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Abstract: We consider unbiased estimation following a group sequential test for dis-

tributions in a one-parameter exponential family. We show that, for an estimable

parameter function, there exists uniquely an unbiased estimator depending on the

sufficient statistic and based on the truncation-adaptation criterion (Liu and Hall

(1999)); moreover, this estimator is identical to one based on the Rao-Blackwell

method. When completeness fails, we show that the uniformly minimum-variance

unbiased estimator may not exist or might possess undesirable performance. A

Phase-II clinical trial application with exponentially distributed responses is in-

cluded.
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1. Introduction

Group sequential testing procedures have been widely used in Phase II and

III clinical trials due to ethical, administrative, and cost concerns. In a group

sequential test regarding a null hypothesis, sampling data are examined in cu-

mulative groups at a number of time points, with a stopping region specified

for the test statistic at each time point. “Time” may be specified in terms of

real calendar time, or sample size, or Fisher information. If at a certain time

point, the test statistic reaches the stopping region, then the sampling process

is terminated and a decision is made as to whether or not the null hypothesis

should be rejected. Popular designs for comparing two treatment groups are

the Pocock (1977) and O’Brien and Fleming (1979) designs, and the more flex-

ible error spending designs developed by Lan and DeMets (1983) that allow for

unequal group sizes and unspecified inspection times. Other group sequential

designs, such as Simon’s (1989) optimal two-stage tests, have been developed to

evaluate patient response to a drug treatment. Jennison and Turnbull (2000)

is an excellent reference for the design and analysis of such trials, focusing on

theory with normally distributed outcomes. All such designs are special cases of
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one-at-a-time sequential sampling for which stopping opportunities are limited

and the sample size is bounded.

Parameter estimation after a sequential test is important, especially in clini-

cal trials, since the magnitude of the treatment effect is always of interest to the

medical investigators. However, conventional estimators that are efficient in non-

sequential settings (fixed sample size) lose statistical properties such as unbiased-

ness and minimum variance when used in sequential settings (e.g., Cox (1952),

Siegmund (1978), Whitehead (1986) and Chang, Wieand and Chang (1989)).

For group sequential designs with normal variables, Emerson and Fleming (1990)

proposed a Rao-Blackwell type unbiased estimator of the normal mean. Liu and

Hall (1999) later showed that there exist infinitely many unbiased estimators of

the normal mean and none has uniform minimum variance. They further pro-

posed a truncation-adaptable criterion, and showed that Emerson and Fleming’s

(1990) estimator has uniform minimum variance among all truncation-adaptable

unbiased estimators.

Much of the work on estimation in sequential designs dates back over fifty

years. For sequential sampling with Bernoulli trials, Girshick, Mosteller and

Savage (1946) considered unbiased estimation of the success probability p and

found necessary and also certain sufficient conditions for completeness, enabling

conclusions about uniform minimum variance for associated unbiased estimators.

Wolfowitz (1946) and Savage (1947) derived necessary and sufficient conditions

for bounded completeness, and Blackwell (1947) introduced what we call the

Rao-Blackwell method in the context of sequential sampling. These works were

extended by Lehmann and Stein (1950) in two directions: first, they presented a

necessary condition for completeness of a sufficient statistic from a general dis-

tribution, and second, they found a necessary and sufficient condition for com-

pleteness — without the boundedness condition — when sampling sequentially

from Bernoulli, Poisson or rectangular distributions. To our knowledge, however,

no further development or extension has occurred with respect to unbiased esti-

mation and completeness in a general sequential sampling setting. Popularity of

group sequential designs has re-generated interest in sequential estimation.

In this paper, we consider unbiased estimation following a group sequential

test for distributions in a one-parameter exponential family. Extending results

in Liu and Hall (1999), we derive two unbiased estimators depending on the suf-

ficient statistic, one based on their truncation-adaptation criterion and the other

on the Rao-Blackwell Theorem, and show these two estimators to be identical.

