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Abstract: We consider Cox proportional hazards regression when longitudinal mea-
surements are available. In some applications, one major goal is to estimate the

effect of the underlying change of the longitudinal measurements on survival. One
general approach considers regression analysis when some covariate variables are

the underlying regression coefficients of another random effects model. For each
subject, the covariate variables to the primary regression model are not observed,
but can be estimated from the observed longitudinal measurements. This set-up is

often called joint modeling in the literature, but it can be treated as two-stage mod-
eling. In this paper, a corrected score estimator is investigated. Comparisons are

made with a naive estimator, a regression calibration estimator, a risk set regression
calibration estimator, and a conditional score estimator. Similar to the conditional

score estimator, the corrected score estimator does not need the assumption of an
underlying distribution of the random effects for each subject. Under some regu-
larity conditions, the proposed corrected score estimator is shown to be consistent

and asymptotically normally distributed. Simulation results under various random
effects distributions are presented.
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proportional hazards, random effects.

1. Introduction

In this paper, we are concerned with the regression relationship between

survival of a disease outcome and some longitudinal measurements. There are

many important applications in biomedical studies. A particular application is to

investigate the relationship between longitudinal serum hormone concentrations

and cardiovascular diseases. One simple statistical approach to this problem is

to consider the long-term average of the concentrations as the covariate for each

subject. This approach has the advantage of being simple, but it does not take

into consideration measurement times and longitudinal trajectories. If the age

interval of interest of a study cohort is between 50 and 70, and if the trajec-

tory of the longitudinal serum hormone concentrations is approximately linear

in this interval, then it would be interesting to investigate whether the underly-

ing baseline serum hormone concentration and the rate of change of longitudinal

measurements are major risk factors.



236 C. Y. WANG

A second example is to consider the relationship between breast cancer and

longitudinal percents of fat intakes. In the Women’s Health Initiative Dietary
Modification trial, there were about 48,000 subjects recruited and 40% of them

were randomized into the dietary intervention group. Although the original goal

of the study was to reduce the intervention group’s percent fat intake by 16%,

compliance to dietary change is challenging to most study subjects over an aver-
age follow-up of 8.5 years. Therefore, subjects in the intervention group often had

lower fat intakes in the beginning but had increasing fat intakes longitudinally.

On the other hand, many subjects in the control group mildly reduced their fat

intakes longitudinally, because during the trial they learned how to improve their
health via food intake. In this application, it is interesting to study whether the

underlying baseline percent fat intake and the rate of change of longitudinal fat

intakes are major risk factors for the onset of breast cancer.

Cox (1972) regression is a common tool for survival data. If measurement
error is not of concern, then either time-independent or time-dependent modeling

of longitudinal covariate data may be applied. If longitudinal covariates are

considered as replicates, then time-independent modeling may be applied. But,
if the longitudinal measurements for each subject have a nonconstant trajectory,

then time-dependent modeling is often involved. For time-independent modeling,

the issue of measurement error in covariates has been well studied in the last two

decades (Prentice (1982)). Under this setting, the underlying long-term average
is considered as the true covariate and hence measurement error may be either

from the measuring process per se, or from the noise process associated with the

long-term average. For time-dependent modeling of the longitudinal data, each

subject’s trajectory is usually unrestricted. However, some methodology issues
may arise if measurement error is a concern. Recently, Tsiatis and Davidian

(2001) proposed a conditional score estimator when the longitudinal covariate

data are linear in a time-dependent setting.

In addition to the models described above, Wang, Wang and Wang (2000)
studied some methods under the modeling that the covariates of interest are the

regression parameters of a random effects model. For example, if each subject’s

longitudinal data follow a linear model then the covariate variables may be the

intercept and slope parameters of the linear model. A naive estimator for this
problem replaces the unobserved covariates, such as the intercept and slope pa-

rameters, by their least square estimates. However, this procedure will generally

be biased. Wang et al. investigated the regression calibration (RC) estimator

which replaces the unobserved parameters of the random effects model by their
conditional expectation given the observed longitudinal data. The RC estimator

reduces significant biases from the naive estimator under general situations, but

it may have unacceptable biases under some situations, such as large relative risk

parameters.
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In Section 2, we describe how the statistical problem is modeled. A naive es-

timator and the RC estimator are reviewed, and a risk set regression calibration

estimator is also described. In Section 3, we review the conditional score esti-

mator. The corrected score estimator for this problem is proposed in Section 4.

Note that in Cox regression with additive measurement error, Nakamura (1992)

proposed a corrected score estimator assuming known measurement error. Naka-

mura’s estimator can be easily applied when the numbers of replicates are equal

for all study subjects. Buzas (1998), Kong and Gu (1999), Huang and Wang

(2000) and Hu and Lin (2002) have provided some further developments on this

type of corrected score approach. In this paper, we are concerned with a more

complicated longitudinal covariates data structure having subject-specific trajec-

tories. Rather than being treated as replicates, longitudinal data follow a second

regression model. Our problem is often called joint modeling in the literature,

but it can be treated as estimation in a two-stage regression model. Developing

a corrected score estimator is non-trivial because the measuring times and the

numbers of observations vary among study subjects. An intensive simulation

study is presented in Section 6.

2. Naive and Regression Calibration Estimation

We first introduce notation and modeling for our problem. The first stage

is the longitudinal covariates model. Assume that there are n study subjects

and for subject i, i = 1, . . . , n, longitudinal measurements Wij are taken at ki

different times tij . Suppose the Wij ≡ Wi(tij), j = 1, . . . , ki, follow a random

effects model (Laird and Ware (1982))

Wij = D′

ijX i + Uij , i = 1, . . . , n, (1)

where Dij is a q×1 observed covariate vector, often with the first element being 1,

and X i = (Xi1, . . . , Xiq)
′ contains the ith set of random coefficients. One special

case is the intercept-slope model that Dij = (1, tij)
′ and X i = (Xi1, Xi2)

′, where

Xi1 is the initial exposure level and Xi2 is the rate of change. Thus (1) is the

covariate model which specifies the covariates of interest.

