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Abstract: It is well known that in a general multi-parameter setting, there may not

exist any unique best test. More importantly, unlike the univariate case, the power

of different test procedures could vary remarkably. In this article we extend results

of Hsu (1945) and introduce a new class of tests that have best average power for

multivariate linear hypotheses. A simple method to implement the new tests is also

provided.
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1. Introduction

In this paper we derive tests for multivariate linear hypotheses that have

best average power. We focus on the simplest special case of testing hypothesis

about a one sample normal mean vector. Applications to two-sample problems,

multivariate analysis of variance and linear regression are also discussed.

Assume that Y i = (Yi1, . . . , Yip)
′, 1 ≤ i ≤ n, are independent random sam-

ples from a p-variate normal distribution Np(µ,Σ). The problem is to test the

hypothesis H0 : µ = 0 versus alternatives Ha : µ 6= 0. The T 2 test proposed

by Hotelling (1931) is probably the best known test for this problem. The test

statistic is defined as T 2 = nY
′
S−1Y , where Y is the sample mean and S is the

sample covariance matrix. Hotelling’s test is the likelihood ratio test and is uni-

formly most powerful (UMP) among all tests that are invariant under the group

of nonsingular linear transformations (see Anderson (1984)). In fact of all tests

of µ = 0 with power depending only on nµ′Σ−1µ, the T 2 test is UMP (Simaika

(1941)). Also, the T 2 test is admissible. Further, it is minimax when p = 2,

locally minimax as µ′Σ−1µ → 0 and asymptotically minimax as µ′Σ−1µ → ∞.

(Pillai (1985) and the references therein). In addition, Kariya (1981) has shown

that the test is UMP invariant under a broader class of distributions.

On the other hand, Hotelling’s T 2 test can be viewed as combination of uni-

variate t-tests. Through the union-intersection principle of test construction of

Roy (1953), the T 2 test rejects the original multivariate hypothesis if and only
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if all univariate hypotheses H0(a) : a′µ = 0 specified by varying elements of a

are rejected. More specifically, the Hotelling’s T 2 test statistic can be derived as

the maximum of univariate t2: T 2 = supa{n(a′Y)2/a′Sa} (see Morrison (1990)).

Therefore, the T 2 test can be considered as an extension of the Tippett (1931)

method for combining finite number of tests to the combination of nonindepen-

dent univariate t-tests over infinite directions. However, Birnbaum (1954), Littell

and Folks (1971), Goutis, Casella and Wells (1996) have shown that the method

due to Fisher (1932) for combining probabilities is asymptotically most efficient

among essentially all methods of combining independent tests. In addition, Wu

(2003a) has shown that the power difference between the T 2 test and the Fisher’s

method could be as large as 0.5 in both directions for many alternatives. This

motivates us to study tests that have best average power.

Hsu (1945) has proved optimal properties of the T 2 test that involves aver-

aging the power over µ and Σ. Although Theorem 3 in that paper also shows

that there exist other exact tests which maximize average power weighted by

certain functions of Σ, Hsu dismissed those tests because of the great difficulty

in numerical computation. In this article, we first derive tests that have best av-

erage power over a wide class of weighting schemes, which includes Hsu’s results

as special cases. Secondly, we provide an easy method to implement the new

tests utilizing random samples from a p-variate unit ball. We also, for the first

time, derive tests with optimal average power for multivariate linear hypotheses,

where dimensions of the entire parameter space and the null space differ by more

than one.

The article is organized as follows. In the next section we derive a statistical

distribution on the unit ball, called the U distribution, from the multivariate

normal distribution. A sampling method from the distribution is provided based

on independent Beta random variables. Section 3 contains the main result about

procedures that have best average power for testing one sample normal mean.

General results for testing multivariate linear hypotheses are presented in Section

4 followed by a summary and some discussion in the final section.

2. The U Distribution

In this section, we define a statistical distribution on the p-variate unit ball

(x′x ≤ 1), which we call the U distribution. It will be shown later to be critical

for the optimal tests derived in this work.