The estimator has uniform minimum variance among all unbiased estimators if

the sufficient statistic has a complete family of distributions. When complete-

ness fails — for which we give a sufficient condition and examples — we show

that the uniform minimum-variance unbiased estimator may not exist, or when
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it does, may possess an undesirable property. This enables our conclusion that

the Rao-Blackwell estimator may perform well regardless of the completeness of

the sufficient statistic.

The results have potential application in clinical trials and other fields, for

example, in a Phase II clinical trial where the parameter of a single distribution

is evaluated; see the example in Section 5.

Proofs of all theorems are in an appendix.

2. Group Sequential Designs for Distributions in an Exponential Fam-

ily

We consider a random variable X, continuous or discrete, whose density is

a member of the one-parameter exponential family, having the form

fθ(x) = h(x) exp{θx − a(θ)} (2.1)

with respect to some measure µ; for a density with θt(x) instead of θx for some

monotone function t, consider the density of t(X) which has the form (2.1). The

parameter θ takes values in an open interval Θ, and the support X of X is either

a real interval or a set of integers containing 0. Examples of such distributions

include the normal, exponential, gamma, and beta for continuous variables and

the Bernoulli, Poisson and geometric for discrete distributions. For simplicity,

we take µ to be Lebesgue measure on R or R+ and write integrals dx rather than

dµ(x); alternatively, µ is counting measure on a countable set — here restricted

to integers — and integrals need to be replaced by sums.

When considering a random sample X1, . . . , Xn from X, we write Sn for

the cumulative sum; it is a minimal sufficient statistic for inference on θ, and is

well-known to have a density of the form (2.1), say

fn,θ(s) = hn(s) exp{θs − na(θ)} (2.2)

(dµ); let Xn denote the support. (See Lehmann and Casella (1998), for example.)

Since fn,θ(s) integrates (or sums) to unity, we have, for each integer n,

exp{na(θ)} =

∫
Xn

hn(s) exp(sθ)dµ(s). (2.3)

That is, exp{na(θ)} is the Laplace transform (Widder (1941)) of hn(s) on Xn

with respect to measure µ, or hn(s) is the (unique) inverse Laplace transform of

exp{na(θ)}. We will repeatedly use these concepts.

We consider a group sequential design for testing hypotheses about θ, based

on the sufficient statistic Sn with K (> 1) possible analyses. Suppose that the

kth analysis (k = 1, . . . ,K) is conducted after nk observations are observed, with
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stopping region Bk 6= ∅ and continuation region Ck (with Ck 6= ∅ for k < K and

CK = ∅). In clinical trial settings, the stopping regions are normally the union

of one or two (or possibly three) disjoint intervals; see Section 5 for an example.

The sampling process stops when Sn first falls into a stopping region, and some

terminal inference for the test is made. The details about the test are irrelevant

here since our focus is on estimation of some function of θ once a stopping region

has been reached; thus, the test may be one- or two-sided, and may or may not

have inner stopping boundaries, etc.

We can and will assume that each Ck and Bk has been reduced to a reachable

version; that is, for each k and any subset ∆ (with positive measure with respect

to µ) of Ck ∪ Bk, Pθ{Sni
∈ Ci for i < k and Snk

∈ ∆} > 0. Write mk =

nk−nk−1 (n0 = 0) for the incremental sample size at stage k. Then the stopping

and continuation regions have the following relationships: C1 ∪ B1 = Xm1
and

Ck ∪ Bk = Ck−1 ⊕ Xmk
for k > 1, where the operator ⊕ on sets ∆1 and ∆2 is

defined by ∆1 ⊕ ∆2 = {x : x = x1 + x2 for some x1 ∈ ∆1 and x2 ∈ ∆2}.

Remark. Although CK is required to be empty to ensure that stopping even-

tually occurs, BK may be only a proper subset of XnK
; this generally occurs

when X is bounded, and often occurs if it is only bounded below or above. For

example, with Poisson sampling, 0 ∈ Bk for some k < K implies 0 /∈ BK ; also

see Section 5.

