umn “est. se.” is the mean of the estimated standard errors using the profile
likelihood approach; column “emp. se.” is the empirical standard deviation of
the estimates; and column “cp” gives the coverage proportion of the 95% con-
fidence intervals. From Table 1, we see that the maximum likelihood estimates
perform reasonably well with moderate sample sizes: the bias of the estimates is
small and the estimated standard errors based on the profile likelihood functions
agree reasonably well with the empirical standard errors, especially for the time-
independent covariate and the larger sample size. The 95% confidence intervals
provide adequate coverage probabilities. The simulation studies also indicate
that, compared with estimation with time-independent covariates, a larger sam-
ple is needed to ensure the correct inference for the cases with time-dependent
covariates.

Table 1. Result from simulation studies with 500 repetitions.

hn = 0.2
√

2n−
1

2 hn = 0.4
√

2n−
1

2

n par. true value est. emp. se est. se. cp est. se. cp

Study I: λ(t|Z) = 0.2 + 0.5Z1 + 0.2Z2

100 β01 0.5 0.517 0.126 0.138 0.944 0.144 0.958

β02 0.2 0.183 0.125 0.123 0.920 0.124 0.926

200 β01 0.5 0.504 0.092 0.095 0.946 0.099 0.954
β02 0.2 0.196 0.080 0.085 0.942 0.088 0.942

Study II: λ(t|Z) = 0.1 + 0.5Z1 + 0.2Z2t

100 β01 0.5 0.499 0.096 0.124 0.972 0.127 0.974

β02 0.2 0.207 0.058 0.076 0.974 0.077 0.976

200 β01 0.5 0.497 0.073 0.086 0.966 0.087 0.954

β02 0.2 0.205 0.043 0.052 0.946 0.053 0.972

We illustrate the proposed methods through application to an HIV study
recently conducted in the state of North Carolina. This study involved the re-
cruitment of 183 HIV patients, all with CD4 cell counts less than 100/mm3

and serologic evidence of previous cytomegalovirus(CMV) infection. CMV infec-
tion is one of the most feared complications of HIV and may cause a persistent
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sight-threatening retinitis. In an immunocompetent host, infection with CMV is

followed by production of antibodies and an asymptomatic latent phase during
which the virus remains quiescent in leukocytes. However, in an immunocom-

promised host, CMV replication can be activated and CMV dissemination and

pathologic invasion of the retina can occur. Thus, it is important to know when

such CMV activation occurs. To detect the activation of viremia from CMV
during each patient visit, blood samples were tested with four different assays:

CMV DNA polymerase chain reaction, hybrid capture CMV DNA, CMA antigen

assay, and nucleic acid sequence based amplification of CMV pp67 mRNA. The

test results were assumed to be accurate and sensitive in detecting active viremia
from CMV. In our analysis, we focused on studying the relationship between the

time of the first activation of viremia and the covariates, such as patient’s sex,

age, CD4 cell count, and HIV viral load measured at the baseline. Clearly, the

exact time of the first active CMV infection could not be observed. However, if a
patient tested positive for infection by at least one of these four assays in a visit,

we concluded that the activation had occurred before that visit. In general, for

each patient, his/her time to the first activation of the CMV infection was left-
censored if he/she tested positive at the first visit after enrollment, right-censored

if none of the test results were positive for infection during the follow-up, or the

event time was interval-censored.

After excluding the individuals whose data had missing covariates (67 pa-
tients) and those who had developed the disease before their entry into the study

(3 patients), there were 113 patients in the study. Of these, 10 patients were

left-censored, 17 patients were interval-censored, and the remaining 86 patients

were right-censored. Among patients with left-censored event times, the average
length of time from entry to the left censoring time was 141 days; and among

patients with interval-censored event times, the average length from entry to the

left monitoring time was 301 days. The average length from entry to the right

monitoring time was 420 days; and among patients with right-censored event
times, the average length from entry to the right censoring time was 472 days.

The data regarding covariates of this cohort included the following: 85 patients

were male and 28 patients were female; the average age was 39 years with a

standard deviation of 7.7; the mean baseline CD4 cell count with the log-10-scale
was 4.37 (standard deviation 1.43); and the average HIV viral load level at the

log-10-scale was 10.18 (standard deviation 2.56).

We fitted the semiparametric additive hazards model to this dataset, and

incorporated into the model the four covariates, including age, sex, baseline CD4
count at the log-10-scale, and the baseline HIV viral load at the log-10-scale.

