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ON CLOSED FORM SEMIPARAMETRIC ESTIMATORS

FOR MEASUREMENT ERROR MODELS
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Abstract: We examine the locally efficient semiparametric estimator proposed by

Tsiatis and Ma (2004) in the situation when a sufficient and complete statistic

exists. We derive a closed form solution and show that when implemented in gen-

eralized linear models with normal measurement error, this estimator is equivalent

to the efficient score estimator in Stefanski and Carroll (1987). We also demonstrate

how other consistent semiparametric estimators naturally emerge. The method is

used in an extension of the usual generalized linear models.
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1. Introduction

Measurement error models commonly arise in making inference on the re-

lationship of a response variable Y and predictor variables when some of the

latter may be measured with error. Following the notation of Carroll, Ruppert

and Stefanski (1995), we denote by Z the predictor variables that are measured

precisely and X those which cannot be measured precisely. Instead of X, the

variables W , which are related to X, are observed. Hence, a typical measure-

ment error model problem is to estimate and make inference on an unknown

parameter θ involved in a parametric model p(y|x, z; θ), based on the observed

data set {Oi = (Yi,Wi, Zi), i = 1, . . . , n}. The relation between W and X,Z is

modeled by p(w|x, z) and is often assumed to be known completely or up to a

parametric form. The most typical assumption for measurement error is normal

error: W |(X,Z) ∼ N(X, Ω̄), where Ω̄ is a known or unknown constant covariance

matrix. In this paper, we regard X as a random variable whose conditional dis-

tribution on Z, denoted by η(x|z), is completely unrestricted. Hence, we work in

a non-classical functional measurement error model setting established in Carroll

et al. (1995, Chap.7.2).

Tsiatis and Ma (2004) proposed a class of semiparametric estimators for θ

in such functional measurement error model setting. They view the problem as

a semiparametric model of the form p(y, w|z; θ, η) =
∫

p(y|x, z; θ)p(w|x, z)η(x|z)

dµ(x), where the finite dimensional parameter θ is the parameter of interest, the
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infinite dimensional parameter η(x|z) is a nuisance parameter. Specifically, they

gave a locally efficient estimator through solving a Fredholm integral equation

of the first type. In general, solving such equations numerically is an ill-posed

problem and hence requires regularization schemes (see Kress (1999)).

For measurement error models where the measurement W is normally dis-

tributed with its center at the unobservable explanatory variable X, its variance

a constant, and where the response variable Y relates to X through a generalized

linear model, Stefanski and Carroll (1985, 1987) proposed a number of estimators

which are referred to as the sufficient score, conditional score and efficient score

estimators. A crucial condition which enables the derivation of such estimators

is the existence of a complete sufficient statistic for X.

We examine the relation between the two proposals in the presence of a

complete sufficient statistic and conclude that they agree. This does not come as

a surprise since both programs yield consistent semiparametric estimators that

are optimal in terms of their estimation variance. By ignoring some terms in the

resulting estimator from the proposal by Tsiatis and Ma (2004), while preserving

consistency, the remaining estimators of the proposal by Stefanski and Carroll

(1987) emerge naturally.

Studying the nuisance tangent space and its orthogonal complement directly

in the framework established in Bickel, Klaassen, Ritov and Wellner (1993) can

produce these estimators as well.

In Section 2, we state the problem and summarize the known estimators

and some relevant results. We derive the closed form of these estimators when

a complete and sufficient statistic exists, in Section 3. In Section 4, we imple-

ment the closed form estimator in generalized linear models with normal additive

measurement error with constant variance, and verify that they result in the es-

timators given by Stefanski and Carroll (1985, 1987). We extend the generalized

linear model to include covariates measured without error and an error structure

depending on these covariates, in Section 5. The computation details are given

in the Appendix.

