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DENSITY ESTIMATION WITH NORMAL MEASUREMENT

ERROR WITH UNKNOWN VARIANCE

Alexander Meister

Universität Stuttgart

Abstract: This paper deals with the problem of estimating a density based on

observations which are contaminated by a normally distributed error whose variance

is unknown. In the case of a completely unknown error variance, the impossibility

of a uniformly consistent estimation is shown; however, a semi-uniformly consistent

estimator is constructed under nonparametric smoothness conditions on the target

density, and its rates are studied. If, in contrast, the error variance can be located

in a known compact interval, we derive uniform consistency for this estimator which

achieves nearly optimal rates. Simulations show the practical merit of the estimator.

Key words and phrases: Deconvolution, errors-in-variables, inversion problems,

nonparametric estimation, reconstruction.

1. Introduction

The problem of reconstructing a density based on contaminated data has

become a famous and widely studied topic in nonparametric density estimation.

Several papers (e.g., Carroll and Hall (1988), Devroye (1989), Fan (1991), Fan

(1993), Hesse (1999) and Liu and Taylor (1989)) are concerned with deconvolu-

tion estimation. In the basic problem, some empirical data Y1, . . . , Yn satisfying

Yj = Xj + εj

are observed; the εj ’s represent the error or the contamination, which possesses

density g, and the Xj ’s denote those random variables whose density f is to be

estimated. The components X1, ε1, . . . , Xn, εn are independent. Deterministic

nonparametric knowledge about the densities f and g, such as smoothness con-

ditions, is usually given. In the current note, this knowledge is expressed by

density classes F and G with f ∈ F , g ∈ G.

In the classical approach, the error density g is assumed to be exactly known.

Since this condition is not usually realistic, some papers dealing with an imper-

fectly known error density have been published. In the framework of Efromovich

(1997) and Neumann (1997), the error density is unknown but it can be estimated

based on additional direct observations which come from the error density. In
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Meister (2004a), a testing procedure for two possible densities competing to be

the error density is considered while F is assumed to be a special nonparametric

smoothness class. Butucea and Matias (2004) introduce a uniformly consistent

estimation procedure in a problem in which the error variance is unknown but

restricted to a known compact interval.

In some situations, one might not even know such an interval. Hence, in the

current note, we consider normal error densities with known mean and completely

unknown variance. The new deconvolution problem has

F = {f density : C2|t|−β ≥ |ψf (t)| ≥ C1|t|−β, for all t with |t| ≥ T > 0},
G = {N(µ, σ2) : σ2 > 0}, (1)

with constants C2 > C1 > 0, β > 1, T > 0 and µ, which can be selected

arbitrarily as long as F is not empty. Here µ is assumed to be known while the

other parameters occurring in the definition of F might not be given in many

applications, so we do not use them in the estimators’ construction. Densities

like those in F are called ordinary smooth in the notation of Fan (1991). As in

Butucea and Matias (2004), a lower bound condition on the Fourier transform of

the densities in F is needed to guarantee identifiability of the estimation problem,

i.e., the unique reconstructability of the density f from the observed density

h = f ∗ g. Ignorance of σ2 necessitates more restrictive conditions on the target

density, compared to the classical deconvolution problem. However F , as defined

in (1), contains a large class of densities in spite of the condition β > 1, which

Butucea and Matias (2004) also assume. In order to underline the variety in F we

give the following motivation. Assume a parameterized family of densities {fφ :

φ ∈ [φ0, φ1]} with positive-valued Fourier transforms is included into F . Then

one can easily check that all densities f with a randomly weighted parameter φ,

i.e., f =
∫

fφdQ(φ) for any probability measure Q on [φ0, φ1], lie in F . Hence F
contains a nonparametric set of densities. As an example, consider the Laplace

densities fφ(x) = (0.5/φ) exp(−|x|/φ) with Fourier transform ψfφ
(t) = 1/(1 +

φ2t2); the fφ are members of F for β = 2 and appropriate constants C1, C2

and T , if φ is restricted to some compact interval [φ0, φ1]. Furthermore, f ∈ F
implies that all translations f(· −µ) are in F . Another aspect which emphasizes

the size of F is the lower bound on the rates of convergence which we derive in

Section 2.