Let Y i = (Yi1, . . . , Yip)
′, 1 ≤ i ≤ n, be independent and identically dis-

tributed random samples from a p-variate normal distribution Np(µ,Σ). It is

well known that the sample mean Y is normally distributed and independent

of A =
∑n

i=1(Y i − Y )(Y i − Y )′ ≡ (n − 1)S, which has Wishart distribution

W (Σ, n − 1). Now, let C =
∑n

i=1 Y iY
′
i = A + nY Y

′
and X =

√
nT ′−1Y ,
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where T is the Cholesky decomposition of C such that C = T ′T . By the change

of variable theorem, we can show the following about joint distribution of C and

X:

Theorem 1. (a) C and X have joint density given by:

k|Σ|−
n
2 |C|n−p−1

2 exp
(

− 1

2
trΣ−1(C − 2

√
nT ′Xµ′ + nµµ′)

)

(1 − X ′X)(n−p−2)/2, (1)

where k = 1/(2pn/2πp(p+1)/4
∏p

i=1 Γ[(n−i)/2]), C is a positive definite symmetric

matrix, and X is a p-variate vector such that X ′X ≤ 1.

(b) If µ = 0 then C and X are independent, C has Wishart distribu-

tion W (Σ, n), and X has probability density (
∏p

i=1 Γ[(n + 1 − i)/2]/Γ[(n −
i)/2]/

√
π)(1 − X ′X)(n−p−2)/2, where X ′X ≤ 1.

Note that, under the null hypothesis, the distribution of X does not depend

on Σ. We refer to the distribution of X defined in part (b) as the U distribution

from a p-variate unit ball with n− 2 degrees of freedom, denoted by Up,n−2. The

distribution is spherically symmetric, so we only need to focus on the positive

quadrant in order to generate random samples from Up,n−2. Under the polar

coordinate system (X1 = r cos φ1, Xj = r sinφ1 · · · sinφj−1 cosφj for 2 ≤ j ≤
p − 1, Xp = r sinφ1 · · · sinφp−2 sinφp−1), it is straightforward to show that the

U distribution has density proportional to

(1 − r2)
n−p−2

2 rp−1|(sinφ1)
p−2(sinφ2)

p−3 · · · sinφp−2|.

Therefore, if we let Zj = (sin φj)
2, 1 ≤ j ≤ p − 1 and Zp = r2, under the U

distribution we have Zj ∼ Beta((p−j)/2, 1/2), 1 ≤ j ≤ p−1; Zp ∼ Beta(p/2, (n−
p)/2), and they are mutually independent. In summary, it is very easy to generate

random samples from the U distribution based on independent Beta random

variables.

3. The Main Result

3.1. Optimal tests

Let βω(µ,Σ) be the power function of critical region ω for the rejection of

H0 : µ = 0. In this section we derive statistical tests that have best average

power weighted by

π(µ,Σ|l, θ,m, φ) = |Σ|− l
2 exp

{

− 1

2
trΣ−1[θ + m(µ − φ)(µ − φ)′]

}

, (2)
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over µ′Σ−1µ ∈ (0, s), where l ≥ 0, θ is a p × p positive definite matrix, m ≥ 0,

φ is a p × 1 vector and 0 < s ≤ ∞. In other words, we consider the following

average power:

Γω(l, θ,m, φ, s) =

∫

µ′Σ−1µ∈(0,s)
π(µ,Σ|l, θ,m, φ)βω(µ,Σ) dµ dΣ. (3)

If we let l = m = 0, then the weighting function reduces to exp{−(1/2)trΣ−1

θ}, which is the case studied in Hsu (1945). Theorem 3 in the Hsu paper showed

that there exists a threshold function g such that rejection region Y
′
(C+θ)−1Y ≥

g(C, θ) maximizes the average power Γω(0, θ, 0, ·, s) for any s < ∞. Hsu also

pointed out that, given C and θ, the threshold g(C , θ) can be obtained by solving

the equation

(

p
∏

i=1

Γ[n+1−i
2 ]

√
πΓ[n−i

2 ]

)

∫

∑p
i=1

[λi/(1+λi)]x2

i
≥g

(1 − x′x)
n−p−2

2 Πdx = α,

where λi, 1 ≤ i ≤ p, are eigenvalues of matrix Cθ−1. However, the difficulty in

evaluating the threshold at that time prohibited applications of the test.

