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Abstract: We consider the application of the limiting aggregate model derived by

Tsai and Chan (2005d) for modeling aggregated long-memory data. The model is

characterized by the fractional integration order of the original process and may be

useful for (i) modeling discrete-time data with sufficiently long sampling intervals,

for example, annual data, and/or (ii) studying the fractional integration order of the

original process. The fractional integration parameter is estimated by maximizing

the Whittle likelihood. It is shown that the quasi-maximum likelihood estimator

is asymptotically normal, and its finite-sample properties are studied through sim-

ulation. The efficacy of the proposed approach is demonstrated with three data

analyses.
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1. Introduction

Time series data is often temporally aggregated before analysis. Typical
examples are the incidence rates of diseases, sales of products, industrial produc-
tion, tree-ring widths, riverflows, and rainfall that can only be obtained through
aggregation over a certain time interval. For a short-memory time series, the ag-
gregate data approaches white noise with increasing aggregation, due to the Cen-
tral Limit Theorem. The aggregates of a non-stationary process, however, do not
have a white noise structure in the limit. It was first proved by Working (1960)
that the aggregates of an ARIMA(0,1,0) process have a limiting ARIMA(0,1,1)
structure with the MA(1) parameter equal to -0.268. This result was later gen-
eralized by Tiao (1972), who obtained the interesting result that if the basic
series is nonstationary and follows an IMA(d, q) process with d ≥ 1, then, with
increasing aggregation, the model of the (appropriately re-scaled) aggregate data
becomes an IMA(d, d) model with the MA parameters uniquely determined by
the differencing order.

Tiao’s (1972) aggregation result has practical relevance. Rossana and Seater
(1995) investigated the effects of temporal aggregation on the estimated time
series properties of a number of economic time series. They estimated ARIMA
models for monthly, quarterly, and annual data and found that the annual time
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series models are usually ARIMA(0,1,1), or random walks. Rossana and Seater
(1995, p.445) suggested that Tiao’s (1972) asymptotic model of temporal aggre-
gation is a good approximation for many economic time series.

Recently, Tsai and Chan (2005d) extended Tiao’s (1972) limiting analysis by
considering the problem of temporal aggregation of stationary and nonstation-
ary processes that may have components of short-memory, long-memory, and
anti-persistence. The long range dependence properties of time series data have
diverse applications in many fields, including hydrology, finance, economics, and
telecommunications; see Bloomfield (1992), Robinson (1993), Beran (1994), Bail-
lie (1996) and Ray and Tsay (1997). Tsai and Chan (2005d) showed that tem-
poral aggregation does not change the long-memory parameter of the underlying
ARFIMA process (see Section 2). Furthermore, as the extent of aggregation
increases to infinity, the limiting model still preserves the long-memory/anti-
persistent parameter(s) of the original process, whereas the short-memory com-
ponents vanish. The limiting normalized model, after an appropriate amount of
differencing, essentially contains only one parameter, the fractional integration
order of the original process. As suggested by Rossana and Seater (1995), the
limiting aggregate model may be preferable for aggregate data with sufficiently
long aggregation intervals, for example, annual data. If a limiting aggregate
model fits an aggregated time series well, the estimate of the fractional integra-
tion order provides a good estimate of the fractional integration order of the
original process.

The goal of the present paper is to investigate the use of the limiting aggre-
gate model in data analysis, and to compare it with some existing models. In
Section 2, the long-memory limiting aggregate model derived by Tsai and Chan
(2005d) is briefly reviewed. Quasi-maximum likelihood estimation of the long-
memory model, obtained by maximizing the Whittle likelihood, and the large
sample properties of the estimator are discussed in Section 3. Finite sample
properties of the estimator are studied via simulation in Section 4. The method
is illustrated with three data applications in Section 5. Finally in Section 6, we
present our conclusions.