Now we consider the second stage model. Let T 0
i be the survival time of

the ith subject, and Ci be the censoring time. The response consists of observed

variables Ti ≡ min(T 0
i , Ci) and δi ≡ I(T 0

i ≤ Ci), where I(·) is the indicator

function. Of interest is the relationship between survival time T 0 and covariate

vector X i, but T 0
i is subject to censoring and thus is not fully observed. Assuming

that T 0
i is independent of Ci given X i, the model semiparametrically formulates

the cumulative hazard function Λ(·
∣∣ Xi) of T 0

i given (X i,W i) as

Λ(dt
∣∣ Xi,W i) = Λ0(dt) exp(β′

0Xi), (2)
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where β0 is a vector of parameters of interest and Λ0(·) is an unspecified baseline
cumulative hazard function. In (2), we assume that the effect of longitudinal W i

on survival is from the random effects X i. This conditional independence of W i

and Ti given X i is often called the surrogacy condition. If X i, i = 1, . . . , n were
available, the (normalized) partial-score estimating equation evaluated at time
limit τ solves

Ψ̂(β,X, τ) ≡ Ê

∫ τ

0

[
X −

Ê{X exp(β′X)I(T ≥ t)}

Ê{exp(β′X)I(T ≥ t)}

]
d{δI(T ≤ t)} = 0,

where Ê(X) denotes the empirical average of any random sample X 1, . . . ,Xn.
To this problem, one intuitive approach is to estimate the underlying X i

using say the least square estimates, and to apply these estimates as the covariates
for subject i. However, this is often associated with serious bias. The bias can be
easily seen by considering the case q = 1, which leads to a classical measurement
error problem with Wij = Xi + Uij.

To reduce bias, Wang et al. (2000) studied the RC estimator. The RC esti-
mator may be implemented by replacing the unobserved X i with its conditional
expectation given the observed longitudinal measurements, W i. Assume that
Xi is multivariate-normal with mean µx, and variance-covariance matrix Σx.
Also suppose U i ≡ (Ui1, . . . , Uiki

)′ follows a multivariate normal distribution
with E(U i|X i) = 0 and var(U i|Xi) = Σui = diag(σ2

u, . . . , σ2
u). Let Di be the

ith design matrix where the jth row contains D ′
ij. Then

(
X i

W i

)
∼ N

{(
µx

Diµx

)
,

(
Σx ΣxD′

i

DiΣx DiΣxD
′
i + Σui

)}
.

As a result, the calibration function can be calculated by noting that

E(X i|W i) = µx + ΣxD′

i(DiΣxD′

i + Σui)
−1(W i − Diµx). (3)

The RC estimator solves Ψ̂{β, E(X |W )} = 0. This involves estimating the

nuisance parameters µx, Σx and σ2
u. Let X

(ls)
i be the least square estimator

from (1) for each subject, i.e. X
(ls)
i = (D′

iDi)
−1D′

iW i. Let η be the vector
of nuisance parameters, and ΣRi = (D′

iDi)
−1D′

iΣuiDi(D
′

iDi)
−1. If ki > q for

i = 1, . . . , n, then one convenient choice of estimating equations ΦN (W i,η) for
nuisance parameters involved in the distribution of X, and U is





n∑

i=1

ki

{
X

(ls)
i − µx

}
= 0;

n∑

i=1

ki

[{
X

(ls)
i − µx

}{
X

(ls)
i − µx

}′

−Σx −ΣRi

]
= 0;

n∑

i=1

ki

[{
W i − DiX

(ls)
i

}′ {
W i − DiX

(ls)
i

}
− σ2

u(ki − q)

]
= 0.

(4)
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The first equation of (4) is for the estimation of µx; the second equation of (4) is

for the estimation of Σx, and unbiasedness follows because E [{X
(ls)
i −µx}{X

(ls)
i −

µx}
′] = Σx + ΣRi; the last equation of (4) is based on the assumption that Uij

is independent of Uij′ for j 6= j′.

The RC estimator often performs well when the relative risk parameters are

moderate, although it is an inconsistent estimator. Wang et al. (2000) presented

situations when the RC estimator may have sizable biases. One way to refine

this approach is to estimate the calibration function E(X i|W i) within each risk

set. In the classical additive measurement error model, Tsiatis, DeGrutolla and

Wulfsohn (1995) proposed risk set regression calibration, and Dafni and Tsiatis

(1998) further investigated the method in joint modeling. They applied empirical

Bayes estimates to estimate the covariate values at each time point at which an

event occurs, based on the observed history of the observed longitudinal data

among individuals who did not have an event up to that time point. In the addi-

tive measurement error model, a risk set regression calibration was investigated

by Xie, Wang and Prentice (2001). In the simulation study, a risk set regression

calibration estimator is implemented similar to the idea given above, and at each

event time the calibration function E(X i|W i) is approximated by (3) and (4),

using just the observed covariate history among individuals who are at risk.

3. Conditional Score Estimation

Motivated by the conditional score estimation of Stefanski and Carroll (1987)

for the generalized linear model, Tsiatis and Davidian (2001) proposed a condi-

tional score estimation in Cox regression when the underlying time dependent

covariates follow a linear model. The conditional score estimator does not need

the distributional assumption on X, but the model assumption on U is needed.

This modeling of covariates is slightly different from our modeling that has the

covariates as random effects coefficients. Let X
(ls)
i (u) be the least square estima-

tor from (1) using observations by time u. Let Ni(u) = I[δi = 1, Ti ≤ u, tiq ≤ u]

be the counting process and Yi(u) = I[Ti ≥ u, tiq ≤ u] be the at risk process.