We are mainly concerned with the estimation problem (1). However, we also

study how well our estimators perform under the assumption of a given upper

bound σ2
0 > 0 for the error variance, leading to the estimation problem

F = {f density : C2|t|−β ≥ |ψf (t)| ≥ C1|t|−β , for all t with |t| ≥ T > 0}
(2)

G = {N(µ, σ2) : σ2 ∈ (0, σ2
0 ]}.
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2. Consistent Estimation

First we describe the estimation method. We use the absolute empirical
Fourier transform as an important tool, defined by

ϕ̂n(t) =
∣

∣

∣
n−1

n
∑

j=1

exp(itYj)
∣

∣

∣
. (3)

In the sequel, (kn)n∈N, (ωn)n∈N and (σ2
n)n∈N denote sequences of positive numbers

which will be determined later. Due to the upper and lower bound conditions
in F , we are able to estimate the error variance consistently. Therefore, setting
σ̃2
n = −2 k−2

n ln(ϕ̂n(kn)/(C
′
1k

−β′

n )) with constants β ′ > 1, C ′
1 > 0, we can derive

an explicit estimator for the error variance by truncating σ̃2
n to the interval [0, σ2

n]:

σ̂2
n =



















0, if σ̃2
n < 0,

σ̃2
n, if σ̃2

n ∈ [0, σ2
n],

σ2
n, if σ̃2

n > σ2
n.

(4)

Note that β ′ > 1 and C ′
1 > 0 may be arbitrary. As motivated by their notation,

they should correspond to β and C1 which, however, are not stipulated to be
known and, therefore, might be misspecified. We use

Selection rule (S1): If we know C1 and β we choose β ′ = β, C ′
1 = C1 and kn = ωn;

otherwise, we set ωn = kn/ ln kn. In any case, we select kn → ∞.

We construct our density estimator by replacing the error variance by the em-
pirical variance (4) for the estimation problems (1) and (2):

f̂n(x) = (2π)−1

∫ ωn

−ωn

exp
(

− it(x+ µ) +
1

2
σ̂2
nt

2
)

n−1
n

∑

j=1

exp(itYj)dt. (5)

Now our investigation concentrates on the asymptotic properties of (5), re-
lated to its MISE (=mean integrated squared error).

Lemma 1. In Gn = {N(µ, σ2) : σ2 ∈ (0, σ2
n]}, the MISE of (5) satisfies

sup
g∈Gn

sup
f∈F

Ef,g‖f̂n − f‖2
L2(R) ≤ B + V +E,

where, with dn := 2 ln
(

(2C2/C1)
)

ω−2
n ,

B ≤ const. ω1−2β
n , V ≤ const. n−1ωn exp(σ2

nω
2
n),

E ≤ const. sup
f∈F

sup
g∈G

(

ωn

∫ 1

−1
|ψf (ωns)|2s4ds+ ωn exp(σ2

nω
2
n)

∫ 1

−1
|ψf (ωns)|2

× Pf,g(|σ̂2
n − σ2| > dn)ds

)

,
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Lemma 2. Let dn and Gn be as in Lemma 1. Under (S1),

sup
f∈F

sup
g∈Gn

Pf,g
(

|σ̂2
n − σ2| > dn

)

≤ const.k2β
n exp

(σ2
nk

2
n)

n
.

There are also negative results. They involve the Sobolev space W 1 := {f ∈
L2(R) : f ′ ∈ L2(R)}.
Lemma 3. Consider an arbitrary deconvolution problem with density classes

F ⊆ L2(R) and G. Assume that the L2(R)-norm of the densities in F possesses

a uniform upper bound C. Let (fn)n, (f̃n)n ⊆ F and (gn)n, (g̃n)n ⊆ G be density

sequences and define (hn)n = (fn ∗ gn)n and (h̃n)n = (f̃n ∗ g̃n)n. Assume that

ψhn
and ψh̃n

are in W 1. If

(

nR
3
4
n‖hn − h̃n‖L2(R) + nR

− 1
4

n (‖ψ′
hn
‖L2(R) + ‖ψ′

h̃n
‖L2(R))

)

‖fn − f̃n‖−2
L2(R)

−→
n→∞

0

(6)
for an appropriate sequence (Rn)n, then the MISE of an arbitrary estimator f̂n
based on Y1, . . . , Yn satisfies

sup
g∈G

sup
f∈F

Ef,g‖f̂n(Y1, . . . , Yn) − f‖2
L2(R) ≥ const. ‖fn − f̃n‖2

L2(R).

Lemmas 1−3 provide the necessary tools for studying our estimation prob-

lems. We would like the estimator to be uniformly consistent for (1), but have

the following instead.

Theorem 1. Assume T β ≥ C2(β + 1) holds in (1). Then there is no estimator

f̂n with supg∈G supf∈F Ef,g‖f̂n(Y1, . . . , Yn) − f‖2
L2(R) −→

n→∞
0.

Theorem 1 says that uniformly consistent estimation is impossible. This may look
surprising as the density f can be identified in problem (1). However identifiabil-

ity, in general, does not imply the existence of a uniformly consistent estimator,

not even the existence of a consistent estimator, as was shown in Meister (2003).

Nevertheless, (5) satisfies a weaker version of consistency; we call it semi-

uniform consistency, i.e., uniform related to F but individual related to G.