2. Review of The Long-Memory Limiting Aggregate Model

Consider a fractionally integrated ARMA (ARFIMA(p, r+d, q)) process {Ỹt}
that satisfies the difference equation

φ(B)(1 − B)r+dỸt = θ(B)εt, (1)

where r is a non-negative integer and 0 < d < 1/2. Alternatively, after rth differ-
encing, the process {Ut}, where Ut = (1−B)r Ỹt, is a stationary ARFIMA(p, d, q)
process that follows the equation

φ(B)(1 − B)dUt = θ(B)εt, (2)
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where {εt} is a sequence of white noises with mean 0 and variance σ2, φ(z) =

1 − φ1z − · · · − φpz
p, θ(z) = 1 + θ1z + · · · + θqz

q. Here B is the backward shift

operator, (1 − B)d being defined by the binomial series

(1 − B)d =

∞
∑

k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Bk,

see Granger and Joyeux (1980), Hosking (1981) and Brockwell and Davis (1991,

p.520). The roots of φ(B) = 0 and those of θ(B) = 0 are assumed to lie outside

the unit circle. The spectral density of {Ut} is given by

fU (ω) =
σ2

2π

|θ(e−iω))|2
|φ(e−iω)|2 |1 − e−iω|−2d,

see Brockwell and Davis (1991, p.525), so the process {Ut} is long-memory. For a

unified framework for studying non-stationary and/or long-memory discrete-time

processes, see Beran (1995), Ling and Li (1997) and Beran, Bhansali and Ocker

(1998).

Let {Ỹt} be generated by (1), s ≥ 2 be an integer, and Xs
T =

∑sT
k=s(T−1)+1 Ỹk

be the non-overlapping s-temporal aggregates of {Ỹt}. Tsai and Chan (2005d)

showed that the rth differenced aggregate series {(1−B)rXs
T , T = 0,±1,±2, · · · }

is a stationary process, the limiting normalized spectral density function of which,

as s → ∞, is given by

f∞(ω; r, d) = K{2(1 − cos ω)}r+1
∞
∑

k=−∞

|ω + 2kπ|−2r−2d−2, −π < ω < π, (3)

where K is the normalization constant ensuring that
∫ π

−π
f∞(ω; r, d)dω = 1. Note

that (i) f∞(ω; r, d) is of O(|ω|−2d) for ω → 0, so the limit of the aggregates

preserves the long-memory parameter of the underlying ARFIMA process, (ii) the

limiting normalized spectral density function is independent of the short-memory

parameters {φj} and {θj}, and (iii) when r = 0, f∞(ω; r, d) is the normalized

spectral density of fractional Gaussian noise, so the limiting aggregate model can

be regarded as an extension of fractional Gaussian noise.

3. Quasi-maximum Likelihood Estimator and Its Large Sample Prop-

erties

We are interested in the limiting aggregate model defined in (3). Note that

the spectral density in (3) can be usefully reparameterized by letting η = r + d.

The parameter η is called the fractional integration order of the original process.
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We also introduce the parameter σ to account for the variance of the data. Let

{Yi}N
i=1 be a stationary Gaussian process with the spectral density function

f(ω; η, σ2) = σ2{2(1 − cos ω)}[η]+1
∞

∑

k=−∞

|ω + 2kπ|−2η−2, −π < ω < π, (4)

where [η] is the greatest integer ≤ η. It can be verified that the auto-covariance

function corresponding to the spectral density function defined in (4) is

γ(h) =
2πσ2Γ(1−2d)

Γ(d)Γ(1−d)

(

2r+1
∏

j=0

1

2d+j

)

2r+2
∑

k=0

(−1)k

(

2r+2

k

)

|r+1−h−k|2d+2r+1, (5)

where r = [η], d = η − [η] and Γ() is the Gamma function. The (negative)

log-likelihood function of {Yi} can be approximated by the (negative) Whittle

log-likelihood function (see Dahlhaus (1989))