The conditional score estimation for more general modeling of covariates was

further investigated in Song, Davidian and Tsiatis (2002). In our problem, they

showed that conditional on Yi(u) = 1, Qi(u,β) = X
(ls)
i (u) + ΣRi(u)βdNi(u) is

a complete sufficient statistic for X i, where ΣRi(u) is the variance of X
(ls)
i (u),

see (6). Hence, at each time u, conditioning on Qi(u,β) would remove the de-

pendence of the conditional distribution on the random effect X i. They showed

that the conditional intensity process limdu→0pr{dNi(u) = 1|Qi(u,β), Yi(u)} is

equal to λ0(u)exp{β′Qi(u,β)−β′ΣRi(u)β/2}Yi(u). As a result, the conditional
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score estimator solves

n∑

i=1

∫ τ

0

{
Qi(u,β) −

V i(u,β)

V0(u,β)

}
dNi(u) = 0,

where V m(u,β) = n−1
∑n

i=1 Yi(u)Qm
i (u,β)exp{β′Qi(u,β) − β′ΣRi(u)β/2}, m

= 0, 1. The asymptotic variance of the conditional score estimator can be ob-

tained by a sandwich estimator. Details are given in Tsiatis and Davidian (2001)

and Song, Davidian and Tsiatis (2002).

4. Corrected Score Estimation

Let X̃ = (X1, . . . ,Xn) for any vector X. Generally speaking, if Ψ̂(δ̃, T̃ , X̃)

is a full data score such that E{Ψ̂(δ̃, T̃ , X̃)} = 0, then Ψ̂c(δ̃, T̃ , W̃ ) is a corrected

score if E{Ψ̂c(δ̃, T̃ , W̃ )|T̃ , δ̃, X̃} = Ψ̂(T̃ , δ̃, X̃). A corrected score estimator does

not need the distributional assumption on X, but the model assumption on U

is needed. In our problem, Ψ̂(δ̃, T̃ , X̃) is the partial likelihood score, and we use

Ψ̂(β,X) for notational convenience. Let

Ψ̂(β,X , t) = n−1
n∑

i=1

∫ t

0
{Xi −E(β,X, s)}dNi(s) = 0, (5)

where E(β,X , t) = S(1)(β,X, t)/S(0)(β,X , t), S(m)(β,X , t) = n−1
∑n

j=1 Yj(t)

Xm
j exp(β′Xj),m = 0, 1. Then the partial likelihood score without measurement

error can be written as Ψ̂(β,X , τ). It is easily seen that Ψ(β,X, τ) converges

in probability to

Ψ(β, τ) = E
[ ∫ τ

0
{X − e(β, t)}dN(t)

]
,

where e(β, t) = s(1)(β, t)/s(0)(β, t), s(1)(β, t) = E{Xexp(β′X)Y (t)}, s(0)(β, t) =

E{exp(β′X)Y (t)}. The limit can also be written as E [
∫ τ
0 {X − e(β, t)}dM(t)],

where M(t) = N(t) −
∫ t
0 Y (s)exp(β′

0X)λ0(s)ds. There is a unique root of

Ψ(β, τ) = 0. Roughly speaking, a corrected score Ψ̂c(β,W , τ) provides a

valid estimating function because E{Ψ̂c(β,W , τ)|T̃ , δ̃, X̃} converges to Ψ(β, τ)

in probability.

4.1. First-order estimator

Recall that X
(ls)
i (t) = (D′

i(t)Di(t))
−1D′

i(t)W i(t), where Di(t) and W i(t)

are the ith design matrix and observed covariates described in Section 2, except

using data points up to time t. As described, the main step of our estimator is to

seek an estimating function based on the observed data such that its conditional
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expectation given the full data is the same as the original partial likelihood score.

Based on X
(ls)
i (u), at a time t, we now formulate an induced measurement error

model as




X
(ls)
i (t) = X i(t) + Ri(t),

E{Ri(t)|X i(t)} = 0;

cov{Ri(t)|X i(t)} = ΣRi(t)

= {D′
i(t)Di(t)}

−1D′
i(t)Σui(t)Di(t){D

′
i(t)Di(t)}

−1.

(6)

Note that in (5), by (6), E(X
(ls)
i |X i) = X i. Hence, what is left to carry

out a corrected score is to calculate E{E(β,X (ls), t)|T̃ , δ̃, X̃} for a time point t.

To resolve some technical issues, we treat the number of longitudinal data for

subject i, ki, as a random variable, writing Ki for ki. For given Ki = ki, we

also treat the measuring times, tij, j = 1, . . . , ki as random, and hence ΣRi(t) is

random as well. This assumption is not restrictive. The method can be applied

even if ki’s are fixed but not the same for all subjects. Under this situation,

we may consider these fixed ki’s as being sampled from an unknown underlying

distribution.

By direct calculation, under Condition (A2) of the Appendix, as n → ∞,

E{E(β,X(ls), t)|T̃ , δ̃, X̃} = E(β,X, t) +
Ê{β′ΣR(t)eβ

′

ΣR(t)
β
2 }

Ê{eβ
′

ΣR(t)
β
2 }

+ Op(n
−1).

Therefore, a first order corrected score (CS) estimator is to solve

Ψ̂c(β,W , τ) ≡ n−1
n∑

i=1

∫ τ

0
[X

(ls)
i (t)−E(β,X (ls), t)+Cn{β,ΣR(t)}]dNi(t) = 0,

(7)

where Cn{β,ΣR(t)} = [
∑n

j=1 β′ΣRjexp{β′ΣRj(t)β/2}]/[
∑n

j=1 exp{β′ΣRj(t)β

/2}].

Hence, the first-order conditional score estimating function Ψ̂c(β,W ) has

the same limit, Ψ(β), as that from the estimating score with X available, i.e.,

Ψ̃(β,X).

Theorem 1. Under Conditions (A1)−(A6), let β̃ be a solution to (7). Then β̃

exists and is unique in a neighborhood of β0 with probability converging to one as

n → ∞, and β̃ → β0 in probability. In addition, n1/2(β̃ − β0) is asymptotically

normally distributed with mean 0 and variance given in (10).