Theorem 2. Consider (1) and take (5) with (σ2
n)n∈N = (0.25(ln lnn))n∈N,

(kn)n∈N = ((lnn/ ln lnn)1/2)n and (ωn)n according to selection rule (S1). Then,

for any g ∈ G, supf∈F Ef,g‖f̂n − f‖2
L2(R) is bounded above by

β < 2.5 β > 2.5 β = 2.5

(i) (ln lnn)β−0.5(lnn)0.5−β (ln lnn)2(lnn)−2 (ln lnn)3(lnn)−2

(ii) (ln lnn)3β−1.5(lnn)0.5−β (ln lnn)4(lnn)−2 (ln lnn)5(lnn)−2,
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multiplied by a constant depending on g; (i) is the case of known β and C1, else

(ii).

Now consider the estimator (5) in the problem (2). Under slightly different

smoothness conditions on F , Butucea and Matias (2004) derive a consistent esti-

mator. However, the selection of the bandwidth sequence corresponding to (ωn)n
in their Theorem 6 is non-adaptive, i.e., the sequence depends on a parameter

β′ of F . Here we show that our procedure allows a bandwidth selection that

is independent of the smoothness parameters of F as usually required in decon-

volution estimation. As we focus on normal measurement error, no data-driven

procedure is needed for the selection of the bandwidth sequence. Concerning

practical issues of the bandwidth choice and kernel deconvolution estimation in

general, we mention the papers of Delaigle and Gijbels (2004a, 2004b).

Theorem 3. Consider (2). Select (σ2
n)n = (σ2

0)n∈N, (kn)n∈N = (u(lnn)0.5)n with

u = 1/(2σ0), and (ωn)n according to (S1). Then, supg∈G supf∈F Ef,g‖f̂n−f‖2
L2(R)

is bounded above by

β < 2.5 β > 2.5 β = 2.5

(i) (lnn)0.5−β (lnn)−2 (ln lnn)(lnn)−2

(ii) (ln lnn)2β−1(lnn)0.5−β (ln lnn)4(lnn)−2 (ln lnn)5(lnn)−2,

multiplied by a constant. The cases (i) and (ii) are as in Theorem 2.

We see that rates are optimal or nearly optimal up to multiplication of an

iterated logarithmic term in finite power. Since the smoothness classes of Butucea

and Matias (2004) are not subsets of our class F , we cannot use those results.

Theorem 4. Let (T/e)β ≥ C2 in (2). The MISE of an arbitrary estimator f̂n
based on Y1, . . . , Yn satisfies

sup
g∈G

sup
f∈F

Ef,g‖f̂n(Y1, . . . , Yn) − f‖2
L2(R) ≥ const.







(lnn)0.5−β, if β < 2.5,

(lnn)−2, if β ≥ 2.5.

For β < 2.5, the rates in Theorem 4 correspond to those derived by Fan

(1993) for Hölder classes of densities under the assumption of a known error

density. When β > 2.5, the rates deteriorate to Fan’s results; we pay the price

for the unknown error variance. These rates also correspond to those derived by

Butucea and Matias (2004) for their smoothness classes.

Note that misspecification of the smoothness parameter β is much less sen-

sitive than misspecification of the error variance in the classical deconvolution
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problem. While inserting β and C1 erroneously into (5) causes a slight deteriora-
tion of the rates but keeps consistency, any misspecification of the error variance
leads to inconsistency and, in some circumstances, even to the divergence of
the MISE to infinity (see Meister (2004b)). Hence, compared to the classical
deconvolution procedure, (5) shows greater robustness properties.

3. Proofs

Proof of Lemma 1. There is a N so that ωn > T holds for all n ≥ N . Hence
the upper and lower bound of the Fourier transform can be used. We start by
deriving an upper bound using Parseval’s identity and Fubini’s theorem.

sup
g∈Gn

sup
f∈F

Ef,g‖f̂n − f‖2
L2(R)

= (2π)−1 sup
g∈Gn

sup
f∈F

(

∫ ωn

−ωn

Ef,g

∣

∣

∣

1

n

n
∑

j=1

exp
(

it(Yj − µ)
)

exp(
1

2
σ̂2
nt

2)

−ψf (t)
∣

∣

∣

2
dt+

∫

|t|≥ωn

|ψf (t)|2dt
)

≤ (2π)−1
(

sup
g∈Gn

sup
f∈F

2

∫ ∞

ωn

|ψf (t)|2dt

+ sup
g∈Gn

sup
f∈F

∫ ωn

−ωn

2Ef,g

∣

∣

∣
exp(−iµt+

1

2
σ̂2
nt

2)
(

n−1
n

∑

j=1

exp(itYj) − ψh(t)
)
∣

∣

∣

2
dt

+ sup
g∈Gn

sup
f∈F

∫ ωn

−ωn

2Ef,g

∣

∣

∣
ψh(t)/

(

exp(itµ− 1

2
σ̂2
nt

2)
)

− ψf (t)
∣

∣

∣

2
dt

)

.