− l̃(η, σ2) =

T
∑

j=1

{

log f(ωj; η, σ2) +
IN (ωj)

f(ωj; η, σ2)

}

, (6)

where ωj := 2πj/N ∈ (0, π) are the Fourier frequencies, T is the largest integer

≤ (N − 1)/2, IN (ω) =
∣

∣

∣

∑N
j=1(Yj − Ȳ )eijω

∣

∣

∣

2
/(2πN), and Ȳ =

∑N
j=1 Yj/N . In

(6), the computation of f(ωj; η, σ2) requires evaluation of an infinite sum. Here,

we adopt the method of Chambers (1996) to approximate f(ω; η, σ2) by

f̃(ω; η, σ2) = σ2{2(1 − cos ω)}[η]+1h(ω; η), −π < ω < π, (7)

where h(ω; η) = (2η + 1)−1(2π)2η+1{(2πM − ω)−2η−1 + (2πM + ω)−2η−1} +
∑M

k=−M |ω+2kπ|−2η−2 for some large integer M that is a function of N . Note that

the approximation error is O(M−2η−1), see Chambers (1996). It is shown below

that the approximation has a negligible effect on the limiting properties of the

quasi-maximum likelihood estimator if M is chosen such that
√

NM−2η−1 → 0

for N → ∞ (see Theorem 1). In practice, we set the value of M to be the value of

N . Replacing f(ωj; η, σ2) with f̃(ωj; η, σ2) and letting g̃(ωj; η) = f̃(ωj; η, σ2)/σ2,

the (negative) Whittle log-likelihood function (6) now becomes

− l̃M (η, σ2) =

T
∑

j=1

{

log σ2 + log g̃(ωj ; η) +
IN (ωj)

σ2g̃(ωj ; η)

}

. (8)

Differentiating (8) with respect to σ2 and equating to zero gives

σ̂2
M =

1

T

T
∑

j=1

IN (ωj)

g̃(ωj ; η)
. (9)
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Substituting (9) into (8) yields the objective function

− l̃M (η) =
T

∑

j=1

log g̃(ωj; η) + T log
(

T
∑

j=1

IN (ωj)

g̃(ωj; η)

)

+ C, (10)

where C = T − T log T . The objective function is minimized with respect to η

to get the quasi-maximum likelihood estimator (QMLE) η̂M ; the estimator σ̂2
M

is then calculated by (9).

For simplicity, let θ = (η, σ2), and θ̂M = (η̂M , σ̂2
M ) be the quasi-maximum

likelihood estimator that minimizes the (negative) Whittle log-likelihood func-

tion (8). The estimator θ̂M can be shown to be asymptotically normal by use

of Theorem 2.1 of Dahlhaus (1989). We now state this result in the following

theorem.

Theorem 1. Let Y = {Yi}N
i=1 be sampled from a stationary Gaussian long-

memory process with the spectral density (4). Let the quasi-maximum likelihood

estimator θ̂M ∈ Θ, a compact parameter space, and the true parameter θ0 be in

the interior of the parameter space. Let M be such that
√

NM−2η−1 → 0 for

N → ∞. Then
√

N(θ̂M − θ0) tends in distribution to a normal random vector

with mean 0 and covariance matrix Γ(θ0)
−1 with

Γ(θ) =
1

4π

∫ π

−π

(5 log f(ω; η, σ2))(5 log f(ω; η, σ2))′dω, (11)

where 5 denotes the derivative with respect to θ, and superscript ′ denotes trans-

pose.

See the Appendix for proof of the theorem. We note that Θ = {(η̄, σ̄2) | 0 ≤
η̄−[η̄] ≤ 1/2, η̄ ≥ 0, and σ̄2 ≥ 0}. The compactness condition on the parameter

space is taken from condition (A0) in Dahlhaus (1989) who pointed out that the

quasi-maximum likelihood estimators may lie on the boundary of the compact

parameter space.