2. Problem Statement and Summary of Relevant Results

We summarize the problem and relevant results in this section (for details, see

Tsiatis and Ma (2004)). Consider the measurement error model where p(y|x, z; θ)

is known up to the parameter θ. The measurement distribution p(w|x, z) is known

and the distribution of X conditional on Z, η(x|z), is unspecified. Assume W is

a surrogate of X (see Carrol, Ruppert and Stefanski (1995)), i.e., p(y|w, x, z) =

p(y|x, z). We consider semiparametric estimators of θ derived from independent

and identically distributed random vectors Oi, i = 1, . . . , n, where, for the i-

th individual, Oi = (Yi,Wi, Zi). We are interested in regular asymptotically
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linear (RAL) estimators θ̂n of θ (Newey (1990)). That is, the estimator minus

the estimand can be approximated asymptotically by a sum of identically and

independently distributed (i.i.d.) mean zero random vectors. Specifically, an

estimator θ̂n of the parameter θ is asymptotically linear if

n
1

2 (θ̂n − θ) = n− 1

2

n
∑

i=1

φ(Oi, θ) + op(1),

where φ(Oi, θ), i = 1, . . . , n are i.i.d. mean zero q-dimensional random vectors

and op(1) denotes a term that converges in probability to zero. The random vec-

tor φ(Oi, θ) is referred to as the i-th influence function of the estimator θ̂n, which

satisfies E(φ) = 0 and E(φφT ) finite and nonsingular (See Bickel et al. (1993)). It

can be verified that θ̂n can be obtained through solving
∑n

i=1 φ(Oi, θ̂) = 0, hence

one way to construct RAL estimators is through finding the influence functions.

The restriction to regular estimators is a technical condition imposed to exclude

estimators that have undesirable local properties. For details regarding the reg-

ularity conditions, the readers are referred to Newey (1990). It is clear from the

representation above that the asymptotic variance of an RAL estimator is equal

to the variance of its influence function φ(O, θ). Consequently, the optimal esti-

mator among a class of RAL estimators is the one whose influence function has

the smallest variance. This is referred to as an efficient semiparametric estimator.

If the estimator depends on η(x|z) it is termed as locally efficient, otherwise it is

globally efficient.

For a complete study of influence functions and their associated geometry,

readers are referred to Bickel et al. (1993). Influence functions lie in a space Λ⊥

given by [h(Y,W,Z) : E{h(Y,W,Z)|X,Z} = 0 a.e.], the orthogonal complement

to the nuisance tangent space Λ = [E{h(X,Z)|Y,W,Z} : E{h(X,Z)|Z} = 0].

Every function in Λ⊥ can be properly normalized to yield an influence function.

Thus, given an estimator
∑n

i=1 h(Yi,Wi, Zi) = 0, we only need to verify that

E{h(Y,W,Z)|X,Z} = 0 for consistency.

A locally efficient semiparametric estimator Seff is constructed in two steps:

• Propose a distribution for η, say we adopt η(x|z) = p(x|z).

• Solve the estimating equation

n
∑

i=1

Seff (Yi,Wi, Zi) =
n

∑

i=1

Sθ(Yi,Wi, Zi) − E{a(X,Z)|Yi,Wi, Zi} = 0, (1)

where Sθ(Y,W,Z) = E{SF
θ (Y,X,Z)|Y,W,Z} with SF

θ (Y,X,Z) = [∂ log{p(Y |

X,Z; θ)}]/(∂θ), and a(X,Z) satisfies

E[Sθ(Y,W,Z) − E{a(X,Z)|Y,W,Z}|X,Z] = 0. (2)
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Here, conditional expectations are taken either with respect to the truth (for

p(w, y|x, z)) or to the proposed distribution (for p(x|z)).

The estimator is locally efficient in the sense that if the posited model p(X|Z)

is correct, the estimator is efficient; however, even if the posited model p(X|Z)

is incorrect, the estimator is still consistent.

3. The Locally Efficient Estimator in the Presence of a Complete

Sufficient Statistic

To find a(X,Z) in (2) involves solving an ill-posed type I integral equation.