4.2. Second-order estimator

In order to have better finite sample performance, we consider a second order
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approximation. It can be shown by some calculations given in the Appendix that

as n → ∞, and β → 0,

E{E(β,X (ls), t)|T̃ , δ̃, X̃}

= E(β,X, t) + C{β,ΣR(t)}
[
1 −D{β,ΣR(t)}

n−1S(0)(2β,X, t)

{S(0)(β,X, t)}2

]
+ op(n

−1β),

where C{β,ΣR(t)} = E [β′ΣR(t)exp{β′ΣR(t)β/2}]/E [exp{β′ΣR(t)β/2}] and D

{β,ΣR(t)} = E [exp{2β′ΣR(t)β}]/
(
E [exp{β′ΣR(t)β/2}]

)2
. Note that

E
[n−1S(0)(2β,X(ls), t)

{S(0)(β,X(ls), t)}2
|T̃ , δ̃, X̃

]
= D{β,Σ(t)}

n−1S(0)(2β,X , t)

{S(0)(β,X, t)}2
+ op(n

−1). (8)

Therefore, the second-order CS estimator solves

n∑

i=1

∫ t

0

[
X

(ls)
i (u) −E(β,X(ls), u) + Cn{β,ΣR(u)}

[
1 −

n−1S(0)(2β,X(ls), t)

{S(0)(β,X(ls), t)}2

]]

dNi(u) = 0. (9)

Because the difference between the first-order estimating score and the

second-order estimating score is of order Op(n
−1), the improvement of the second-

order estimator is primarily on finite sample performance. Any further correction

using a higher order does not seem appealing in terms of calculation. Hence, we

refer the CS estimator to the second-order estimator hereafter.

4.3. Covariance estimation

The implementation of the CS estimator can be done by Newton-Raphson

iteration. A simple sandwich estimator can be applied to estimate the standard

error of the CS estimator. Let Θ0 = (β′

0, σ
2
u0)

′, where σ2
u0 is the true nui-

sance parameter involved in ΣR as described in Section 2. Define Φ(Θ,W i) =

[{ΦP (Θ,W i)}
′, {ΦN (σ2

u,W i)}
′]′, where ΦP (Θ,W i) is given in (12) in the Ap-

pendix, and ΦN (σ2
u,W i) is given in the last equation of (4). Denote the solution

of
∑n

i=1 Φ(Θ,W i) = 0 by Θ̂ and let Gn(Θ) = n−1
∑n

i=1(∂/∂Θ)Φ(W i,Θ).

Then the variance of n1/2(Θ̂ − Θ0) can be estimated by the robust sandwich

estimator

G−1
n (Θ̂)

[
n−1

n∑

i=1

{Φ(Θ̂,W i)}
⊗2

]
{G−1

n (Θ̂)}′, (10)

where a⊗2 denotes aa′ for any vector a. Numerical derivatives can be easily ap-

plied to calculate G(Θ). Under the conditions for the consistency result described

above, the robust sandwich estimator can be shown to be consistent.
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5. Estimation of Baseline Cumulative Hazard Function

Estimation of the baseline cumulative hazard function Λ0(·) is often of inter-

est. Generally, after a method for regression coefficients is applied, the estimation

of baseline cumulative hazard function can be developed by modifying the Bres-

low estimator of Λ0, which can be written as

Λ̃0(t;β,X) =

∫ t

0

dÊ{δI[T ≤ s]}

Ê{exp(β′X)I[T ≥ s]}
.

Of course, the above estimator can not be applied directly since X is not avail-

able, and replacing X by X (ls) may lead to bias. It is easily seen that the above

estimator is consistent since it is a functional of the empirical processes with limit

Λ0(t) =

∫ t

0

dE{δI[T ≤ s]}

E{exp(β′X)I[T ≥ s]}
.

By simple calculation, it can be seen that {S (0)(β,X , t)}−1 =E [exp{β′ΣR(t)β/2}]
E [{S(0)(β,X (ls), t)}−1|X̃, T̃ , δ̃}] + op(1). Therefore, a consistent estimator for

Λ0(·) can be obtained as

Λ̂0(t;β,X (ls))=

∫ t

0

Ê{eβ
′

ΣR(s)
β
2 }dÊ{δI[T ≤ s]}

Ê{exp(β′X(ls))I[T ≥ s]}
=

∫ t

0

Ê{eβ
′

ΣR(s)
β
2 }dN (s)

S(0)(β,X(ls), s)
,

where N =
∑n

i=1 Ni/n. The asymptotic distribution of the estimator can be

established by some theory on empirical processes. For the classical additive

measurement error model, Huang and Wang (2000) proposed similar estimators

for Λ0 and showed that they converge weakly to a zero mean Gaussian process.

The above estimator’s distribution theory can be obtained likewise, except with

more complicated calculations.

6. Simulation Study

This section provides some results from a Monte-Carlo study that compares

several methods. Various distributional assumptions for X i are considered. In

Table 1, X i = (Xi1, Xi2)
′ were generated from a bivariate normal distribution

with mean µx = (0, 0)′, var(Xi1) = 1, var(Xi2) = 0.25, corr(Xi1, Xi2) = −0.1,

σu = 0.4. Six repeated measurements Wij were simulated from the model Wij =

Xi1+Xi2tij +Uij, where the tij were uniformly distributed in [0.5j−2, 0.5j−1.9],

for j = 1, . . . , 6. Failure times were generated by the hazard function λ(t;X i) =

0.2exp(β′X i). A common censoring time was used for all subjects such that the

censoring percentage was 50%, and the random error process satisfied Σui = σ2
uI6.

The observed longitudinal data were available only before the event time. The
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true parameters and sample sizes n used in each simulation study are shown in the

corresponding tables. In the tables, the “biases” were calculated by taking the

average of β̂−β from 200 replicates, “SD” denotes the sample standard deviation

of the estimators, “mean(SE)” denotes the average of the estimated standard

errors of the estimators. The 95% confidence interval coverage probabilities and

mean square errors (MSEs) are also included.