4. Simulations

In this section, we report some finite sample performance of the quasi-

maximum likelihood estimator for six models in which η = 0.05, 0.25, 0.45,

1.05, 1.25 and 1.45, and σ = 2. Because {Yi} is a stationary Gaussian process,

we can use the method of Davies and Harte (1987) to simulate {Yi}N
i=1. The

sample sizes considered are N = 512, 1024 and 2048. All the computations in

this and the following section were performed using Fortran code with IMSL

subroutines. The quasi-maximum likelihood estimator η̂M is computed based on

equation (10) using the following procedure. We first find the local maximum
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likelihood estimators of η between [η] + 0 and [η] + 0.5, for [η] = 0, . . . ,K, for

some integer K. In our experiments, we chose K to be 5. These local maximum

likelihood estimators are then used to find the global maximum likelihood esti-

mator of η. For each model, the averages and the standard deviations of 1,000

replicates of the estimators are summarized in Tables 1−3 for N = 512, 1024 and

2048, respectively. The tables also show the asymptotic standard errors of the

parameter estimators computed from Γ(θ) defined in equation (11). The value of

M used in the computation of h(ω; η), defined below (7), is set to be the value of

N . We have also tried M = 10N and M = 20N in the program and the results

are essentially the same.

Table 1 shows that for sample size N = 512, there is about 0.7 % to 12.1 %

chance that [η] will be incorrectly estimated, resulting in larger biases and stan-

dard errors of the estimates of η. The incorrect estimation rates of [η] decrease to

no more than 2.2 % for N = 1, 024. For N = 2, 048, all the incorrect rates become

zero, and the empirical standard errors are very close to the asymptotic standard

errors. Numerical computations show that the asymptotic standard error of η̂

increases with a larger η value, although differences are small for η > 1.

Table 1. Averages (s.e.=standard errors) [asymp. s.e.=asymptotic standard

errors] of 1,000 simulations of the quasi-maximum likelihood estimators of

the parameters η for η = 0.05, 0.25, 0.45, 1.05, 1.25 and 1.45, and σ = 2.

The sample size N = 512.

True Esti- % Quasi-MLE Quasi-MLE Quasi-MLE Quasi-MLE

value mated of of η of σ of η of σ

of value 1,000 average (s.e.) average (s.e.) average (s.e.) average (s.e.)

η of replic- (for each (for each [asymp. s.e.] [asymp. s.e.]

[η] ations estimated [η]) estimated [η]) (overall) (overall)

0.05 0 99.3 0.0572 (0.0261) 1.9776 (0.0665) 0.0638 (0.0828) 1.9807 (0.0765)

1 0.7 1.0000 (0.0000) 2.4230 (0.0965) [0.0279] [0.0659]

0.25 0 94.5 0.2522 (0.0292) 1.9947 (0.0653) 0.2995 (0.1982) 2.0144 (0.1046)

1 5.5 1.1111 (0.0378) 2.3519 (0.0702) [0.0292] [0.0644]

0.45 0 94.6 0.4529 (0.0292) 2.0048 (0.0662) 0.4999 (0.1989) 2.0223 (0.0999)

1 5.4 1.3226 (0.3721) 2.3346 (0.0720) [0.0298] [0.0639]

0 4.3 0.1922 (0.0299) 1.6552 (0.0575) 1.0312 (0.2222) 1.9878 (0.1025)

1.05 1 93.8 1.0500 (0.0291) 1.9971 (0.0632) [0.0306] [0.0634]

2 1.9 2.0001 (0.0384) 2.2847 (0.0716)

0 5.3 0.3795 (0.0293) 1.6844 (0.0534) 1.2645 (0.3064) 2.0026 (0.1227)

1.25 1 87.9 1.2508 (0.0313) 1.9996 (0.0642) [0.0307] [0.0633]

2 6.8 2.1317 (0.0371) 2.2889 (0.0690)

0 2.0 0.5000 (0.0000) 1.6893 (0.0499) 1.4862 (0.2549) 2.0190 (0.1063)

1.45 1 92.0 1.4521 (0.0301) 2.0081 (0.0664) [0.0308] [0.0633]

2 6.0 2.3372 (0.0361) 2.2951 (0.0728)
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Table 2. Averages (s.e.=standard errors) [asymp. s.e.=asymptotic standard

errors] of 1,000 simulations of the quasi-maximum likelihood estimators of
the parameters η for η = 0.05, 0.25, 0.45, 1.05, 1.25 and 1.45, and σ = 2.