We show that the first addend is bounded above by B, the second addend by V
and the third one by E, as stated in the theorem. The bound on the bias term
B can be determined in the usual way by using the upper bound of the Fourier
transform from F .

The variance term V can be bounded above via (4):

V ≤ sup
g∈Gn

sup
f∈F

∫ ωn

−ωn

2 exp(σ2
nt

2)Ef,g

∣

∣

∣

1

n

n
∑

j=1

exp(itYj) − ψh(t)
∣

∣

∣

2
dt ≤ 4

n
ωn exp(σ2

nω
2
n).

Term E does not occur in classical deconvolution estimation and, hence, it
has to be studied precisely. Substituting s = ω−1

n t, E is

sup
g∈Gn

sup
f∈F

∫ ωn

−ωn

2Ef,g

∣

∣

∣
ψf (t)/

(

exp
(

iµt− iµt− 1

2
(σ̂2
n − σ2)t2

))

− ψf (t)
∣

∣

∣

2
dt

≤ 2 sup
g∈Gn

sup
f∈F

ωn

∫ 1

−1
Ef,g

∣

∣ exp
(1

2
|σ̂2
n − σ2|ω2

ns
2
)

− 1
∣

∣

2|ψf (ωns)|2ds. (7)
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Let s ∈ [−1, 1] and f ∈ F , g ∈ Gn. Applying (dn)n∈N, we have

Ef,g
∣

∣ exp
(1

2
|σ̂2
n − σ2|ω2

ns
2
)

− 1
∣

∣

2

= Ef,g

(

∣

∣ exp
(1

2
|σ̂2
n − σ2|ω2

ns
2
)

− 1
∣

∣

2
χ

(|σ̂2
n−σ

2|≤dn)

)

+Ef,g

(

∣

∣ exp
(1

2
|σ̂2
n − σ2|ω2

ns
2
)

− 1
∣

∣

2
χ

(|σ̂2
n−σ

2|>dn)

)

≤
∣

∣ exp
(1

2
dnω

2
ns

2
)

− 1
∣

∣

2
+ exp(σ2

nω
2
n)Pf,g(|σ̂2

n − σ2| > dn).

Since s2 ≤ 1, the (dnω
2
ns

2)n∈N is bounded by 2 ln(2C2/C1) independent of s.

Now g(x) = (exp(x)− 1)/x is continuous on [0, ln(2C2/C1)] if one defines g(0) =

1. So g(x) is bounded above for x ∈ [0, ln(2C2/C1)]. Hence, the sequence

(
∣

∣(exp(0.5dnω
2
ns

2) − 1)/(0.5dnω
2
ns

2)
∣

∣

2
)n also has an upper bound that is inde-

pendent of s. The inequality sequence continues with

| exp
(1

2
dnω

2
ns

2
)

− 1|2 + exp(σ2
nω

2
n)Pf,g(|σ̂2

n − σ2| > dn)

≤ const. s4 + exp(σ2
nω

2
n)Pf,g(|σ̂2

n − σ2| > dn). (8)

Inserting (8) into (7) gives the bound stated in the lemma.

Proof of Lemma 2. The term supg∈Gn
supf∈F Pf,g(|σ̂2

n − σ2| ≥ dn) is bounded

above by two addends; we derive an upper bound for each of them. Focus on the

first addend. Since the supremum is considered for g ∈ Gn, we have σ ∈ (0, σn].

Setting h = f ∗ g, we study

sup
g∈Gn

sup
f∈F

Pf,g(σ̂2
n − σ2 ≥ dn) ≤ sup

g∈Gn

sup
f∈F

Pf,g
(

ϕ̂n(kn) ≤ αn|ψh(kn)|
)

(9)

with αn := (C ′
1/C1)k

β−β′

n exp(−0.5k2
ndn); we have used |ψh(kn)| ≥ C1k

−β
n exp

(−0.5k2
nσ

2) for that purpose. In the case of known parameters β = β ′, C1 = C ′
1,

αn is C1/(2C2) < 1. Otherwise, respecting the parameter selection stated in the

lemma, we have

k|β−β
′|

n exp(−0.5k2
ndn) −→n→∞ 0 (10)

and, hence, αn → 0. In both cases, the existence of a constant c ∈ (0, 1) is

guaranteed so that (9) is bounded above by

sup
g∈Gn

sup
f∈F

Pf,g
(

ϕ̂n(kn) ≤ c|ψh(kn)|
)

≤ (1 − c)−2 sup
g∈Gn

sup
f∈F

|ψh(kn)|−2Eh

∣

∣

∣

1

n

n
∑

j=1

exp(iknYj) − ψh(kn)
∣

∣

∣

2

≤ const.k2β
n exp(σ2

nk
2
n)n

−1.
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The second addend can be bounded in a similar way.