When estimating the variances via the profile likelihood function, the oscillation

parameter hn was chosen to be n−1/2/20. The results are given in Table 2. We

also used hn = n−1/2/100, with similar results (not shown here due to limited
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space). As presented in Table 2, although the results suggested that a high HIV
viral load and male sex tended to increase the risk of developing the active CMV
infection, none of the covariates appeared to be statistically significant. The
non-significance of the results may have been due to a relatively small sample
size and the limited number of the events in this study.

Table 2. Application to the CMV disease study in HIV patients.

covariate coefficient standard error Z-value

Age -0.0083 0.1247 -0.0669
Sex (male=1, female=0) 0.2328 0.7304 0.3187

CD4 count at log-scale -0.0102 0.6579 -0.0155

HIV viral load at log-scale 0.0464 0.3716 0.1248

We define S as the linear score function β̂T
n Z. The median value of S is

0.325. We plotted the predicted survival curves based on the mean values of the
linear scores in the group with S larger or less than 0.325 versus the correspond-
ing nonparametric estimator, using the self-consistency algorithm of Turnbull
(1976). Figure 1 shows that the predicted curves agreed reasonably well with the
nonparametric estimates.
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Figure 1. Predicted survival curves from CMV data (solid line: predicted
curve for linear score less than 0.325; dotted line: nonparametric estimate
for linear score less than 0.325; broken solid line: predicted curve for linear
score larger than 0.325; dotted solid line: nonparametric estimate for linear
score larger than 0.325).
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5. Discussion

Although we have focused on interval-censored observations that correspond

to only two examination times in this study, the methods can be easily generalized

to multiple examination times if an ordered random examination time sequence

is known for each subject, and if the failure time of interest is observed to belong

to one of the partitioned intervals. As Huang (1996) points out, with multiple

examination times, the effective observations for estimating the distribution of

failure time given the covariates are the same as those with two examination

times. These two examination times are the last examination time before the

failure (even of interest) occurs, which can be 0, and the first examination time

after the failure occurs, which can be infinity.

When one is interested in estimating the survival function for any given

covariate process Z(t), an intuitive estimate can be provided by Ŝn(t) =

Ĝn(t)e−Z(t)T β̂n . However, when Z(t) varies with time t, the estimated survival

function might not be a monotone function. We suggest a modified estimator

which is the maximal decreasing function below Ŝn(t). Denote this modified

function by Ŝ∗
n(t). We can prove that Ŝ∗

n(t) is also a consistent estimator of

the underlying survival function S0(t). According to the large sample result for

(β̂n, Ĝn), we see that supt∈(τu,τv) |Ŝn(t) − S0(t)| = op(1) . Therefore, by the

definition of Ŝ∗
n(t), it holds that in probability, S0(t)− ε ≤ Ŝ∗

n(t) ≤ Ŝn(t) for any

small positive number ε. Consistency thus follows.

An area of future research is to check the goodness of fit for the additive

model, and to compare it with other alternatives. One possible criteria is to

examine the empirical difference between the model-based predicted survival

function and the nonparametric maximum likelihood estimate of the survival

function. Such estimate of survival function can be obtained using the approach

of Wellner and Zhang (2000), within each category of the covariates.
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Appendix

A.1. Proof of Theorem 1

Consistency of (β̂n, Ĝn). In order to show that the estimators (β̂n, Ĝn) are consis-

tent estimators for the true parameters (β0, G0), we consider a class of functions
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with

F = {fβ,G(u, v, δ1, δ2) = [(1 − G(u)e−βT Z(u))I(1 − G(u)e−βT Z(u) > 0)]δ1

×[(G(u)e−βT Z(u) − G(v)e−βT Z(v))I(G(u)e−βT Z(u) − G(v)e−βT Z(v) > 0)]δ2

×[G(v)e−βT Z(v)I(G(v) > 0)]1−δ1−δ2 : (β,G) ∈ Θ}.

First, we calculate the bracket covering number for this class. For any (β1, G1),

(β2, G2) ∈ Θ such that supt∈[τu,τv ] |G1(t) − G2(t)| < ε, ‖β1 − β2‖ < ε, we wish to

set boundaries for the difference between
√

fβ1,G1
and

√

fβ2,G2
. There are three

scenarios.

1. δ1 = 1. Thus,

√

fβ1,G1
−

√

fβ2,G2
=

√

(1 − G1(u)e−βT
1

Z(u))I(1 − G1(u)e−βT
1

Z(u) > 0)

−
√

(1 − G2(u)e−βT
2

Z(u))I(1 − G2(u)e−βT
2

Z(u) > 0).