This is often difficult and presents numerical challenges. However, when a suffi-

cient and complete statistic for X exists, a closed form solution for E{a(X,Z)|Yi,

Wi, Zi} can be derived without solving for a(X,Z) explicitly in (2). Note that

it is E{a(X,Z)|Yi,Wi, Zi} that appears in (1). We denote the complete suf-

ficient statistic for X by ∆(w, y, z; θ). Because ∆ is a function of W,Y,Z,

we have Sθ(Y,∆, Z) = E{SF
θ (Y,X,Z)|Y,∆, Z} = E{SF

θ (Y,X,Z)|Y,W,Z} =

Sθ(Y,W,Z). Substituting the random variable W with ∆ in (2), we obtain

E{Sθ(Y,∆, Z)|X,Z} − E[E{a(X,Z)|Y,∆, Z}|X,Z]

= E[E{Sθ(Y,∆, Z)|∆, X, Z}|X,Z] − E[E{a(X,Z)|Y,∆, Z}|X,Z] = 0.

Since ∆ is sufficient, conditional on ∆ and Z, X and Y are independent. Hence

the inner expectation can be simplified to yield

E[E{Sθ(Y,∆, Z)|∆, Z} − E{a(X,Z)|∆, Z}|X,Z] = 0.

Because ∆ is also complete, the inner expectation, as a function of ∆ and Z,

is identically zero. Hence we obtain E{a(X,Z)|∆, Z} = E{Sθ(Y,∆, Z)|∆, Z}.

This provides a closed form expression for Seff :

Seff (Y,∆, Z) = Sθ(Y,∆, Z) − E{Sθ(Y,∆, Z)|∆, Z}. (3)

In fact, in the presence of a complete and sufficient statistic, the closed

form estimator in (3) can be derived directly by characterizing the orthogo-

nal complement of the nuisance tangent space Λ⊥ without forming the integral

equation. Since the nuisance tangent space Λ consists of elements of the form

E{h(X,Z)|Y,W,Z} and ∆ is sufficient, where h(X,Z) satisfies E{h(X,Z)|Z} =

0, we can write

E{h(X,Z)|Y,W,Z} = E{h(X,Z)|Y,∆, Z} = E{h(X,Z)|∆, Z}

which is a function of ∆ and Z only. Denoting E{h(X,Z)|Y,W,Z} by f(∆, Z),

and noticing that E{h(X,Z)|Z} = E[E{h(X,Z)|Y,W,Z}|Z] = E{f(∆, Z)|Z},
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we obtain Λ ⊂ [f(∆, Z) : E{f(∆, Z)|Z} = 0]. On the other hand, assume

g(∆, Z) is the projection of f(∆, Z) to Λ. Then E[{f(∆, Z)−g(∆, Z)}E{h(X,Z|

∆, Z)}|Z] = 0 for any h(X,Z) such that E{h(X,Z)|Z} = 0. Because E[{f(∆, Z)

−g(∆, Z)}E{h(X,Z|∆, Z)}|Z] = E(E[{f(∆, Z) − g(∆, Z)}h(X,Z)|∆, Z]|Z) =

E[{f(∆, Z) − g(∆, Z)}h(X,Z)|Z] = E(E[{f(∆, Z) − g(∆, Z)}|X,Z]h(X,Z)|Z),

we obtain E[{f(∆, Z) − g(∆, Z)}|X,Z] = 0 a.e.. Because ∆ is complete, this

means that f(∆, Z) − g(∆, Z) = 0 a.e.. Thus f(∆, Z) itself is in Λ, so Λ =

[f(∆, Z) : E{f(∆, Z)} = 0].

Consequently, the projection of an arbitrary function g(y, w, z) to Λ is E

{g(Y,W,Z)|∆, Z}, and its projection to Λ⊥,

S[g](Y,W,Z) = g(Y,W,Z) − E{g(Y,W,Z)|∆, Z}, (4)

suggests a consistent RAL estimator. Note that (4) gives a general form of an

arbitrary RAL estimator, i.e., for every mean zero function g(Y,W,Z),
∑n

i=1 S[g]

(Yi,Wi, Zi) = 0 is an estimating equation that yields a consistent estimator for

θ. Specifically, if we take g(Y,W,Z) = Sθ(Y,∆, Z) in (4), we obtain a locally

efficient estimator which is the same as in (3).