sup
g∈Gn

sup
f∈F

Pf,g(σ̂2
n − σ2 ≤ −dn) ≤ sup

g∈Gn

sup
f∈F

Pf,g
(

ϕ̂n ≥ γn|ψh(kn)|
)

(11)

with γn := (C ′
1/C2)k

β−β′

n exp(0.5k2
ndn). In case β ′ = β and C ′

1 = C1, we have

γn = 2; otherwise, (10) implies γn −→n→∞ ∞. Hence, in both cases, the exis-

tence of a constant C > 1 may be assumed so that in (11),

sup
g∈Gn

sup
f∈F

Pf,g
(

ϕ̂n ≥ C|ψh(kn)|
)

≤ (C − 1)2 sup
g∈Gn

sup
f∈F

|ψh(kn)|−2Eh|
1

n

n
∑

j=1

exp(iknYj) − ψh(kn)|2.

This leads to the same upper bound as derived for the first addend.

Proof of Lemma 3. In view of the uniform upper bound C of the L2(R)-norm

of the densities in F , the L2(R)-norm of the estimator f̂n can be assumed to

be uniformly bounded above by C without loss of generality, since the L2(R)-

distance between the norm-truncated estimator

f̃n =











f̂n, if ‖f̂n‖L2(R) ≤ C,

C
(

‖f̂n‖L2(R)

)

f̂n

, otherwise,

and the target density f is not larger than the distance of f and f̂n almost surely.

Here C may be assumed to be known since we are considering the lower bound

result. Now

sup
g∈G

sup
f∈F

Ef,g‖f̂n(Y1, . . . , Yn) − f‖2
L2(R)

≥ 0.5
(

Ef̃n,g̃n
‖f̂n(Y1, . . . , Yn) − f̃n‖2

L2(R) + Efn,gn
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(R)

)

= 0.5
(

Ef̃n,g̃n
‖f̂n(Y1, . . . , Yn) − f̃n‖2

L2(R) + Ef̃n,g̃n
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(R)

−Ef̃n,g̃n
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(R) + Efn,gn
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(R)

)

≥ 0.5
(

Ef̃n,g̃n
(‖f̂n(Y1, . . . , Yn) − f̃n‖2

L2(R) + ‖f̂n(Y1, . . . , Yn) − fn‖2
L2(R))

−
∣

∣ − Ef̃n,g̃n
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(R) + Efn,gn
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(R)

∣

∣

)
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≥ 0.5
(

0.5Ef̃n,g̃n
‖f̂n(Y1, . . . , Yn) − f̃n − f̂n(Y1, . . . , Yn) + fn‖2

L2(R)

−
∫

· · ·
∫

‖f̂n(y1, . . . , yn) − fn‖2
L2(R)|hn(y1) · · · hn(yn) − h̃n(y1) · · · h̃n(yn)|

dy1 · · · dyn
)

≥ 0.5
(

0.5‖f̃n − fn‖2
L2(R) − 2C2n

∫

|hn(y) − h̃n(y)|dy
)

.

We define the density

ξ(t) =







c, if |t| ≤ 1,

c|t|− 3
2 , if |t| > 1,

with an appropriate constant c. Then, utilizing the Cauchy-Schwarz-inequality,

the inequality sequence continues with

1

2

(1

2
‖f̃n − fn‖2

L2(R) − 2C2n

∫

|hn(y) − h̃n(y)|dy
)

=
1

2

(1

2
‖f̃n − fn‖2

L2(R) − 2C2n

∫

√

ξ(y)|hn(y) − h̃n(y)|
√

ξ(y)
dy

)

≥ 1

2

(1

2
‖f̃n − fn‖2

L2(R) − 2C2n
(

∫ |hn(y) − h̃n(y)|2
ξ(y)

dy
)0.5)

.

We have used the fact that ξ integrates to 1. Now our goal is selecting the

functions fn, f̃n and g̃n, gn so that

n
(

∫ |hn(y) − h̃n(y)|2
ξ(y)

dy
)0.5

‖f̃n − fn‖−2
L2(R) −→n→∞ 0. (12)

Then the MISE is greater or equal to (1/8)‖f̃n − fn‖2
L2(R) for n ≥ N and for N

sufficiently large. Further calculation leads to

n
(

∫ |hn(y) − h̃n(y)|2
ξ(y)

dy
)0.5

= n
(

∫

|y|≤Rn

|hn(y) − h̃n(y)|2
ξ(y)

dy +

∫

|y|>Rn

|hn(y) − h̃n(y)|2
ξ(y)

dy
)0.5

≤ const.nR3/4
n ‖hn − h̃n‖L2(R) + 2n

(

∫

|y|>Rn

|hn(y)|2
ξ(y)

dy +

∫

|y|>Rn

|h̃n(y)|2
ξ(y)

dy
)0.5

,

for any sequence (Rn)n tending to infinity.
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Applying the Fourier-analytic results ‖ψh′‖L2(R) = ‖•ψh(•)‖L2(R) and ψψh
=