There are two possibilities to be considered.

Case 1. 1 − G1(u)e−βT
1

Z(u) > δ for some positive constant δ such that δ −
εeBM (M +1) > 0. Then 1−G2(u)e−βT

2
Z(u) > δ−εeBM (M +1) > 0. Therefore,

|
√

fβ1,G1
−

√

fβ2,G2
| ≤ εeBM + εMeBM

2
√

δ − ε(M + 1)eBM
.

Case 2. 1−G1(u)e−βT
1

Z(u) ≤ δ. Then 1−G2(u)e−βT
2

Z(u) ≤ δ + εeBM (1 +M).

Hence, |
√

fβ1,G1
−

√

fβ2,G2
| ≤

√
δ +

√

δ + εeBM (1 + M). We choose δ =

2ε(M + 1)eBM , then in either case, we obtain

|
√

fβ1,G1
−

√

fβ2,G2
| ≤ 4

√

(M + 1)eBM ε = C1

√
ε.

2. δ2 = 1. For this situation,

√

fβ1,G1
−

√

fβ2,G2

=

√

(G1(u)e−βT
1

Z(u) − G1(v)e−βT
1

Z(v))I(G1(u)e−βT
1

Z(u) − G1(v)e−βT
1

Z(v) > 0)

−
√

(G2(u)e−βT
2

Z(u) − G2(v)e−βT
2

Z(v))I(G2(u)e−βT
2

Z(u) − G2(v)e−βT
2

Z(v) > 0).

Essentially, we use the same arguments as above and divide it into two cases.

Case 1. G1(u)e−βT
1

Z(u) − G1(v)e−βT
1

Z(v) > δ. Then G2(u)e−βT
2

Z(u) − G2(v)

e−βT
2

Z(v) > δ − 2ε(M + 1)eBM . So

|
√

fβ1,G1
−

√

fβ2,G2
| ≤ εeBM (M + 1)

√

δ − 2ε(M + 1)eBM
.
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Case 2. G1(u)e−βT
1

Z(u) − G1(v)e−βT
1

Z(v) ≤ δ. Then G2(u)e−βT
2

Z(u) − G2(v)

e−βT
2

Z(v) ≤ δ +2εeBM (M +1). So |
√

fβ1,G1
−

√

fβ2,G2
| ≤

√
δ +[δ +2ε(M +1)

eBM ]1/2. Let δ = 4εeBM (M+1), then under both cases, |
√

fβ1,G1
−

√

fβ2,G2
| ≤

C2
√

ε for some constant C2 depending on B,M .

3. δ1 = δ2 = 0. Similar arguments give |
√

fβ1,G1
−

√

fβ2,G2
| ≤ C3

√
ε.

We thus obtain that lnN[](O(1)
√

ε,
√
F , ‖ · ‖l∞(X )) ≤ lnN[](ε,Θ, ‖ · ‖l∞) ≤

O(1/ε), where N[](·) denotes the bracket covering number. According to Theorem

2.4 and Lemma 1.1 in van der Geer (1993), and from the fact that fβ̂n,Ĝn
∈ F ,

we can prove that the Hellinger distance between fβ̂n,Ĝn
and fβ0,G0

converges

to zero as n → ∞. That is, E[
√

fβ̂n,Ĝn
−

√

fβ0,G0
]2 → 0, a.s.. Second, since

β̂n is in a compact set K and Ĝn is a bounded non-increasing function, for any

subsequence we can always find a sub-subsequence, still subscripted by n, such

that β̂n → β∗ and Ĝn(t) → G∗(t) pointwise, with probability 1. Combining with

the convergence of the Hellinger distance, and noticing that fβ̂n,Ĝn
is bounded, we

conclude that fβ∗,G∗ = fβ0,G0
holds for (u, v) in the support X with probability 1.

For any (u, v) ∈ X , G0(v) > 0 and under the assumption (A.5), for δ1 = δ2 = 0,

we obtain that G∗(v) > 0 and G∗(v)e−β∗T Z(v) = G0(v)e−βT
0

Z(v), a.s.. However,

since [1, Z(v)] is linearly independent, we obtain that β∗ = β0, G
∗(v) = G0(v), for

δ1 = δ2 = 0. Now let δ1 = 1 (from the assumption (A.5)), then G∗(u) = G0(u).