The locally efficient estimator in (3) can be calculated explicitly. A change

of variable yields

p(y, w|x, z; θ) = p(y, δ|x, z; θ)/J(δ, y, z; θ) = p(δ|x, z; θ){p(y|δ, z; θ)/J(δ, y, z; θ)},

where the last equality is due to the sufficiency of ∆. Here J(δ, y, z; θ) stands

for the Jacobian of the transformation ∂(w, y)/∂(δ, y). Using this relation, we

obtain

Seff (Y,W,Z) =
∂

∂θ
log p(Y |∆, Z; θ)

+

[

d∆

dθ

∂

∂∆
log p(Y |∆, Z; θ)−E

{

d∆

dθ

∂

∂∆
log p(Y |∆, Z; θ)|∆, Z

}]

+

{

d∆

dθ
− E

(

d∆

dθ
|∆, Z

)}

∂

∂∆
log p(∆|Z; θ)

−

{

d

dθ
log J − E

(

d

dθ
log J |∆, Z; θ

)}

. (5)

Details of the calculation are presented in the Appendix.

Implementing the estimator
∑n

i=1 Seff (Yi,∆i, Zi) = 0, where Seff (Y,W,Z)

is given in (3) or (5), does not require solving any integral equation, hence there

is no need to take into account the ill-posedness associated with using the more

general form of the estimator in (1). The only technical challenge lies in finding

a sufficient and complete statistic, but this is not an easy task in general. In the
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measurement error model setting, it requires finding a function of W , Z and Y

which can depend on θ, say ∆(W,Y,Z; θ), such that the following two conditions

are satisfied.

1. p(W,Y |X,Z) can be decomposed into a product of a function of Y,∆, Z and

a function of X,∆, Z: p(W,Y |X,Z) = h(Y,∆, Z)f(∆, X, Z).

2.
∫

g(∆, Z)f(∆, X, Z)d∆ = 0 =⇒ g(∆, Z) = 0.

The second condition is often difficult to verify. One general class where such

complete sufficient statistic exists is the generalized linear model with a general-

ized linear error model for p(W |X,Z) as well. A special case where the measure-

ment error is additive normal has been studied, and a series of estimators have

been proposed by Stefanski and Carroll (1985, 1987). In the next section, we

proceed from our general result and show that these estimators can be obtained

as special cases of (3) (or (5)) and (4).

4. Generalized Linear Model with Normal Measurement Error

In this section Z does not appear and we consider a generalized linear model

of the form

p(y|x; θ) = exp

{

y(α + βT x) − b(α + βT x)

a(γ)
+ c(y, γ)

}

,

where the parameter of interest is θ = (α, βT , γ)T . We also assume the measure-

ment error w has

p(w|x) =
(2π)−

r

2

|Ω̄|
1

2

exp{−(w − x)T Ω̄−1 w − x

2
},

where r is the dimension of β. It is known that δ(w, y; θ) = w+yΩβ is a complete

sufficient statistic, where Ω = Ω̄/a(γ) is assumed known. Then J(δ, y; θ) = 1,

dδ/dα = dδ/dγ = 0, dδ/dβ = yΩ, and

p(y|δ; θ) = exp[ξy −
1

2
y2βT Ωβ/a(γ) + c(y, γ) − log{s(ξ, β, γ)}], (6)

where ξ = (α + δT β)/a(γ) and s(ξ, β, γ) =
∫

exp{ξy − (1/2)y2βT Ωβ/a(γ) +

c(y, γ)}dµ(y). Since dδ/dα = 0, (5) implies

Seff (Y,W ; θ)α =
∂

∂α
log p(Y |∆; θ) =

Y

a(γ)
−

1

a(γ)

d

dξ
log{s(ξ, β, γ)}

= {Y − E(Y |∆)}/a(γ), (7)

where we use Seff (Y,W ; θ)α to denote the component corresponding to α in

Seff (Y,W ; θ). The relation (d/dξ) log{s(ξ, β, γ)} = E(Y |∆) used in (7) can be
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verified through straightforward algebra. Similarly,

Seff (Y,W ; θ)γ =
∂

∂γ
log p(Y |∆; θ)