The sample size N = 1, 024.

True Esti- % Quasi-MLE Quasi-MLE Quasi-MLE Quasi-MLE
value mated of of η of σ of η of σ

of value 1,000 average (s.e.) average (s.e.) average (s.e.) average (s.e.)
η of replic- (for each (for each [asymp. s.e.] [asymp. s.e.]

[η] ations estimated [η]) estimated [η]) (overall) (overall)

0.05 0 100 0.0565 (0.0190) 1.9792 (0.0478) 0.0565 (0.0190) 1.9792 (0.0478)

[0.0197] [0.0466]

0.25 0 99.6 0.2516 (0.0207) 1.9954 (0.0465) 0.2551 (0.0586) 1.9968 (0.0516)

1 0.4 1.1202 (0.0177) 2.3481 (0.0294) [0.0206] [0.0456]

0.45 0 99.6 0.4524 (0.0214) 2.0031 (0.0471) 0.4559 (0.0596) 2.0043 (0.0513)

1 0.4 1.3334 (0.0148) 2.3255 (0.0250) [0.0211] [0.0452]

0 1.1 0.1835 (0.0147) 1.6537 (0.0332) 1.0426 (0.1067) 1.9951 (0.0605)

1.05 1 98.6 1.0493 (0.0218) 1.9979 (0.0457) [0.0217] [0.0448]

2 0.3 2.0000 (0.0000) 2.3084 (0.0358)

0 1.2 0.3713 (0.0153) 1.6836 (0.0348) 1.2482 (0.1339) 1.9988 (0.0653)

1.25 1 97.8 1.2498 (0.0221) 1.9994 (0.0458) [0.0217] [0.0448]

2 1.0 2.1531 (0.0184) 2.3127 (0.0470)

0 0.3 0.5000 (0.0000) 1.7019 (0.0364) 1.4585 (0.1104) 2.0073 (0.0592)

1.45 1 98.6 1.4514 (0.0221) 2.0049 (0.0471) [0.0218] [0.0448]

2 1.1 2.3569 (0.0168) 2.3086 (0.0434)

Table 3. Averages (s.e.=standard errors) [asymp. s.e.=asymptotic standard
errors] of 1,000 simulations of the quasi-maximum likelihood estimators of

the parameters η for η = 0.05, 0.25, 0.45, 1.05, 1.25 and 1.45, and σ = 2.

The sample size N = 2, 048.

True Esti- % Quasi-MLE Quasi-MLE Quasi-MLE Quasi-MLE
value mated of of η of σ of η of σ

of value 1,000 average (s.e.) average (s.e.) average (s.e.) average (s.e.)
η of replic- (for each (for each [asymp. s.e.] [asymp. s.e.]

[η] ations estimated [η]) estimated [η]) (overall) (overall)

0.05 0 100 0.0563 (0.0132) 1.9801 (0.0324) 0.0563 (0.0132) 1.9801 (0.0324)

[0.0139] [0.0330]

0.25 0 100 0.2513 (0.0144) 1.9955 (0.0312) 0.2513 (0.0144) 1.9955 (0.0312)

[0.0146] [0.0322]

0.45 0 100 0.4515 (0.0152) 2.0008 (0.0313) 0.4515 (0.0152) 2.0008 (0.0313)

[0.0149] [0.0319]