We finally conclude that G∗(t) = G0(t) for t ∈ (τu, τv).

Furthermore, since G0 is continuous, it holds that

‖β̂n − β0‖ → 0, sup
t∈[τu,τv ]

|Ĝn(t) − G0(t)| → 0, a.s..

As a corollary, since P (U < T ≤ V |U, V, Z(t), t > 0), P (T ≤ U |U, V, Z(t), t >

0), and P (T > V |U, V, Z(t), t > 0) are larger than a positive constant with

probability 1, we can assume that this is also true for each term in the ln(β,G)

where the parameters are replaced by (β̂n, Ĝn).

Asymptotical normality of
√

n(β̂n − β0). First we need to derive the convergence

rates of (β̂n, Ĝn). We use Theorem 3.2.1 of van der Vaart and Wellner (1996)

for this purpose. The functionals Mn and M0 in Theorem 3.2.1 correspond to

Pn log fθ,G and P log fθ,G, respectively. The set Θ0 in Theorem 3.2.1 is defined

as

Θ0 = {(β,G) : ‖β − β0‖ < ε0, sup
t∈[τu,τv ]

|G(t) − G0(t)| < ε0,

G is a non-increasing step-function}
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for a small constant ε0 > 0, and the distance d((β1, G1), (β2, G2)) stated in The-

orem 3.2.1 is given by ‖β1 − β2‖ + ‖G1 − G2‖L2([τu,τv ]).

We check the conditions stated in Theorem 3.2.1. First, when (β,G) is in Θ0

and d((β,G), (β0 , G0)) < δ, it is easy to see that log fβ,G − log fβ0,G0
is Lipschitz

continuous with respect to β and G, and its L2(P ) norm is bounded by O(δ).

Thus, we have

lnN[](ε, {ln fθ,G : (β,G) ∈ Θ0}, ‖ · ‖L2(P )) ≤ O(1) ln N[](ε,Θ0, d) ≤ O(
1

ε
).

The maximal inequality for the empirical process Gn =
√

n(Pn −P) gives that

E∗ sup
d((β,G),(β0 ,G0))≤δ,(β,G)∈Θ0

|Gn(ln fβ,G − ln fβ0,G0
)| ≤ Op(1)φ(δ),

where φ(δ) =
∫ δ
0

√

1 + O(1/ε)dε(1 +
∫ δ
0

√

1 + O(1/ε)dε/(
√

nδ2)) = Op(1)(
√

δ +

1/(δ
√

n)). Second, for any vector h and g, E[lβh + lG[g]]2 ≥ 0. Furthermore,

if there exist a vector h and a function g such that lβh + lG[g] = 0, then let

δ1 = δ2 = 0 to obtain −Z(V )h + g(V )/G(V ) = 0. Hence, h = 0 and then

g(t) = 0, t ∈ [τu, τv]. We conclude that the information operator at (β0, G0) is a

positive bilinear operator in the Hilbert space Rk × L2([τu, τv]). Hence,

sup
d((β,G),(β0 ,G0))>

δ

2

E[(β − β0)
T lββ(β − β0) + 2(β − β0)

T lG[G − G0]

+lGG[G − G0, G − G0]]

= sup
d((β,G),(β0 ,G0))>

δ

2

−E[(lβ(β − β0), lG[G − G0])
⊗2] ≤ −Cδ2.

As a result, by a Taylor expansion, it holds that

sup
δ

2
≤d((β,G),(β0,G0))≤δ,(β,G)∈Θ0

P[log fβ,G − log fβ0,G0
] ≤ −O(1)δ2.

Finally, we note that φ(1/rn)r2
n ≤ √

n for rn = O(n1/3). Thus, according to The-

orem 3.2.1 of van der Vaart and Wellner (1996), we obtain d((θ̂n, Ĝn), (θ0, G0)) =

Op(n
−1/3).

With the derived convergence rate and the proof of the existence of the

efficient score function for β given in Section 3, the asymptotic normality for√
n(β̂n − β0) follows from the same arguments which Huang (1996) used in the

asymptotic proof for the current status data. We can easily check the conditions

of Theorem 6.1 in Huang (1996). We skip the details, however, due to limited

space. The asymptotic variance for
√

n(β̂n − β0) is equal to the generalized



300 DONGLIN ZENG, JIANWEN CAI AND YU SHEN

Cramér-Rao bound, given by E[l∗βl∗β
T ]−1. Here, l∗β refers to the efficient score

function for the parameter β.