Let M be the (random) number of analyses performed when a stopping region

is first reached, and let S = SnM
be the sample sum upon stopping. Since, for

each n, Sn is sufficient for θ with respect to the sample space of (X1, . . . , Xn),

the statistic (M,S) is jointly sufficient (Blackwell (1947)) for θ with respect to

the sample space {Sn1
∈ B1} ∪ [∪K

k=2{Sni
∈ Ci, i < k, Snk

∈ Bk}].

We now derive the joint density gθ(k, s) of (M,S). Obviously gθ(1, s) =

fn1,θ(s) 1B1
(s), the latter factor being the indicator of s ∈ B1. For M = k > 1,

the k increments Sn1
, Sn2

− Sn1
, . . . , Snk

− Snk−1
are independently distributed

with respective densities fm1,θ, fm2,θ, . . . , fmk ,θ. We then find the joint density of

(Sn1
, . . . , Snk

) at a point (s1, . . . , sk) in its support to be

fm1,θ(s1)fm2,θ(s2 − s1) . . . fmk,θ(sk − sk−1) = r̃k(sk; s1, . . . , sk−1)fnk,θ(sk),

say, where

r̃k(sk; s1, . . . , sk−1) =
1

hnk
(sk)

hm1
(s1)hm2

(s2 − s1) . . . hmk
(sk − sk−1);

or, recursively,

r̃k(sk; s1, . . . , sk−1) =
hnk−1

(sk−1)

hnk
(sk)

hmk
(sk − sk−1)r̃k−1(sk−1; s1, . . . , sk−2). (2.4)
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This then yields the joint density

gθ(k, s) =
d

ds
Pθ(Sni

∈ Ci, i < k, Snk
≤ s, Snk

∈ Bk) = rk(s)fnk,θ(s),

where r1(s) = 1B1
(s) and, for k > 1,

rk(s) =

∫
. . .

∫
{ui∈Ci,i<k}

r̃k(s;u1, u2, . . . , uk−1)du1 . . . duk−1

=
1Bk

(s)

hnk
(s)

∫
u∈Ck−1

rk−1(u)hnk−1
(u)hmk

(s − u)du. (2.5)

We thus conclude that the density function of the sufficient statistic (M,S)

at (k, s) is

gθ(k, s) = rk(s)fnk,θ(s) = rk(s)hnk
(s) exp{θs − nka(θ)} (2.6)

with rk(s) given recursively in (2.5). The family of densities (2.6) is a curved

exponential family, with natural parameters θ1 = −a(θ) and θ2 = θ —curved

since the two parameters θ1 and θ2 lie on a curve in 2-space (Efron (1975)).

Formula (2.6) provides the basis for computing the expectation of a statistic

W = w(M,S):

Eθ(W ) =
K∑

k=1

∫
Bk

w(k, s)rk(s)fnk,θ(s)ds. (2.7)

In particular, if Rk ⊂ Bk (k = 1 . . . ,K) define rejection sets for some null

hypothesis about θ, then the power of the test is given by (2.7) upon setting

w(k, s) = 1Rk
(s). For power, sample size and other design issues, see Lai and

Shih (2003).

3. Unbiased Estimation of Parameters

Suppose we want to estimate η = η(θ), a real-valued (but not constant)

function of the natural parameter θ. We consider unbiased estimation of η, and

assume throughout that an unbiased estimator, based on a random sample of size

m for some m ≤ n1, exists; we say η is m-estimable. This implies n-estimability

for any n > m, and indeed for any group sequential design with n1 ≥ m.

Typically, many functions are m-estimable, even for m = 1; what is required

is that η(θ) exp{ma(θ)} be a Laplace transform. However, in the Bernoulli case,

only polynomials of degree m are m-estimable, and in the Poisson case, functions

with a power series are 1-estimable. We will not pursue these issues further here.

Nonsequentially, let η̂n(Sn) be the unique unbiased estimator of η based

on the complete sufficient statistic Sn. After stopping in a group sequential
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design, the estimator η̃(M,S) = η̂nM
(SnM

) is biased, and sometimes badly so

(Whitehead (1986), Emerson and Fleming (1990) and Chang, Wieand and Chang

(1989)). The expectation of this estimator can be obtained from (2.7) and com-

pared with η(θ) to evaluate the bias.