= −
Y (α + ∆T β)a′(γ)

a2(γ)
+

Y 2βT Ωβa′(γ)

2a2(γ)
+

dc(Y, γ)

dγ

−E

{

−
Y (α + ∆T β)a′(γ)

a2(γ)
+

Y 2βT Ωβa′(γ)

2a2(γ)
+

dc(Y, γ)

dγ
|∆; θ

}

. (8)

Because dδ/dβ 6= 0, the component Seff (Y,W ; θ)β is more complex. Specifically,

Seff (Y,W ; θ)β =
∂

∂β
log p(Y |∆; θ) + {Y − E (Y |∆)}Ω

∂

∂∆
log p(∆; θ)

+Ω

[

Y
∂

∂∆
log p(Y |∆; θ) − E

{

Y
∂

∂∆
log p(Y |∆; θ)|∆

}]

. (9)

Because of the consistency of the estimator, E{Seff (Y,W ; θ)β} = E{Seff (Y,W ;

θ)β|X} = 0. However, the second and third terms in (9) both lie in Λ⊥. This
means that the first term (∂/∂β) log p(Y |∆; θ) itself is in Λ⊥, hence suggests a

consistent estimator. Thus a possible S(Y,W ; θ)β is

∂

∂β
log p(Y |∆; θ)

=
∆

a(γ)
Y − Y 2 Ωβ

a(γ)
−

∆

a(γ)

∂

∂ξ
log{s(ξ, β, γ)} − E{Y 2 Ωβ

a(γ)
|∆; θ}

=
∆

a(γ)
{Y − E(Y |∆, θ)} −

Ωβ

a(γ)
{Y 2 − E(Y 2|∆, θ)}, (10)

which, combined with (7) and (8), gives the sufficient score estimator of Stefan-

ski and Carroll (1987). In (10), we used the relation (∂/∂β) log{s(ξ, β, γ)} =
E(Y 2[Ωβ/a(γ)]|∆), which again follows from straightforward algebra.

As pointed out at (4), any function of the form f(Y,∆) − E{f(Y,∆)|∆; θ}
will yield a candidate for S(Y,W ; θ)β. In particular, f(Y,∆) = Y t(∆) is a natural

choice, where t(∆) is an arbitrary function of ∆. This choice yields

S(Y,W ; θ)β = {Y − E(Y |∆)}t(∆), (11)

which, combined with (7) and (8), gives the conditional score estimator of Ste-

fanski and Carroll (1987) (S(Y,W ; θ)β = {Y − E(Y |∆)}t(∆) and S(Y,W ; θ)β =
{Y −E(Y |∆)}t(∆)/a(γ) lead to the same estimator, the latter one is the precise
form used in Stefanski and Carroll (1987)).

Finally, the locally efficient estimator term Seff (Y,W ; θ)β itself can be cal-
culated explicitly and results in the expression

Seff (Y,W ; θ)β = {Y − E(Y |∆)}E(X|∆)/a(γ), (12)
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which, combined with (7) and (8), gives the efficient score estimator of Stefanski

and Carroll (1987). Detail of the computation is given in the Appendix. Note

that in order to implement this estimator, we need to propose a distribution

model for X, say p(X), for computing E(X|∆). If the true distribution of X,

say η(X), is the same as p(X), then the resulting estimator is efficient. Otherwise,

the resulting estimator is no longer efficient, although it is still consistent. Hence

“efficient score estimator” is indeed a locally efficient estimator.

Although regularity conditions ensure that consistent sequence of estimators

exist as solutions of estimating equations, a multiple roots issue inevitably arises,

hence an inconsistent sequence of estimates can occur. Since this is an issue for

general M-estimators, we do not comment further on the problem but refer the

readers to Stefanski and Carroll (1987) for practical techniques to get around it.

The completeness of the statistic ∆ enables one to derive E{a(X; θ)|Y,W}

directly, and permits a direct characterization of the nuisance tangent space

Λ. The sufficiency of ∆ provides the framework to separate the conditional

distribution p(Y |∆) from X. These are crucial conditions and we believe a closed

form solution does not exist under any other conditions.