A.2. Derivation of efficient score function

The score function for β0 is given by

lβ =
δ1G0(U)e−β0

T Z(U)Z(U)

1 − G0(U)e−β0
T Z(U)

− δ2(G0(U)e−β0
T Z(U)Z(U)−G0(V )e−β0

T Z(V )Z(V ))

G0(U)e−β0
T Z(U) − G0(V )e−β0

T Z(V )

−(1 − δ1 − δ2)Z(V ).

We consider G0 to be a “parameter” with value in a metric space consisting of

all non-increasing functions. The score function for G0 then has the form

lG[g] =
−δ1g(U)e−β0

T Z(U)

1 − G0(U)e−β0
T Z(U)

+
δ2(g(U)e−β0

T Z(U) − g(V )e−β0
T Z(V ))

G0(U)e−β0
T Z(U) − G0(V )e−β0

T Z(V )

+
(1 − δ1 − δ2)g(V )

G0(V )
,

where g is any function in L2([τu, τv]). To calculate the efficient score function

for β0 ∈ Rk, we need to find k functions g∗ = (g1, . . . , gk)
T in L2([τu, τv]) that,

based on semiparametric efficiency theory (Bickel et al. (1993)), should satisfy

E
[

(lβ − lG[g∗])T lG[g̃]
]

= 0,

where g̃ is any k-vector function in L2([τu, τv]).

Define SZ(t) = P (T > t|Z) = G0(t) exp{−βT
0 Z(t)}. After some technical

manipulations, we obtain E[h1(U, V )g̃(U) + h2(U, V )g̃(V )] = 0, where

h1(U, V ) = E
[−G0(U)Z(U)e−2β0

T Z(U)

1 − SZ(U)

+
−G0(U)Z(U)e−β0

T Z(U) + G0(V )Z(V )e−β0
T Z(V )

SZ(U) − SZ(V )
e−β0

T Z(U)|U, V
]

−E
[e−2β0

T Z(U)

1 − SZ(U)
+

e−2β0
T Z(U)

SZ(U) − SZ(V )
|U, V

]

g∗(U)

+E
[e−β0

T Z(U)−β0
T Z(V )

SZ(U) − SZ(V )
|U, V

]

g∗(V ),

h2(U, V ) = −E
[−G0(U)Z(U)e−β0

T Z(U) + G0(V )Z(V )e−β0
T Z(V )

SZ(U) − SZ(V )
e−β0

T Z(V )

+
G0(V )Z(V )e−2β0

T Z(V )

SZ(V )
|U, V

]

+ E
[e−β0

T Z(U)−β0
T Z(V )

SZ(U) − SZ(V )
|U, V

]

g∗(U)

−E
[ e−2β0

T Z(V )

SZ(U) − SZ(V )
+

e−2β0
T Z(V )

SZ(V )
|U, V

]

g∗(V ).
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Thus, fU (x)E[h1(U, V )|U = x] + fV (x)E[h2(U, V )|V = x] = 0. Further simplifi-

cation gives that g∗(x) satisfies the integral equation

−a(x)g∗(x) +

∫

y
b(x, y)g∗(y)dy = c(x),

where a(x), b(x, y) and c(x) are given in Section 3. Clearly, a(x) > 0 for x ∈
[τu, τv]. Then the above equation is equivalent to (I + A)(g∗) = −c(x)/a(x),

where I is the identity operator and A(g∗) = −
∫

y b(x, y)g∗(y)dy/a(x).

Note that from (A.2) and (A.3), A maps any L2-integrable function to a con-

tinuously differentiable function; thus it is a compact operator from L2([τu, τv])

to L2[τu, τv]. Therefore, to show the invertibility of the operator (I + A), by

Theorem 4.25 in Rudin (1973), it suffices to show that the operator (I + A) is

one-to-one. Now if (I + A)(g) = 0, by reversing the above derivation for the sit-

uation c(x) = 0, we obtain that E[lG[g]T lG[g̃]] = 0 for any g̃. Particularly, we let

g̃ = g to obtain lG[g] = 0, a.s. Finally, by the expression of lG[g], (A.4) and (A.5),

we conclude that g(x) = 0 for any x ∈ [τu, τv]. Therefore, the operator (I + A)

is one-to-one. We denote g∗ to be the solution. Then the efficient score function

for β0 is l∗β = lβ − lG[g∗], and the efficiency boundary for β0 is E[l∗βl∗β
T ]−1.
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