To control variance as well as eliminate bias, we seek unbiased estimators

depending only on the sufficient statistic (M,S). We consider two methods, (i)

that of Rao-Blackwell starting from a first-stage estimator and (ii) the truncation-

adaptation approach, introduced by Liu and Hall (1999), that requires the es-

timator to be independent of future stopping regions. The two criteria were

developed from quite different perspectives, but interestingly lead to the same

unbiased estimator depending on the sufficient statistic — the uniform minimum-

variance truncation-adaptable unbiased estimator.

3.1. The Rao-Blackwell unbiased estimator

Let η̂n1
(Sn1

) be the unique sufficient-statistic-based unbiased estimator of η

for a non-sequential sample size n1. As in Blackwell (1947) and Emerson and

Fleming (1990), we define a Rao-Blackwell estimator as

η̂u(M,S) = E{η̂n1
(Sn1

)|(M,S)}. (3.1)

Then η̂u is parameter-free, unbiased for η, and with reduced variance.

If sampling stops at the first analysis, then η̂u(1, S) = η̂n1
(Sn1

). For M > 1,

η̂u(M,S) can in general only be computed numerically, but see Blackwell (1947)

for algorithms when estimating the Bernoulli or Poisson parameter. Here we

derive a general recursive formula for η̂u.

Similar to the derivation of (2.7), we find that the conditional density of Sn1

given (M,S), upon writing it as the ratio of the joint density and the density of

the condition, is

1Bk
(s)

fnk,θ(s)

gθ(k, s)

∫
. . .

∫
si∈Ci,1<i<k

r̃k(s; s1, s2, . . . , sk−1)ds2 . . . dsk−1,

and the ratio in front of the integrals is 1/rk(s). It follows from (3.1) that

η̂u(k, s) =
1Bk

(s)

rk(s)

∫
. . .

∫
si∈Ci,1≤i≤k−1

η̂n1
(s1)r̃k(s; s1, s2, . . . , sk−1)ds1 . . . dsk−1.

Utilizing (2.5), we obtain the following recursive expression for the Rao-

Blackwell estimator (3.1): η̂u(1, s) = 1Bn1
(s) η̂n1

(s) and, for k ≥ 1,

η̂u(k + 1, s) =
1Bk+1

(s)

rk+1(s)hnk+1
(s)

∫
Ck

η̂u(k, u)rk(u)hnk
(u)hmk+1

(s − u)du. (3.2)
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Computation in (3.2) can be quite extensive, often involving multiple inte-

grals that can only be numerically evaluated. For normal distributions, Emerson

(1993) and Emerson and Kittelson (1997) discussed the complexity of the compu-

tation issues and proposed simpler programs for numerical computation. Section

5 below presents an illustrative example with exponential distributions.

3.2. Truncation-adaptable unbiased estimators

The truncation-adaptation concept was proposed by Liu and Hall (1999),

formalizing an observation in Emerson (1993), and related comments in Emerson

and Fleming (1990), that it is desirable for an inference after a stopped sequential

test to be free of dependence on future stopping boundaries.

Specifically, consider an estimator η̃, possibly depending on the whole sam-

pling path {X1, . . . , XnM
}, of η = η(θ) that is unbiased when using a particular

group sequential design D, with stopping regions Bk. For each k < K, consider

a truncated design Dk, obtained by retaining the first k− 1 stopping regions and

closing the kth stopping region; that is, replacing Bk by Bk∪Ck = Ck−1⊕Xmk
. We

say η̃ is a truncation-adaptable unbiased estimator of η if, for each k, there exists

an extension of η̃ to the domain Ck so that the resulting estimator is unbiased

for η in the truncated design Dk.