In this article, we extend Hsu’s Theorem 3 and derive tests with optimal

average power defined in (3). Our main result is stated in the following theorem,

whose proof can be found in a technical report (Wu (2003b)).

Theorem 2. For any given C = T ′T , we let g(C,m, φ, θ) be the upper αth

percentile of (
√

nT ′U + mφ)′(C + θ + mφφ′)−1(
√

nT ′U + mφ), where U is a

random variable with the Up,n−2 distribution. Then the region

ω1 : (nY + mφ)′(C + θ + mφφ′)−1(nY + mφ) ≥ g(C,m, φ, θ) (4)

satisfies βω(0,Σ) = α for all Σ and maximizes Γω(l, θ,m, φ, s) whenever m > 0

or s < ∞.

We have shown in Section 2 that it is easy to generate random samples from

the U distribution. Therefore the threshold function g(C ,m, φ, θ) can be eval-

uated very quickly, usually only requiring about 1,000 samples from the Up,n−2

based on our experience. More importantly, such a method also allows us to

construct α level tests with data dependent θ and φ. The results are summarized

in the following theorem.

Theorem 3. Let h(C,Y ) be an arbitrary test statistic involving C and Y . For

any given C = T ′T , if g(C) is the upper αth percentile of h(C ,T ′U/
√

n) where

U ∼ Up,n−2, then a rejection region defined by ω : h(C ,Y ) ≥ g(C) satisfies

βω(0,Σ) = α for all Σ.
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Proof of the above theorem is straightforward after noting that h(C ,Y ) and

h(C,T ′U/
√

n) have the same probability distribution under the null hypothesis.

It is worth noting that this result is a special case of the necessary and sufficient

conditions of Simaika (1941) for a test to be level α for all covariance matrices.

3.2. Connection to Fisher’s method of combining tests

Wu (2003a) compared the T 2 test with Fisher’s combination of coordinate-

wise tests, and also showed that Fisher’s method is asymptotically equivalent to

S1 = nY
′
diag(S)−1Y , which is the sum of univariate t2. This test can also be

derived from (4) by choosing φ to be any vector in the same direction as Y , and

θ = τdiag(S) with τ → ∞.

It is obvious that Fisher’s test statistic ignores the off-diagonal elements of

the sample covariance matrix. Some intermediate approach is to shrink the off-

diagonal elements. In other words we can base our tests on nY
′
[S ∗ V ]−1Y

(S ∗V denotes the Hadamard product of matrices, with entries sijvij). This test

is equivalent to the following in terms of C and Y : reject on

ωs : n(n − 1)Y
′
[(C − nY Y

′
) ∗ V ]−1Y ≥ g(C , V ), (5)

where g(C , V ) is the upper αth percentile of (n − 1)(T ′U)′[(C − T ′UU ′T ) ∗
V ]−1(T ′U ), U ∼ Up,n−2. If V is the identity matrix, then the left hand side of the

above test reduces to S1, which only utilizes coordinate wise tests. We denote by

S2 the test defined by (5) with V chosen to be a autoregressive covariance matrix

with correlation 0.3. In addition, S3 is the test corresponding to a complete

symmetric covariance V with correlation 0.3.

Figures 1 and 2 compare the power functions of S1, S2, S3 with that of

Hotelling’s test T 2 and a pseudo-test T ∗ = Y
′
Σ−1Y which uses the unknown

covariance matrix Σ. Assuming a multivariate normal distribution with constant

correlation, the powers for testing zero mean are compared based on a random

sample of size 20 for four different situations determined by (a) two mean shifts:

s1 = (0.4, 0.4, . . . , 0.4)′ and s2 = 0.4p(1, 22, . . . , p2)′/(
∑p

i=1 i2); (b) two covari-

ance structures: compound symmetric (CS) and first order autoregressive (AR).