2π h(−•) in W 1, we get

+ ∞ > ‖ψ′
hn
‖2
L2(R) + ‖ψ′

h̃n
‖2
L2(R) = (2π)−1 ‖ψψ′

hn
‖2
L2(R) + (2π)−1‖ψψ′

h̃n

‖2
L2(R)

=

∫

|t|2hn(−t)2dt+

∫

|t|2h̃n(−t)2dt =

∫

t2hn(t)
2dt+

∫

t2h̃n(t)
2dt.(13)

That condition of integrability is used in order to derive an upper bound for the

terms above. We have
∫

|y|>Rn

|hn(y)|2
ξ(y)

dy +

∫

|y|>Rn

|h̃n(y)|2
ξ(y)

dy

≤ const.
(

∫

|y|>Rn

|hn(y)|2y2|y|−0.5dy +

∫

|y|>Rn

|h̃n(y)|2y2|y|−0.5dy
)

≤ const.
(

R−0.5
n

∫

|y|>Rn

|hn(y)|2y2dy + R−0.5
n

∫

|y|>Rn

|h̃n(y)|2y2dy
)

≤ const.R−0.5
n

(

‖ψ′
hn
‖2
L2(R) + ‖ψ′

h̃n
‖2
L2(R)

)

.

Hence, (12) holds if (6) is satisfied.

Proof of Theorem 1. Define the function

ϕ(t) =







C2T−β−1
T |t| + 1, if |t| ≤ T,

C2|t|−β, otherwise.

Notice that α(t) = 1+
(

(C2T
−β−1)/T

)

t−C1t
−β = 0 has at least one solution in

[T,+∞) since α is continuous, α(T ) = (C2−C1)T
−β > 0 and α(t) −→t→+∞ −∞

hold. As the set of all solutions in [T,+∞) is closed, the minimum of the solutions

in [T,+∞) exists − let us call it T ∗. Then we can define

ϕ∗(t) =







C2T−β−1
T |t| + 1, if |t| ≤ T ∗,

C1|t|−β , otherwise.

Checking the conditions of Polya’s criterion (see Durrett (1996, p.104)) and using

T β ≥ C2(β+1), one can see that there are densities f and f ∗ so that ϕ = ψf and

ϕ∗ = ψf∗ . Notice that ϕ and ϕ∗ agree on their restriction to [−T,+T ]. Since the

defining condition of F is also satisfied, we have f, f ∗ ∈ F with f 6= f ∗. With

respect to Lemma 3, one sets fn = f , f̃n = f∗ and gn = g̃n = N(µ, n). Then,

supg∈G supf∈F Ef,g‖f̂n(Y1, . . . , Yn) − f‖2
L2(R) ≥ const.‖f − f ∗‖2

L2(R) > 0 if

nR
3
4
n‖hn − h̃n‖L2(R) + nR

− 1
4

n (‖ψ′
hn
‖L2(R) + ‖ψ′

h̃n
‖L2(R)) −→n→∞ 0 (14)
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holds. Notice that ψf is differentiable on R\{−T, 0, T}, its derivative is square

integrable and, hence, ψf ∈W 1 is valid. We have

‖ψ′
hn
‖2
L2(R) ≤ const.n2

∫

t2 exp(−nt2)dt ≤ const.
√
n.

Accordingly, we see that ψf∗ lies in W 1. So we get ‖ψ′
h̃n
‖2
L2(R) ≤ const.

√
n.

Furthermore we have

‖h̃n − hn‖2
L2(R) ≤ π−1

∫ ∞

T
|ϕ(t) − ϕ∗(t)|2 exp(−nt2)dt ≤ O

(

exp(−nT 2)
)

.

Set Rn = n6, then (14) is valid.

Proof of Theorem 2. First, fix g ∈ G. The variance of g is called σ2. As

(σn)n∈N → +∞ we can assume n to be large enough so that σ2
n > σ2. Hence,

g is a member of the sets Gn if n > N for some N ∈ N sufficiently large. This

implies supf∈F Ef,g‖f̂n−f‖2
L2(R) ≤ supg∈Gn

supf∈F Ef,g‖f̂n−f‖2
L2(R). Therefore,

Lemmas 1 and 2 can be used for the further calculation. The terms B and V as

well as the second addend of term E, combined with Lemma 2, give the upper

bound

max
{

ω1−2β
n , k2β+1

n exp
(2σ2

nk
2
n)

n

}

, (15)

due to kn ≥ ωn, which follows from (S1). To derive an upper bound for the first

addend of E, we have to distinguish between three cases: in the case of β < 5/2,

we apply the upper bound of |ψf | to f ∈ F to get

ωn

∫ 1

−1
|ψf (ωns)|2s4ds ≤ ω1−2β

n

∫ 1

−1
s4−2βds.