Table 1. Simulation results when (X1, X2) is bivariate normal.

n = 400 n = 800

Naive RC RRC COR-S CON-S Naive RC RRC COR-S CON-S

β = ln(2),− ln(2)

β1

bias -0.015 -0.003 0.001 0.003 0.003 -0.017 -0.007 -0.003 0.000 0.000

SD 0.076 0.078 0.079 0.080 0.080 0.056 0.057 0.060 0.062 0.061
mean(SE) 0.087 0.077 0.079 0.080 0.079 0.053 0.055 0.057 0.059 0.058

95% cov. 0.930 0.935 0.945 0.945 0.945 0.945 0.940 0.930 0.935 0.935

MSE 0.006 0.006 0.006 0.006 0.006 0.003 0.003 0.004 0.004 0.004

β2

bias 0.078 0.008 0.004 0.002 0.003 0.069 -0.007 -0.010 -0.003 0.004

SD 0.130 0.150 0.158 0.165 0.162 0.094 0.116 0.119 0.123 0.121

mean(SE) 0.136 0.155 0.161 0.167 0.163 0.093 0.119 0.121 0.131 0.126
95% cov. 0.920 0.965 0.965 0.965 0.955 0.880 0.965 0.950 0.950 0.955

MSE 0.023 0.023 0.025 0.027 0.026 0.014 0.014 0.014 0.015 0.015

β = (ln(5),− ln(5))

β1

bias -0.098 -0.060 -0.049 0.009 0.007 -0.108 -0.080 -0.065 0.004 0.002

SD 0.098 0.102 0.104 0.116 0.115 0.066 0.071 0.076 0.082 0.081
mean(SE) 0.099 0.102 0.103 0.117 0.123 0.069 0.074 0.077 0.091 0.087

95% cov. 0.830 0.880 0.915 0.950 0.980 0.635 0.790 0.895 0.960 0.960

MSE 0.019 0.014 0.013 0.013 0.013 0.016 0.011 0.010 0.007 0.007

β2

bias 0.229 0.072 0.052 -0.013 -0.010 0.212 0.068 0.050 -0.000 0.003

SD 0.128 0.144 0.163 0.198 0.192 0.101 0.132 0.140 0.160 0.154

mean(SE) 0.148 0.171 0.175 0.195 0.192 0.097 0.132 0.145 0.150 0.158
95% cov. 0.670 0.950 0.955 0.975 0.980 0.405 0.915 0.920 0.955 0.950

MSE 0.070 0.026 0.029 0.039 0.037 0.055 0.022 0.022 0.026 0.024

NOTE: Nuisance parameters are µx = (0, 0)′, var(X1) = 1, var(X2) = 0.25, corr(X1, X2) =

−0.1, σu = 0.4. RC, RRC, COR-S and CON-S denote the regression calibration estimator, risk

set regression calibration estimator, corrected score estimator and conditional score estimator,

respectively. For j = 1, . . . , 6, the tij are uniformly distributed within [0.5j − 2, 0.5j − 1.9]. The

censoring rate is 0.5.
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The results from the upper portion of Table 1 show that the RC, risk set

regression calibration (RRC), corrected score and conditional score estimators

perform reasonably well when the relative risk is moderate. Note that to show

the inconsistency problem of the RC estimator and RRC estimators under this

moderate risk setting, we may increase the total sample size n to say 5,000, in

which case the coverage probabilities for the 95% confidence intervals of the RC

estimates may be less than 90%. The lower portion of Table 1 shows that the

RC estimator may have bias when the relative risk is large. It is seen that the

RRC estimator has very good finite sample performance in most cases, except

for a minor bias problem when β = (ln(5),− ln(5)). The corrected score esti-

mates presented here are the second order ones. The first order corrected score

estimator was examined, and it was generally not as good as the second order

corrected score estimator in terms of both bias and efficiency. The conditional

score estimator is generally slightly better than the corrected score estimator,

but the difference is small, especially with small relative risk parameters, small

measurement errors and large sample sizes.

Table 2 considers a non-normal model for the distribution of X i. The actual

Xi1 was generated from a mixture of two normals with means (1/51/2,−2/51/2),

variances (4/5, 1/5), and the mixture percentages were (2/3, 1/3). Under this

mechanism, Xi1 has mean 0 and variance 1, Xi2 was generated similarly to that

of Xi1 but with variance 0.25, and corr(Xi2, Xi1) = −0.1. The performance of

the various methods are quite similar to those reported in Table 1 for moderate

relative risk. When the relative risk parameters are large, such as (ln(5),− ln(5)),

generally the biases and standard errors are slightly larger than those in Table

1. Although not presented in the tables, some other random effects models for

Xi1 and Xi2 have been examined. For uniform distributions, the results are

rather similar to Table 1. For chi-square distributions, which are more skewed,

the results are more similar to Table 2, but the biases and standard errors for

most estimates are bigger. Another fact not seen in the tables is that when

the measurement error σu is increased, the biases and standard errors of various

estimators will generally increase. The effect of increasing σu is rather similar to

that of increasing |β|, except that increasing σu may lead to more divergences in

many estimation procedures.

Overall, the proposed corrected score estimator is rather similar to, but

slightly less efficient than the conditional score estimator. The RC estimator

and RRC estimator are both generally very efficient. The biases are generally

small except when β = (ln(5),− ln(5)), under which they may have coverage

probabilities of less than 90%. Increasing the sample size will reduce the coverage

probabilities of the RC and RRC estimators. This phenomenon was confirmed

in Xie et al. (2001) in the case of an additive covariate measurement error model,
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Table 2. Simulation results when X1 and X2 are independently sampled

from two mixtures of normals.

n = 400 n = 800

Naive RC RRC COR-S CON-S Naive RC RRC COR-S CON-S

β = ln(2),− ln(2)

β1

bias -0.016 -0.006 0.001 -0.001 -0.001 -0.017 -0.007 -0.001 -0.003 -0.002

SD 0.074 0.075 0.078 0.080 0.078 0.051 0.052 0.054 0.055 0.054

mean(SE) 0.073 0.075 0.076 0.079 0.078 0.051 0.052 0.054 0.055 0.054

95% cov. 0.940 0.930 0.935 0.945 0.950 0.940 0.950 0.945 0.945 0.960
MSE 0.006 0.006 0.006 0.006 0.006 0.003 0.003 0.003 0.003 0.003