Since all five tests are invariant for coordinate-wise linear transformations, the

covariance matrices are assumed to have homogeneous variance 1. The first mean

shift assumes that the effect sizes for all dimensions are equal, while there are

big differences for the second case. We estimated the power of the five tests at

the 0.05 level based on 10,000 replications, with the threshold g(C, V ) evaluated

based on 2,000 random samples from the U distribution in each case.
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Figure 1. A comparison of power functions of the Hotelling’s T 2, pseudo-

test T ∗ and the new tests S1, S2, S3 when the correlation is fixed at ρ = 0.3.

Each plot shows the relationship between the number of dimension p and

the power to reject the null hypothesis of zero mean based on a multi-

variate normal sample of size 20. The plots in the top row are for the

alternative µ = (0.4, 0.4, . . . , 0.4)′, while the bottom plots correspond to

µ ∝ (1, 22, . . . , p2)′ standardized to a 0.4 average. The plots in the left

column are for a compound symmetric covariance, while those in the right

column are for an auto-regressive covariance. In all four plots, the Hotelling’s

T 2 performs worse than the new tests except when dimension p = 1. And, as

the number of dimension p increases, the differences in the power functions

also increase. In addition, the new tests are better than the pseudo-test T ∗

for the first type of mean shift illustrated in the top row.

3.3. Other weight functions

The weight function π in (2) is proportional to the joint density of (µ,Σ)

distributed as µ|Σ ∼ N(φ,Σ/m) and Σ−1 ∼ W (θ−1, l+p). This normal-inverse-

Wishart weight function is the conjugate prior distribution for (µ,Σ) for the

multivariate normal model with unknown mean and variance. Let Ta and Tb

be the optimal tests corresponding to π(µ,Σ|3, I, 1, s1) and π(µ,Σ|3, I, 1, s2),
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respectively. Table 1 compares these procedures with Hotelling’s T 2 and Fisher

method S1 on average power when p = 2. The seven different weight functions

are: two conjugate priors; the Jeffreys’ prior; three reference priors; and one

noninformative prior. Chang and Eves (1990) have shown that π4 and π5 are

reference priors on the orbits parameterized by the correlation matrix and the

eigenvalues of the covariance matrix (λ1 and λ2), respectively, and that π6 is the

reference prior on the orbits parameterized by the noncentrality parameter when

Σ is restricted to σ2I. The noninformative prior π7 satisfies Stein’s sufficient

condition for accurate frequentist coverage when Σ = I (Tibshirani (1989)). We

averaged the power function over the region {(µ,Σ) : µ′Σ−1µ ∈ (0, 1.5)} for the
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Figure 2. A comparison of power functions of the Hotelling’s T 2, pseudo-

test T ∗ and the new tests S1, S2, S3 when the dimension is fixed at p = 8.

Each plot shows the relationship between the correlation ρ and the power

to reject the null hypothesis of zero mean, based on a multivariate normal

sample of size 20. The mean shifts and the covariance structures are the

same as in Figure 1 for the four plots. The Hotelling’s T 2 performs worst

except when the covariance is auto-regressive with large correlation. Once

again, the “shrinkage” tests S1, S2, S3 are better than the pseudo-test T ∗ for

the first type of mean shift.
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first two cases, and over the compact region {(µ,Σ) : |µi|/
√

σii < 1, σii <

1, |σ12|/
√

σ11σ22 < 0.9} for the five improper priors, because all four tests have

good power outside the two regions. The table showes that Ta and Tb have larger

average powers for the conjugate priors and are nearly same as the Hotelling’s

test T 2 for the reference prior π6, but T 2 is best in other cases.

Table 1. Comparison of four tests on average power weighted by seven different functions.