Hence, in this case, (15) is the upper bound of the MISE. By inserting the

parameter sequences as in the lemma, we get the corresponding rates whether β

and C1 are known or not.

If β > 5/2, we see that the first addend of E has the bound

ωn

∫ 1

−1
|ψf (ωns)|2s4ds ≤ ω−4

n

∫ ωn

−ωn

t4|ψf (t)|2dt,

while the integral possesses an upper bound depending on neither n nor f , due

to the case condition. Again the upper bound of |ψf |, which is guaranteed by the

membership of f in F , leads to the upper bound max
{

ω−4
n , (lnn)β+1/2n−1/2

}

of the MISE, which replaces (15) in this case. The rates follow as stated.

Finally, β = 5/2, the integral in the previous case is bounded above by the

integral of the function f(t) = t−1 on [−ωn, ωn]. Hence, the upper bound of the
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MISE is max
{

ω−4
n ln(ωn) , (lnn)β+1/2n−1/2

}

. That proves the theorem in this
case, too.

Proof of Theorem 3. Since σ2
n = σ2

0 , the sets Gn in Lemma 1 are equal to the
set G in (2). So, in view of Lemmas 1 and Lemma 2, the bounding techniques in
the proof of Theorem 2 can be adopted respecting the changed sequences (σ2

n)n
and (kn)n.

Proof of Theorem 4. We construct functional sequences (fn)n, (f̃n)n, (gn)n,
(g̃n)n that satisfy the conditions of Lemma 3. Take

ϕ(t) =







exp(a|t|), |t| ≤ T,

C2|t|−β , |t| > T,
(16)

with a = (1/T ) ln(C2T
−β) < 0 with respect to the technical condition (T/e)β ≥

C2. We easily check the conditions of Polya’s criterion and recognize that ϕ is the
Fourier transform of a probability density f . Now ϕ ∈ L2(R) implies f ∈ L2(R)
by Parseval’s identity. Choose σ2 ∈ (0, σ2

0) and a sequence (σ2
n)n in (0, σ2

0) with
σ2
n ↓ σ2. Take

ϕn(t) =







ϕ(t) exp
(

1
2(σ2 − σ2

n)t
2
)

, |t| ≤ tn,

ϕ(t) exp
(

1
2(σ2 − σ2

n)t
2
n

)

, |t| > tn,
(17)

with t2n =
(

2/(σ2
n−σ2)

)

ln(C2/C1) > 0. This implies tn −→
n→∞

+∞. The conditions

of Polya’s criterion with respect to ϕn, as well as the membership of ϕn in L2(R),
can also be verified so that ϕn is the Fourier transform of a square integrable
density fn. Since the defining condition of F is also satisfied by f n as well as
f , membership of f and fn in F follows. In Lemma 3, the functional sequences
(f̃n)n, (fn)n are specified by fn = f and f̃n = fn. The sequences (gn)n and (g̃n)n
in Lemma 3 are gn = gσ2

n
= N(µ, σ2

n) and g̃n = gσ2 = N(µ, σ2). This implies
ψhn

(t) = ψf (t)ψg
σ2

n
(t) = ϕ(t) exp(iµt) exp

(

− (1/2)σ2
nt

2
)

and

ψh̃n
(t) = ψfn

(t)ψg
σ2 (t) =







ϕ(t) exp(iµt) exp
(

− 1
2σ

2
nt

2
)

, |t| ≤ tn,

C1
C2
ϕ(t) exp(iµt) exp

(

− 1
2σ

2t2
)

, |t| > tn.

The L2(R)-distance between hn and h̃n is bounded above by

‖hn − h̃n‖2
L2(R) = (2π)−1‖ψhn

− ψh̃n
‖2
L2(R) = (2π)−1

∫

|t|>tn

|ψhn
(t) − ψh̃n

(t)|2dt

≤ 4

π
‖ϕ‖2

L2(R) exp(−σ2t2n)

≤ 4

π
‖ϕ‖2

L2(R) exp
(

− 2σ2
(

ln(C2)−ln(C1)
)

(σ2
n−σ2)−1

)

, (18)
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due to σ2
n > σ2.

The function ψhn
(t) = ϕ(t) exp(iµt − 0.5σ2

nt
2) is continuous and differen-

tiable on R\{−T, 0, T} with derivative ϕ′
n(t) =

(

ϕ′(t)+(iµ−σ2
nt)ϕ(t)

)

exp
(

iµt−
(1/2)σ2

nt
2
)

. Due to the boundedness and the exponential-type decay of the deriva-

tive, one can see that ϕ′
n is square integrable, so ϕn ∈ W 1. The L2(R)-norm of

ϕ′
n is uniformly bounded above by

‖ψ′
hn
‖2
L2(R) =

∫

∣

∣

(

ϕ′(t) + (iµ− σ2
nt)ϕ(t)

)

exp
(

iµt− 1

2
σ2
nt

2
)∣

∣

2
dt

≤
∫

exp(−σ2t2)
(

|ϕ′(t)| + (|µ| + σ2
0 |t|)|ϕ(t)|

)2
dt < +∞.