5. An Extension

Consider the generalized linear model above when the covariates Z, measured

without error, are also present, and Y has a generalized linear form with respect

to X and Z. One way to deal with such situation is to concatenate X and Z and

treat it as XN , concatenate W and Z and treat it as W N . Then treat the model

of Y , W N and XN as a special case of the model in Section 4 with a degenerate

covariance matrix Ω̄N , where Ω̄N is a block diagonal matrix, with its (1, 1) block

being Ω̄, the covariance matrix of W |(X,Z), and all other blocks being zero.

Here the superscript N is used to stand for the new model/variables. Similar

results as in Section 4 can be derived despite the singularity of Ω̄N . However,

the method does not survive if the measurement error variance Ω̄ depends on the

error-free measurement Z, for example.

Still, using the estimating equations proposed in (3) and (4), this can be

handled easily. In fact, a much broader class of problems can be solved. Suppose

the model dependence of Y on X has a generalized linear model form which

depends on the observed covariate Z,

p(y|x, z; θ) = exp

{

y(α + βT x) − b(z)(α + βT x)

a(z, γ)
+ c(y, z, γ)

}

,

and the measurement error model p(w|x, z) is normal with mean x and covari-

ance matrix Ω̄(z). Combining X and Z and treating the combination XN as

the predictive variables will yield a model p(y|x, z) that is very complex and
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does not have a complete sufficient statistic. But, comparing this model with
the one in Section 4, it is tempting to treat z simply as a known constant so
as to apply the result there. In fact, this works. The estimators given in (3)
(or (5)) and (4) precisely serve the purpose of justifying such approach. In con-
structing the estimators, all the expectations are calculated conditional on Z,
thus treating Z as a random variable or as a constant is equivalent. Setting
∆(W,Y,Z; θ) = W + Y Ω(Z)β, where Ω(Z) = Ω̄(Z)/a(Z, γ), replacing a(γ),
c(Y, γ), Ω and t(∆) in (7), (8), (10), (11) and (12) with a(Z, γ), c(Y,Z, γ), Ω(Z)
and t(∆, Z) respectively, and replacing the conditional expectations E(·|∆) in
these equations with the corresponding E(·|∆, Z), we would obtain the suffi-
cient score estimator, conditional score estimator, and efficient score estimator,
respectively, in this more general setting.
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Appendix

a. To get (5), note that from

SF
θ (Y, x, Z) =

d log p(Y |x,Z; θ)

dθ
=

d log p(W,Y |x,Z; θ)

dθ

=
d

dθ
log p(∆|x,Z; θ) +

d

dθ
log p(Y |∆, Z; θ) −

d

dθ
log J(∆, Y, Z; θ)

=
d∆

dθ

∂

∂∆
log p(∆|x,Z; θ) +

∂

∂θ
log p(∆|x,Z; θ) +

d∆

dθ

∂

∂∆
log p(Y |∆, Z; θ)

+
∂

∂θ
log p(Y |∆, Z; θ) −

d

dθ
log J(∆, Y, Z; θ),

Sθ(Y,∆, Z) = E{SF
θ (Y,X,Z)|Y,∆, Z}

= E

{

d∆

dθ

∂

∂∆
log p(∆|X,Z; θ) +

∂

∂θ
log p(∆|X,Z; θ)|Y,∆, Z

}

+
d∆

dθ

∂

∂∆
log p(Y |∆, Z; θ) +

∂

∂θ
log p(Y |∆, Z; θ) −

d

dθ
log J(∆, Y, Z; θ).