Weight functions T 2 S1 Ta Tb

π1 = |Σ|− 3

2 exp
{

−(1/2)trΣ−1[I + (µ − s1)(µ − s1)
′]
}

0.72 0.71 0.74 0.74

π2 = |Σ|− 3

2 exp
{

−(1/2)trΣ−1[I + (µ − s2)(µ − s2)
′]
}

0.72 0.71 0.74 0.75

π3 = |Σ|− 3

2 0.80 0.72 0.73 0.72

π4 = |Σ|− 3

2 |I + Σ ∗Σ−1|− 1

2 0.79 0.73 0.72 0.71

π5 = |Σ|−1|λ1 − λ2|−1 0.78 0.74 0.75 0.75

π6 = |Σ|− 3

4 [4µ′Σ−1µ + (µ′Σ−1µ)2]−
1

2 0.55 0.52 0.55 0.54

π7 = |Σ|− 3

2 (µ′Σ−1µ)−1/2 0.57 0.52 0.52 0.52

4. Results for Multivariate Linear Hypotheses

Consider n independent multivariate normal vectors Y i = (Yi1, . . . , Yip)
′,

1 ≤ i ≤ n, with means E(Yij) = µij and common covariance matrix Σ. A

multivariate linear hypothesis is defined in terms of two linear subspaces ΠΩ

and Πω of n-dimensional space having dimensions s < n and 0 ≤ s − r ≤ s

(Lehmann (1986, p.453)). It is assumed known that for all j = 1, . . . , p, the

vectors (µ1j , . . . , µnj)
′ lie in the subspace ΠΩ; the hypothesis to be tested specifies

that they lie in the subspace Πω. It is well known that hypothesis tests for two

sample normal means, multivariate analysis of variance and multivariate linear

regression are all special cases.

Assume that (e1, . . . , er), (er+1, . . . , es) and (es+1, . . . , en) are orthogonal

bases for subspaces ΠΩ\Πω,Πω and Π⊥
Ω , respectively; let D = [e1, . . . , en],Y =

[Y 1, . . . ,Y n] and Z = Y D. It is easy to see that, under the above transfor-

mation, our problem is reduced to the following canonical form: Z i, 1 ≤ i ≤ n,

are independently distributed according to a p-variate normal distributions with

common covariance matrix Σ. The means of Zs+1, . . . ,Zn are zero, and the

hypothesis to be tested is that the means of Z1, . . . ,Zr are zero. Thus the joint

distribution of the transformed observations is

(2π)−
pn

2 |Σ|−n
2 exp

{

− 1

2
trΣ−1[

s
∑

i=1

(Zi − µi)(Z i − µi)
′ +

n
∑

i=s+1

ZiZ
′
i]
}

. (6)
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It is clear that the Z i, r < i < s, can be of no use, and that the only useful
quantities supplied by the Zs+1, . . . ,Zn are the statistics A =

∑n
i=s+1 ZiZ

′
i.

Now let βω(µ1, . . . ,µr,Σ) be the power corresponding to the critical region
ω, which is assumed to be a function of Z1, . . . ,Zr and A, for testing the mul-

tivariate linear hypothesis in its canonical form. We consider maximizing the
average power

Γω =

∫

Ω(s)
π(µ1, . . . ,µr,Σ|l, θ,mi, φi, S, 1 ≤ i ≤ r)βω(µ1, . . . ,µr,Σ)Πdµi dΣ,

(7)

where Ω(s) = {(µ1, . . . ,µr,Σ) : µ′
iΣ

−1µi ∈ (0, s), 1 ≤ i ≤ r} and the weighting
function is given by

π = |Σ|− l
2 exp

{

− 1

2
trΣ−1[θ +

r
∑

i=1

mi(µi − φi)(µi − φi)
′]
}

.

The optimal tests are provided by the following theorem, whose proof is found
in Wu (2003b).

Theorem 4. Let C =
∑r

i=1 ZiZ
′
i +

∑n
i=s+1 ZiZ

′
i and W = [(Z1 + m1φ1)/√

m1 + 1, . . . , (Zr+mrφr)/
√

mr + 1]. Then there is a function g(C, θ,mi, φi, 1 ≤
i ≤ r) such that the rejection region

ω2 : det
(

Ir −W ′(C + θ +

r
∑

i=1

miφiφ
′
i)
−1W

)

≤ g(C, θ,mi, φi, 1 ≤ i ≤ r) (8)

satisfies βω(0, . . . ,0,Σ) = α and maximizes Γω(l, θ,mi, φi, s, 1 ≤ i ≤ r), provided

(1) r = 1, all mi > 0 or s < ∞; or (2) r ≥ 2, all mi > 0 AND s = ∞.