Now we concentrate on ψh̃n
. For this function we also have continuity and

differentiability on R\{−tn,−T, 0, T, tn}. The weak derivative is given by

ψ′
h̃n

(t) =







(

ϕ′(t) + (iµ− σ2
nt)ϕ(t)

)

exp
(

iµt− 1
2σ

2
nt

2
)

, |t| < tn,
(

ϕ′(t) + (iµ− σ2t)ϕ(t)
)

exp
(

iµt− 1
2σ

2t2
)

C1
C2
, |t| > tn.

The L2(R)-norm possesses an upper bound that is independent of n:

‖ψ′
h̃n
‖2
L2(R) ≤

∫

∣

∣

∣

(

ϕ′(t) + (iµ− σ2
nt)ϕ(t)

)

exp
(

iµt− 1

2
σ2
nt

2
)

∣

∣

∣

2
dt

+
C1

C2

∫

∣

∣

∣

(

ϕ′(t) + (iµ− σ2t)ϕ(t)
)

exp
(

iµt− 1

2
σ2t2

)
∣

∣

2
dt

≤ 2

∫

(

|ϕ′(t)| + (|µ| + σ2
0 |t|)ϕ(t)

)2
exp(−σ2t2)dt <∞.

Now we apply Lemma 3. We set Rn = n5 and σ2
n = σ2 + d−1(lnn)−1 with

d = 19/
(

4σ2 ln(C2/C1)
)

+ 1, which implies tn =
√

2 ln(C2/C1)d(lnn)0.5; then

(6) becomes
(

n−σ
2 ln(C2/C1) + const.n−1/4

)

‖fn − f‖−2
L2(R) −→

n→∞
0. It remains to

search for a lower bound of ‖fn − f‖2
L2(R). Let (mn)n be a sequence satisfying

T ≤ mn ≤ tn for almost all n. Then we get

‖fn − f‖2
L2(R) = (2π)−1‖ϕn − ϕ‖2

L2(R)

≥ (2π)−1

∫ tn

mn

|ϕ(t)|2
∣

∣ exp
(1

2
(σ2 − σ2

n)t
2
)

− 1
∣

∣

2
dt

≥ const.
(

m1−2β
n − t1−2β

n

)

(

exp
(1

2
(σ2 − σ2

n)m
2
n

)

− 1
)2
.

Consider the case 1 < β < 2.5, for which we define the sequence mn = 0.5
√

2 ln(C2/C1)d(lnn)0.5. Hence,

‖fn − f‖2
L2(R) ≥ const.

(

2
(

ln(C2) − ln(C1)
)

d
)0.5−β

(

22β−1 − 1
)

(lnn)0.5−β.
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Then (6) is valid and the MISE is bounded below by const.(lnn)0.5−β.

Now consider the case β ≥ 2.5 with mn = T . Then ‖fn − f‖2
L2(R) ≥

const.(exp((1/2)(σ2 − σ2
n)T

2) − 1)2 ≥ const.(σ2 − σ2
n)

2 ≥ const.(lnn)−2. The

theorem follows.

4. Simulations

The estimation problem (2) is considered under several conditions, based

on n = 1, 000 observations. In Figures 1−3 the target density, which is plotted

with dotted lines, is the standard Laplace density convolved with itself (param-

eters C2 = 1, C1 = 1/4, T = 1, β = 4), while in Figures 4−6, the three times

self-convolved Laplace density is the density of interest (parameters C2 = 1,

C1 = 1/8, T = 1, β = 6). In Figures 1 and 4, the error density is N(0, 0.5) and

the known upper bound is σ2
0 = 1, while in Figures 2, 3, 4, 5 and 6, N(0, 4) is

the error density with σ2
0 = 8. In Figures 3 and 6, the robustness referring to

misspecification of C1 and β is illustrated; we have used C ′
1 = 1/3, β′ = 5 in

Figure 3 and C ′
1 = 0.1, β′ = 5 in Figure 6. We show three independent replica-

tions of our estimator (5) in each figure, plotted with a solid line. The estimated

variances are given below the figures. Furthermore, the classical deconvolution

estimator, which uses the real error variance in its construction, is plotted with

a dashed line.

We see that, in Figures 1 and 4, the trunction of the variance estimator is

significant. Also, we observe only a slight loss of quality due to misspecification in

Figures 3 and 6. Numerical errors and the non-negligible constants occurring in

the slow rates of convergence make a discussion of our theoretical results based on

the simulations difficult. However, simulations show that our estimator performs

well in practical applications, and it shows only slight deterioration compared to

the classical deconvolution estimator in the situation of a known variance.
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