β2

bias 0.082 -0.009 0.012 -0.002 0.001 0.072 -0.002 -0.001 -0.014 -0.012
SD 0.155 0.169 0.183 0.195 0.194 0.101 0.112 0.119 0.130 0.126

mean(SE) 0.138 0.156 0.166 0.189 0.179 0.097 0.110 0.117 0.133 0.126

95% cov. 0.885 0.915 0.920 0.925 0.930 0.875 0.930 0.930 0.940 0.950

MSE 0.031 0.028 0.033 0.038 0.037 0.015 0.012 0.014 0.017 0.016

β = (ln(5),− ln(5))

β1

bias -0.085 -0.058 -0.025 0.020 0.018 -0.095 -0.069 -0.038 0.005 0.004

SD 0.106 0.109 0.114 0.128 0.127 0.075 0.078 0.081 0.091 0.090

mean(SE) 0.095 0.099 0.101 0.120 0.120 0.067 0.070 0.071 0.081 0.085

95% cov. 0.800 0.865 0.910 0.930 0.950 0.680 0.790 0.840 0.940 0.965
MSE 0.018 0.015 0.014 0.017 0.016 0.015 0.011 0.008 0.008 0.008

β2

bias 0.238 0.067 0.078 -0.018 -0.012 0.225 0.055 0.060 -0.026 -0.024

SD 0.154 0.178 0.189 0.250 0.235 0.104 0.122 0.130 0.168 0.160

mean(SE) 0.147 0.175 0.183 0.250 0.243 0.103 0.124 0.129 0.171 0.172

95% cov. 0.660 0.890 0.895 0.960 0.960 0.435 0.915 0.910 0.950 0.960

MSE 0.080 0.036 0.042 0.063 0.055 0.061 0.018 0.021 0.029 0.026

NOTE: Nuisance parameters are µx = (0, 0)′, var(X1) = 1, var(X2) = 0.25, corr(X1, X2) =

−0.1, σu = 0.4. RC, RRC, COR-S and CON-S denote the regression calibration estimator, risk

set regression calibration estimator, corrected score estimator and conditional score estimator,

respectively. For j = 1, . . . , 6, the tij are uniformly distributed within [0.5j − 2, 0.5j − 1.9]. The

censoring rate is 0.5.

which can be treated as a special case of the joint modeling in this paper. Note

that MSE is used as a reference here and it serves as a good criteria to com-

pare differences between the conditional score estimator and the corrected score

estimator. MSE may not be a good criteria to compare consistent estimators

with inconsistent estimators. For example, in situations with small measurement

errors the naive estimator may have the smallest MSE. In covariate measurement
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error, there is a trade-off between bias and efficiency and this is also seen in joint

modeling. That is, the corrected score and conditional score estimators both

reduce the bias, but at a cost of increasing the variance.
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Appendix

Appendix A. Regularity Conditions

(A1) {Ni, Yi,Xi}, i = 1, . . . , n, are independent and identically distributed.

(A2) Λ0(t) is continuous and Λ0(τ) < ∞.

(A3) Almost surely X is bounded.

(A4) pr{Y (t) = 1,∀t ∈ [0, τ ]} > 0.

(A5) The number of measurements Ki for i = 1, . . . , n, and tij , j = 1, . . . ,Ki, are

random variables and Cn{β,ΣR(t)} has bounded variation.

(A6)
∫ τ
0 v(β, t)s(0)(β, t)λ0(t)dt is positive definite, where v(β, t) = s(2)(β, t)/

s(0)(β, t) − {e(β, t)}2, s(2)(β, t) = E{Y (t)X⊗2exp(β′X)}.

Appendix B. Proof of Theorem 1

The corrected score (7) can be rewritten as

Ψ̂c(β,W , τ)

= n−1
n∑

i=1

∫ τ

0
{X

(ls)
i −E(β,X(ls), s) + Cn{β,ΣR(s)}}dMi(s)

+n−1
n∑

i=1

∫ τ

0
{X

(ls)
i −E(β,X(ls), s) + Cn{β,ΣR(s)}}Yi(s)e

β
′

X iλ0(s)ds.(11)

Let S
(m)
∗ (β,X, t) = E{S(m)(β,X(ls), t)|X̃ , T̃ , δ̃}. By noting (6), it is straight-

forward that

S
(0)
∗ (β,X , t) = S(0)(β,X , t)E{eβ

′

ΣR(t)
β
2 },

S
(1)
∗ (β,X , t) = S(1)(β,X , t)E{eβ

′

ΣR(t)
β
2 }

+S(0)(β,X, t)E{β ′ΣR(t)eβ
′

ΣR(t)
β
2 }.
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Under Conditions (A1)-(A4), as in Andersen and Gill (1982, Theorem III.1),

suppt,β‖S(m)(β,X, t)−s(m)(β, t)‖
p

−→ 0. Hence, it follows that suppt,β‖E(β,X,

t)−e(β, t)‖
p

−→ 0, where e(β, t) was defined in Section 4. Under Conditions (A1)-
(A5), since the class of functions of bounded variation is Glivenko-Cantelli (van

der Vaar and Wellner (1996, Chap. 2.10)), suppt,β‖E(β,X (ls), t)−E(β,X, t) −

Cn{β,ΣR(t)}‖ −→ 0. Hence, the first term of (11) can be written as n−1
∑n

i=1

∫ τ
0

{X(ls) − e(β, s)}dMi(s), which is op(1) since it has mean 0 and variance of order
O(n−1). Therefore, it can be seen that

Ψ̂c(β,W , τ) =

∫ τ

0
S(1)(β0,X, s)ds + n−1

n∑

i=1

∫ τ

0
Yi(s)Ri(s)e

β
′

0
X iλ0(s)ds

−

∫ τ

0
E(β,X, s)S(0)(β0,X, s)λ0(s)ds + op(1)

=

∫ τ

0
{s(1)(β0, s) − e(β, s)s(0)(β0, s)}λ0(s)ds + op(1).