Previously, this result was only known for the case r = 1 and π = exp{−(1/2)

trΣ−1θ}. For r ≥ 2, our result only applies to the case when the power is averaged
over the entire parameter space.

For a two sample location problem, we observe Y i, 1≤ i≤n1, from Np(η1,Σ)
and Y i, (n1 +1) ≤ i ≤ n = n1 +n2, from Np(η2,Σ). We consider the hypothesis

H0 : η1 = η2. In this case we also have r = 1 because ΠΩ = span

(

1n1
0n1

0n2
1n2

)

is a linear space of dimension s = 2 and Πω = span{1n} has dimension s−r = 1.

It is straightforward to check that Z1 =
√

n1n2/n(Y
(1)−Y

(2)
), the standardized

version of the difference between the two sample means. Furthermore, we have

A =
∑n

i=3 ZiZ
′
i = (n − 2)S, where

S =
1

n − 2

(

n1
∑

i=1

(Y i − Y
(1)

)(Y i − Y
(1)

)′ +
n

∑

i=n1+1

(Y i − Y
(2)

)(Y i − Y
(2)

)′
)

.
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Obviously Z1 is Np(µ1,Σ) with µ1 =
√

n1n2/n(η1−η2). Applying Theorem

4 to this special two sample problem, we have tests that have optimal average

power weighted by

π(µ1,Σ|l, θ,m, φ) = |Σ|− l
2 exp

{

− 1

2
trΣ−1[θ + m(µ1 − φ)(µ1 − φ)′]

}

. (9)

Corollary 1. Given Y i, 1 ≤ i ≤ n1, from Np(η1,Σ) and Y i, (n1 + 1) ≤ i ≤ n =

n1 + n2, from Np(η2,Σ), if Z1 =
√

n1n2/n(Y
(1) − Y

(2)
) and C = (n − 2)S +

Z1Z
′
1, then among all rejection regions (for the hypothesis H0 : η1 = η2) that

are functions of Z1 and S and satisfy βω(0,Σ) = α for all Σ,

ω3 : (Z1 + mφ)′(C + θ + mφφ′)−1(Z1 + mφ) ≥ g(C,m, φ, θ) (10)

has the maximum average power weighted by π defined in (9) whenever m > 0 or

s < ∞, where g(C ,m, φ, θ) is the upper αth percentile of (T ′U + mφ)′(C + θ +

mφφ′)−1(T ′U + mφ), T satisfies C = T ′T , and U ∼ Up,n−3.

5. Summary and Discussion

We have introduced a new class of procedures that have best average power

for testing multivariate linear hypotheses. Our results extend Hsu (1945) not

only in the choice of the weighting functions, but also in the linear hypotheses

to be tested. Implementation of the new tests is provided by using random

samples from the U distribution. Furthermore, “shrinkage” tests constructed

from the optimal procedures compete very well against Hotelling’s T 2, especially

as p increases.

It is well known that, in the multiple normal means problem, the usual least

squares estimator may be inadmissible (See Stein (1956) and Brown (1990)). The

James-Stein shrinkage estimate dominates the usual sample mean in simultane-

ously estimating three (or more) parameters. Our Theorem 2 shows that, if we

shrink the sample mean Y toward any given vector φ and the sample covariance

toward any given positive definite matrix θ, the resulting quadratic form yields a

test with best average power, hence is admissible. Such tests have not been used

before because of the difficulty in the computation of the rejection threshold. It

can be very evaluated now based on random samples from the U distribution. We

note that the permutation method, which is slightly different from our approach,

is an alternative way to compute the threshold.

From another point of view, for fixed n and increasing p, the estimation of

the covariance matrix becomes less accurate, and the new tests that shrink the

off-diagonal elements prevail over Hotelling’s T 2. We suspect that the optimal

amount of shrinkage depends on the relative magnitudes of p and n.
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The tests proposed here are only for multivariate normal data. However,

their rejection regions can be easily implemented using the permutation method

for other heavy-tailed distributions. As Wu (2003a) has shown empirically in

such cases, Fisher’s combination of coordinate-wise nonparametric tests can also

outperform Hotelling-type tests. Whether the same optimal property in average

power will hold for multivariate location tests with other probability distributions

needs further investigation.
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