1.05 1 100 1.0494 (0.0152) 1.9985 (0.0306) 1.0494 (0.0152) 1.9985 (0.0306)

[0.0153] [0.0317]

1.25 1 100 1.2498 (0.0153) 1.9993 (0.0306) 1.2498 (0.0153) 1.9993 (0.0306)

[0.0154] [0.0317]

1.45 1 100 1.4510 (0.0157) 2.0021 (0.0311) 1.4510 (0.0157) 2.0021 (0.0311)

[0.0154] [0.0316]
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5. Applications

We now illustrate the limiting aggregate model with three data sets posted

on the website http://www-personal.buseco.monash.edu.au/∼hyndman/TSDL.

Example 1. Annual tree ring measurements from California, USA, from 1027

A.D. through 1987 A.D., a total of 961 years. Each tree ring measurement rep-

resents the relative or normalized tree-ring width, in dimensionless units, which

depicts the annual growth of a tree; the data are posted in the file CA531.DAT

under the tree-rings category. The tree ring series is of considerable climatological

interest. Also, a lot of tree ring data exhibits long range dependence properties,

see Baillie (1996). The annual tree ring data can be considered as aggregates of

the underlying continuous-time growth rate process. In Section 2, we motivate

the limiting model by temporal aggregation of a discrete-time ARFIMA process;

however, as proved by Tsai and Chan (2005c), the limiting aggregate model of a

continuous-time ARFIMA process is the same as that of a discrete-time ARFIMA

process. Therefore, the limiting model might be applied to the tree ring series.

Figure 1(a) shows the time series plot of the tree ring measurements, while

Figure 1(b) shows the sample auto-correlation of the data. We have fitted the

limiting aggregate model and the continuous-time ARFIMA(p,H, 0) models of

Tsai and Chan (2005a) with the autoregressive order 1 ≤ p ≤ 4 for the tree

ring data. For each model, we computed the corresponding Akaike Information

Criterion AIC = −2(lY (θ̂) − r), where r is the number of parameters in the

model, and −lY is the log-likelihood function. The AIC of the limiting aggregate

model is −3, 807.94, and those of the continuous-time ARFIMA(p,H, 0) models

for p = 1, 2, 3, and 4 are −3, 807.88, −3, 806.65, −3, 807.61 and −3, 802.17 respec-

tively. These are all larger than the limiting aggregate model; therefore, based on

Akaike’s Information Criterion, the limiting aggregate model is the preferred one.

However, it should be noted that AIC is a criterion for selection among nested.

As the limiting aggregate model and the continuous-time ARFIMA models are

not nested, the AIC can only be used as a reference in this example.

The parameter estimates of the limiting aggregate model are η̂ = 0.2863 and

σ̂ = 0.0915. To verify that the model is an adequate fit for the data, we compute

the Ljung-Box statistic, Q̃m = N(N +2)
∑m

k=1 r̂2
k/(N −k), where the r̂ks are the

auto-correlation functions of the residuals, and the residuals are computed by the

innovations algorithm (Brockwell and Davis (1991)). The Ljung-Box statistic has

an asymptotic chi-squared distribution with m− r degrees of freedom, where r is

the number of parameters, if the fitted model is adequate (Ljung and Box (1978)

and Li (2004, p.145)). The Ljung-Box statistic using m = 20 is Q̃m = 19.48,

suggesting that this model provides an adequate fit. The asymptotic standard

errors of the estimates are 0.0293 and 0.0029 for η and σ, respectively, suggesting

that the data is indeed long-memory.
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Figure 1. The annual tree ring measurements from California, USA: (a) time

series plot; (b) sample auto-correlation function.

Example 2. Annual Swedish Fertility Rates (per thousand), 1750-1849. (Mc-

Cleary and Hay (1980)). The fertility rate in the ith year is defined as fi=births

per 1,000 female population. See McCleary and Hay (1980) for further details.