Because X and Y are independent conditional on ∆ and Z, we get

E

{

d∆

dθ

∂

∂∆
log p(∆|X,Z; θ) +

∂

∂θ
log p(∆|X,Z; θ)|Y,∆, Z

}

=
d∆

dθ
E

{

∂

∂∆
log p(∆|X,Z; θ)|∆, Z

}

+ E

{

∂

∂θ
log p(∆|X,Z; θ)|∆, Z

}

=
d∆

dθ

∂

∂∆
log p(∆|Z; θ) +

∂

∂θ
log p(∆|Z; θ).
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Then we find

Sθ(Y,∆, Z) =
∂

∂θ
log p(Y |∆, Z; θ)+

d∆

dθ

∂

∂∆
log p(Y |∆, Z; θ)

+
d∆

dθ

∂

∂∆
log p(∆|Z; θ)+

∂

∂θ
log p(∆|Z; θ)−

d

dθ
log J(∆, Y, Z; θ),(13)

E{Sθ(Y,∆, Z)|∆, Z}

= 0 + E

{

d∆

dθ

∂

∂∆
log p(Y |∆, Z; θ)|∆, Z

}

+ E

(

d∆

dθ
|∆, Z

)

∂

∂∆
log p(∆|Z; θ)

+
∂

∂θ
log p(∆|Z; θ) − E

{

d

dθ
log J(∆, Y, Z; θ)|∆, Z

}

. (14)

Apply (13) and (14) to the estimator given in (3) to get (5).

b. For the calculation of Seff (Y,W ; θ)β, note that the last two terms of (9) are

ΩY
∂

∂∆
log p(Y |∆; θ) = ΩY

{

Y
β

a(γ)
−

∂

∂ξ
log s(ξ, β, γ)

β

a(γ)

}

=
Ωβ

a(γ)
{Y 2 − Y E(Y |∆)},

ΩE

{

Y
∂

∂∆
log p(Y |∆; θ)|∆

}

= ΩE

[

Y

{

Y
β

a(γ)
− E(Y |δ)

β

a(γ)

}

|∆

]

=
Ωβ

a(γ)
[E(Y 2|∆) − {E(Y |∆)}2].

Also note that

log p(∆|x; θ) = log p(W |x) + log(Y |x; θ) − log p(Y |∆; θ)

= log{(2π)−p/2/|Ω̄|1/2}−
1

2
(W−x)T Ω̄−1(W−x)+

Y (α + βT x) − b(α + βT x)

a(γ)

+c(Y, γ) − Y ξ +
Y 2βT Ωβ

2a(γ)
− c(Y, γ) + log{s(ξ, β, γ)}

= log{(2π)−p/2/|Ω̄|1/2} −
1

2
(∆ − Y Ωβ − x)T Ω̄−1(∆ − Y Ωβ − x)

+
Y (α + βT x) − b(α + βT x)

a(γ)
− Y ξ +

Y 2βT Ωβ

2a(γ)
+ log{s(ξ, β, γ)}.

Therefore

∂ log p(∆|x; θ)

∂∆
= −Ω̄−1(∆ − Y Ωβ − x) −

Y β

a(γ)
+

∂ log{s(ξ, β, γ)}

∂ξ

β

a(γ)

= −Ω̄−1∆ + Ω̄−1x + E(Y |∆)
β

a(γ)
,
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Ω
∂ log p(∆; θ)

∂∆
= ΩE

{

∂ log p(∆|X; θ)

∂∆
|∆

}

=
−∆ + E(X|∆) + E(Y |∆)Ωβ

a(γ)
.

Here we used the fact that Ω̄ = a(γ)Ω and

∂ log p(∆)

∂∆
=

∂
∫

p(∆|x)p(x)dµ(x)
∂∆

p(∆)
=

∫

∂p(∆|x)

∂∆ p(∆|x)

p(∆|x)p(x)

p(∆)
dµ(x)

= E

{

∂ log p(∆|X)

∂∆
|∆

}

.

Combining these relations, we obtain

Seff (Y,W ; θ)β =
∆

a(γ)
{Y − E(Y |∆)} −

Ωβ

a(γ)
{Y 2 − E(Y 2|∆)}

+{Y − E(Y |∆)}
−∆ + E(X|∆) + E(Y |∆)Ωβ

a(γ)

+
Ωβ

a(γ)
{Y 2 − Y E(Y |∆)} −

Ωβ

a(γ)
[E(Y 2|∆) − {E(Y |∆)}2]

= {Y − E(Y |∆)}
E(X|∆)

a(γ)
.
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