In the above calculation, we use (6) and that Ri and X i are independent. Hence,

the limiting estimating function is zero at β0. Also, as in Andersen and Gill
(1982), the derivative is a negative function of β. We have thus shown the

consistency of β̃.
To derive the limiting distribution of β, we note that n1/2(β̃ − β0) =

{n−1(∂/∂β)Ψ̂c(β∗,W , τ)}−1n−
1

2 Ψ̂c(β0,W , τ), where β∗ is between β and β̃.
Further,

n
1

2 Ψ̂c(β0,W , t)

= n−
1

2

n∑

i=1

∫ t

0
{X

(ls)
i (s) −E(β0,X

(ls), s) + Cn{β0,ΣR(s)}}dMi(s)

+n−
1

2

n∑

i=1

∫ t

0

[
X

(ls)
i (s)−E(β0,X

(ls), s)+Cn{β0,ΣR(s)}
]
Yi(s)e

β
′

0
X i(s)λ0(s)ds

≡ A1 + A2.

It is easily seen that

A1 = n−
1

2

n∑

i=1

∫ t

0
{X

(ls)
i − e(β0, s)}dMi(s)

−n−
1

2

n∑

i=1

∫ t

0
{E(β0,X

(ls), s) − e(β0, s) − Cn(β0,ΣR(s)}dMi(s).

By Example 2.11.16 of van der Vaart and Wellner (1996, p.215), n1/2M con-

verges in l∞[0, 1] to a zero-mean Gaussian process WM with continuous paths,
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where M =
∑n

i=1 Mi/n. By the Strong Embedding Theorem (Shorack and Well-

ner (1986, pp.147-148)) there exists a new probability space in which (n1/2M ,

S(1)(β, ·,X (ls)), S(0)(β, ·,X (ls))) converges a.s. to (WM , s
(1)
∗ (β, ·), s

(0)
∗ (β, ·)),

where s
(1)
∗ (β, t) = s(1)(β, t)E(eβ

′

ΣRβ/2)+ s(0)(β, t)E(β′ΣReβ
′

ΣRβ/2), s
(0)
∗ (β, t)

= s(0)(β, t)E(eβ
′

ΣRβ/2). By Lemma A.3 of Bilias et al. (1997), n1/2
∫ t
0 E(β0,

X(ls), s)dM (s) →
∫ t
0{e(β0, s)+C(β0,ΣR)}dWM (s) a.s. uniformly in t. Likewise,

n1/2
∫ t
0 [e(β0, s) + Cn{β0,ΣR(s)}]dM (s) →

∫ t
0 [e(β0, s) + C{β0,ΣR(s)}]dWM (s)

a.s. uniformly in t. Hence, A1 = n−1/2
∑n

i=1

∫ t
0{X

(ls) − e(β0, s)}dMi(s) + op(1).

To approximate A2 by a sum of independent variables, we note that

S(0)(β,X(ls), t)

= E{eβ
′

ΣR(t)
β
2 }S(0)(β,X , t)+n−1

n∑

i=1

Yi(t)e
β

′

X i [eβ
′

Ri(t)−E{eβ
′

ΣR(t)
β
2 }]

= E{eβ
′

ΣR(t)
β
2 }{S(0)(β, t,X) + n−

1

2 Q0(β, t)},

where Qo(β, t) = n−1/2
∑n

i=1 Yi(t)e
β

′

X i

(
[eβ

′

Ri(t)/E{eβ
′

ΣR(t)β/2}] − 1
)
. Sim-

ilarly,

S(1)(β,X (ls), t)

= S(1)(β,X , t)E{eβ
′

ΣR(t)β/2} + S(0)(β,X , t)E{β′ΣR(t)eβ
′

ΣR(t)β/2}

+n−1
n∑

i=1

Yi(t)e
β

′

X i{X (ls)eβ
′

Ri(t) − XiE(eβ
′

ΣR(t)
β
2 )

−E(β′ΣR(t)eβ
′

ΣR(t)
β
2 )

= E{eβ
′

ΣR(t)
β
2 }

[
S(1)(β,X, t) + S(0)(β,X, t)C{β,ΣR(t)} + n−

1

2 Q1(β, t)
]
,

where Q1(β, t) = n−1/2
∑n

i=1 Yi(t)e
β

′

X i([X (ls)eβ
′

Ri(t)/E{eβ
′

ΣR(t)β/2}] − X i

−C{β,ΣR(t)}). Hence

E(β,X (ls), t)

= E(β,X , t) + C{β,ΣR(t)} + n−
1

2 {
Q1(β, t)

S(0)(β,X, t)
}

−[E(β,X , t) + C{β,ΣR(t)}]{
n−

1

2 Q0(β, t)

S(0)(β,X , t)
} + op(n

−
1

2 ).
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By direct calculation, we have

A2 = −n−
1

2

n∑

i=1

∫ t

0

( [
X(ls) − e(β0, s) − C{β0,ΣR(s)}

] eβ
′

0
Ri(s)

E{eβ
′

0
ΣR(s)β

0
/2}

− {X
(ls)
i − e(β0, s)}

)
Yi(s)e

β
′

0
X iλ0(s)ds

+n−
1

2

n∑

i=1

∫ t

0
{E(β0,X , s) − e(β0, s)}

[ eβ
′

0
Ri(s)

E{eβ
′

0
ΣR(s)β

0
/2}

− 1
]

×Yi(s)β
′

0Xiλ0(s)ds + op(1).