The data, which is posted in the file MCCLEARY15.DAT under the health cat-

egory, contains 100 observations. Figures 2(a) and (b) show the time series plot

and the sample auto-correlation of the data, respectively.
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Figure 2. Annual Swedish Fertility Rates, 1750-1849: (a) time series plot;

(b) sample auto-correlation function.

McCleary and Hay (1980) fitted the data with the AR(2) model, fi =

0.62fi−1 − 0.23fi−2 + ai, where ai is a white noise process with a variance of

267.84. Note that 267.84 is also the estimated one-step mean square prediction

error of the AR(2) process. Meanwhile, the parameter estimates of the limiting
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aggregagte model are η̂ = 2.1593 and σ̂ = 9.8812. The one-step mean square pre-

diction error of the limiting process can be computed by Kolmogorov’s formula

(Theorem 5.8.1 of Brockwell and Davis (1991)): 2π exp{(2π)−1
∫ π

−π
log f(ω)dω},

where f(ω) is the spectral density of the process defined in (4). The error is

estimated to be 262.19, which is smaller than that of the AR model.

Using m = 10, the Ljung-Box statistics are 7.00 and 9.67 for the limiting

aggregate model and the AR(2) model, respectively, indicating adequate fits for

both models. In fact, the residuals produced by these two models show similar

patterns. However, as the AIC of the AR model is larger than that of the

limiting aggregate model (846.22 versus 842.81), the limiting aggregate model

may provide a better fit for the data based on the AIC. Still, the AR model

and the limiting aggregate model are not nested models. It is interesting to note

that the integer part of the fractional integration order of the limiting aggregate

model is the same as the AR order of the model of McCleary and Hay (1980).

Example 3. The number of users logged onto an Internet server each minute

over a 100-minute period. (Makridakis, Wheelwright and Hyndman (1998)). The

data is posted in the file COMPUTER.DAT under the miscellaneous category.

See Figure 3(a) for the time series plot of the original data, Figure 3(b) for

the data after first differencing, and Figure 4(a) for the sample auto-correlation

function of the first-differenced data.
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(a) (b)

Figure 3. Number of internet users: (a) time series plot of the number of

internet users; (b) time series plot of the change in the number of internet

users.

Makridakis, Wheelwright and Hyndman (1998) fitted the data {Yt} with the

ARIMA(3,1,0) model Ut = 1.151Ut−1 − 0.661Ut−2 + 0.341Ut−3 + at, where {Ut}
is the first-differenced time series and at is a white noise process with a variance

of 9.66. Meanwhile, the parameter estimates of the limiting aggregate model are



QUASI-MAXIMUM LIKELIHOOD ESTIMATION 223

η̂ = 3.4222 and σ̂ = 2.3463. The estimated one-step mean square prediction
error of the limiting process is 10.07, which is larger than that of the ARIMA
model. Using m = 10, the Ljung-Box statistics are 6.99 and 4.34 for the limiting
aggregate model and the ARIMA(3,1,0) model, respectively, indicating adequate
fits for both models. The AIC of the limiting aggregate model is 511.43, which
is larger than the criterion 509.99 of the ARIMA(3,1,0) model. (These are not
nested models). It is also noteworthy that the integer part of the fractional order
of the limiting aggregate model is the same as the AR order of the ARIMA model.
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Figure 4. Sample auto-correlation function of the change in the number of
internet users.

6. Conclusions

We have successfully applied the long-memory model derived by Tsai and
Chan (2005d) to data analysis by quasi-maximum likelihood estimation. The
residuals computed by the innovations algorithm provide us with a tool to per-
form diagnostic checks. Application of the model to more aggregated time series,
especially annual data exhibiting long range dependence properties, is an inter-
esting issue for future research.

The limiting aggregate model considered is a Gaussian process. It is known
that Gaussianity is not needed for a central limit theorem for Whittle estimators
of the discrete-time fractional ARIMA process, see Giraitis, L. and Surgailis, D.
(1990). It would be interesting to extend the model by relaxing the Gaussian
assumption. We will consider this in our future work.

Acknowledgements

Support for this research was provided by Academia Sinica and the National
Science Council (Grant No: NSC 93-2118-M-001-013), R.O.C., and the National
Science Foundation (DMS-0405267). The author is grateful to the two anony-
mous referees for their insightful and helpful comments, to Kung-Sik Chan, Paul



224 HENGHSIU TSAI

Dunne and John Aston for careful reading and valuable suggestions leading to a

streamlined version of the paper. Special thanks go to the Co-Editor for encour-

aging me to work on a revision and to Han-Wei Ho for many helpful discussions.

Appendix

Proof of Theorem 1 Let θ̂ = (η̂, σ̂2) be the quasi-maximum likelihood estimator

that minimizes the (negative) Whittle log-likelihood function (6). By equations

(i)−(iii) of Dahlhaus (1989, p.1752) and the discussion in the third paragraph

of Dahlhaus (1989, p.1753), the asymptotic result stated in the theorem holds

if we can show (a)
√

N(θ̂ − θ0) tends in distribution to a normal random vec-

tor with mean 0 and covariance matrix Γ(θ0)
−1, (b)

√
N{∇l̃M (θ0) −∇l̃(θ0)} =

Op(
√

NM−2η−1), (c) uniformly for θ ∈ Θ, l̃M (θ) = l̃(θ) + Op(M
−2η−1), and (d)

∇2 l̃M (θ) = ∇2 l̃(θ) + Op(M
−2η−1).

Note that (a) follows from Theorem 2.1 of Dahlhaus (1989) if we can verify

conditions (A0)−(A6) listed therein. Verifications of (A1−6) are similiar to those

of (A1-6) in Tsai and Chan (2005b) and are, therefore, omitted.

Condition (A0) is about the identifiability of the model. We now verify (A0).

Write the spectral density of {Yi} as f(ω) = σ2{2(1−cos ω)}[η]+1|ω|−2η−2(R(ω)+

1), where R(x) = |x|2η+2
∑

k 6=0 |x+2kπ|−2η−2. Then use the fact that limω→0{log
(1− cos ω)/ log |ω|} = 2 to get limω→0{log f(ω)/ log |ω|} = −2(η − [η]), implying

the identifiability of η − [η]. Let R(k)(ω) be the kth derivative of R with respect

to ω. Then

lim
ω→0

∂2

∂ω2
{log f(ω) + 2(η − [η]) log |ω|}

= ([η] + 1) lim
ω→0

∂

∂ω

{ sinω

1 − cosω
− 2

ω

}

+ lim
ω→0

∂

∂ω

R(1)(ω)

R(ω) + 1

= ([η] + 1) lim
ω→0

( 1

cos ω − 1
+

2

ω2

)

+ lim
ω→0

R(2)(ω)(R(ω) + 1) − (R(1)(ω))2

(R(ω) + 1)2

= −1

6
([η] + 1).

Hence [η], and therefore η, are identifiable. The identifiability of σ2 follows from

the identifiability of η.

We now verify (d). By Chambers (1996), f̃(ω; θ) = f(ω; θ) + O(M−2η−1),

for M → ∞, uniformly for θ ∈ Θ. Let θ1 = η and θ2 = σ2. It can then be

verified that for i, j ∈ {1, 2}, ∂f̃(ω; θ)/∂θi = ∂f(ω; θ)/∂θi + O(M−2η−1), and

∂2f̃(ω; θ)/∂θi∂θj = ∂2f(ω; θ)/∂θi∂θj + O(M−2η−1). Therefore,

∂2 l̃M (θ)

∂θi∂θj

=
∂2 l̃(θ)

∂θi∂θj

+ Op(M
−2η−1).
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This proves (d). Parts (b) and (c) can be similarly proved. This completes the

proof of the theorem.
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