By using the argument of the Strong Embedding Theorem in proving the first
term of A1, it can be shown that the third term of A2 converges to zero in
probability. As a result,

n
1

2 Ψ̂(β0, τ,W ) = n−
1

2

n∑

i=1

∫ τ

0
{X (ls) − e(β0, s)}dNi(s)

− n−
1

2

n∑

i=1

∫ τ

0
{E{eβ

′

0
ΣR(s)

β
0

2 }−1[X(ls) − e(β0, s) − C{β0,ΣR(s)}]

×Yi(s)e
β

′

0
X iλ0(s)ds + op(1).

The above equation is a sum of n iid variables. Therefore, the asymptotic
normality of β̃ has been shown. If all the nuisance parameters involved in
η were known, then the variance of n1/2Ψ̂(β, t,W ) can be approximated by
n−1

∑n
i=1 ΦP (β,W i)

⊗2, where

ΦP (β,W i) =

∫ τ

0
{X

(ls)
i −E(β,X (ls), s) + Cn{β,ΣR(s)}}dNi(s)

−

∫ τ

0
{X

(ls)
i −E(β,X (ls), s)}Yie

β
′

X i{S(0)(β,X(ls), s)}−1 dNi(s)

n
. (12)

Appendix C. Calculation for Obtaining Second-order Corrected Score

Estimator

Recall that S
(m)
∗ (β,X , t) = E{S(m)(β,X (ls), t)|X̃ , T̃ , δ̃} for m = 0, 1. By a

Taylor series for f(x, y) = y/x, we have that

E

{
S(1)(β,X(ls), t)

S(0)(β,X (ls), t)

∣∣∣X̃, T̃ , δ̃

}

=
S

(1)
∗ (β,X , t)

S
(0)
∗ (β,X, t)

+ {S
(0)
∗ (β,X, t)}−2

[S
(1)
∗ (β,X , t)

S
(0)
∗ (β,X, t)

var{S(0)(β,X (ls), t)|X̃ , T̃ , δ̃}

−cov{S(0)(β,X (ls), t),S(1)(β,X(ls), t)|X̃ , T̃ , δ̃}
]

+ op(n
−1). (13)
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By direct calculation,

var{S(0)(β,X(ls), t)|X̃ , T̃ , δ̃}

= n−1S(0)(2β,X , t)

[
E{e2β

′

ΣR(t)β} − {E(eβ
′

ΣR(t)
β
2 )}2

]
,

cov{S(0)(β,X(ls), t),S(1)(β,X(ls), t)|X̃ , T̃ , δ̃}

= n−1S(1)(2β,X , t)E{e2β
′

ΣR(t)β} + n−1S(0)(2β,X , t)E{2β′ΣRe2β
′

ΣR(t)β}

−n−1S(1)(2β,X , t)[E{eβ
′

ΣR(t)
β
2 }]2

−n−1S(0)(2β,X , t)E{eβ
′

ΣR(t)
β
2 }E{β′ΣReβ

′

ΣR(t)
β
2 }.

By using the above equations, (13) can be further reduced to

E
{S(1)(β,X (ls), t)

S(0)(β,X(ls), t)

∣∣∣X̃, T̃ , δ̃
}

=
S(1)(β,X , t)

S(0)(β,X , t)
+

E{β′ΣReβ
′

ΣR
β
2 }

E{eβ
′

ΣR(t)
β
2 }

[
1 −

n−1E{e2β
′

ΣR(t)β}S(0)(2β,X , t)

[E{eβ
′

ΣR(t)
β
2 }]2{S(0)(β,X , t)}2

]

+2
n−1E{βΣR(t)eβ

′

ΣR(t)
β
2 }S(0)(2β,X, t)E{e2β

′

ΣR(t)β}

E{eβ
′

ΣR(t)
β
2 }{S(0)(β,X, t)}2[E{eβ

′

ΣR(t)
β
2 }]2

−2
n−1E{βΣR(t)eβ

′

ΣR(t)β}S(0)(2β,X , t)

{S(0)(β,X , t)}2[E{eβ
′

ΣR(t)
β
2 }]2

+
n−1E{e2β

′

ΣR(t)β}S(1)(β,X, t)S(0)(2β,X, t)

{S(0)(β,X , t)}3[E{eβ
′

ΣR(t)
β
2 }]2

−
n−1S(1)(β,X , t)S(0)(2β,X , t)

{S(0)(β,X, t)}2
−

n−1E{e2β
′

ΣR(t)β}S(1)(2β,X , t)

{S(0)(β,X, t)}2[E{eβ
′

ΣR(t)
β
2 }]2

+
n−1S(1)(2β,X, t)

{S(0)(β,X, t)}2
. (14)

By direct calculation, it can be shown that if β → 0,

E{βΣReβ
′

ΣR(t)
β
2 }E{e2β

′

ΣR(t)β}

E{βΣR(t)eβ
′

ΣR(t)
β
2 } − E{βΣR(t)e2β

′

ΣR(t)β}[E{eβ
′

ΣR(t)
β
2 }]

→ ∞.
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That is, the difference of the 3th and 4th terms of the right-hand side of (14) is

of a smaller order than the third term of (14). Likewise, the last four terms of

(14) can be shown to be

op


n−1E{β′ΣR(t)eβ

′

ΣR(t)
β
2 }E{e2β

′

ΣR(t)β}

[E{eβ
′

ΣR(t)
β
2 }]3




if n → ∞ and β → 0. Therefore, (14) can be written as

E
{S(1)(β,X(ls), t)

S(0)(β,X (ls), t)

∣∣∣X̃, T̃ , δ̃
}

=
S(1)(β,X , t)

S(0)(β,X, t)
+
E{β′ΣR(t)eβ

′

ΣR
β
2 }

E{eβ
′

ΣR
β
2 }

[
1−

n−1E{e2β
′

ΣR(t)β}S(0)(2β,X , t)

[E{eβ
′

ΣR(t)
β
2 }]2{S(0)(2β,X, t)}2

]

+op(n
−1β).

As a result, using (8), it is easily seen that the above can be written as

E
{
E(β,X(ls), t)

∣∣∣X̃, T̃ , δ̃
}

= E(β,X, t)+
E{β′ΣR(t)eβ

′

ΣR(t)
β
2 }

E{eβ
′

ΣR
β
2 }

(
1−E

[n−1S(0)(2β,X(ls), t)

{S(0)(2β,X (ls), t)}2

∣∣∣X̃, T̃ , δ̃
])

+op(n
−1β).

Therefore, we have shown (9) as the second-order corrected score estimating

equation.
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