To help clarify this concept, we first consider Bernoulli sampling with pa-

rameter p. As in Blackwell (1947), the Rao-Blackwell unbiased estimator of pr

(for r ≤ n1) is found to be the ratio of two counts of paths — in Pascal trian-

gle fashion — to the stopping point, expressed as (s, f) with f = n − s. The

numerator count is from (r, 0) to (s, f), and the denominator count from (0, 0)

to (s, f). It is easy to see that, in truncation from a maximum sample size of

nK to nK − 1, the path counts to stopping points common to both designs are

unaffected, and so the unbiased estimator can be preserved by appropriate path

counting to new boundary points. The same holds for further truncation. Hence,

this estimator is truncation adaptable. Lehmann and Stein (1950) showed that

this estimator is unique among sufficient-statistic-based unbiased estimators in

sequential designs with every continuation set an interval. For other designs, it

is not unique, and others may have smaller variance for limited ranges of p. Only

the Rao-Blackwell estimator is truncation adaptable, however (see Theorem 1).

A small example of Bernoulli sampling that illustrates lack of adaptability

is as follows. Consider a design with stopping points (s, f) = (3, 0), (2, 1), (1, 1),

(1, 2) and (0, 3), with n = 2 or 3 (k = 1, 2). The Rao-Blackwell estimator

of p has values 1, 1, 1/2, 0, 0, respectively. But a statistic with values 0, c,

−c/2, c, 0 has 0 expectation uniformly (and only these statistics). Hence, p̂c,

with values 1, 1 + c, (1 − c)/2, c, 0, for any c are the only unbiased estimators.

Upon truncating to n = 2, a truncation-adaptable estimate must not change at
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the n = 2 boundary point (1,1), but the only unbiased estimator when n = 2

has value 1/2 at this point; hence, p̂c is truncation-adaptable unbiased only when

c = 0, which corresponds to the Rao-Blackwell estimators (the omitted details are

straightforward, but sometimes tedious). Moreover, for any c with 0 < |c| < 2/3,

p̂c has smaller variance than p̂0 over a sub-interval of p but not uniformly over

the unit interval, and for any given c 6= 0 (not necessarily with 0 < |c| < 2/3),

p̂0 has smaller variance than p̂c in a neighborhood of p = 1/2, hence a uniform

minimum-variance unbiased estimator does not exist. This is in keeping with the

fact that the continuation set {(2, 0), (0, 2)} is not an interval. Note also that p̂c

is not confined to the unit interval except when c = 0.

Returning to the exponential family generally, slight modification of the proof

of Lemma 2 of Liu and Hall (1999) to the case of exponential families will show

that, if η̃ is truncation-adaptable unbiased for η, then so is E{η̃|(M,S)}, and with

reduced variance. We therefore can limit attention to sufficient-statistic-based

estimators.

We show in the Appendix how to construct, stage by stage, a truncation-

adaptable unbiased estimator η̂ta(M,S) of η, verifying uniqueness along the way.

We thus have

Theorem 1. In a group-sequential design, for any m-estimable (m ≤ n1) func-

tion η = η(θ), there exists at most one truncation-adaptable unbiased estimator

based on (M,S), and it is identical to the Rao-Blackwell estimator η̂u(M,S).

Therefore, for an m-estimable η, both Rao-Blackwell and truncation-adapt-

able criteria lead to the unique uniform minimum-variance truncation-adaptable

unbiased estimator.

Remark. In defining the truncation-adaptable concept, we could allow trunca-

tion at some intermediate stage, say after n observations for some nk < n < nk+1,

but have used the simpler definition here.

4. Minimum Variance and Completeness

In the previous section, we showed that the Rao-Blackwell estimator (3.1)

has minimum variance among all truncation-adaptable unbiased estimators. If

(M,S) is complete, the truncation-adaptable restriction can be removed. We

now consider whether this estimator, or other estimators, if any, has minimum

variance among all unbiased estimators. To do so, we investigate situations where

the sufficient statistic (M,S) is not complete and investigate the performance of

the uniform minimum-variance unbiased estimator, if any, in these situations.

For each fixed n, the family of distributions of Sn is complete (Lehmann and

Casella (1998)); we say simply that Sn is complete. Hence, there exists at most

one unbiased estimator depending on Sn of an m-estimable (m ≤ n) parameter
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function η = η(θ). However, the completeness property may not be inherited

when data are examined sequentially since the distribution of (M,S) is from a

curved exponential family, as noted following (2.6). (See Lehmann and Stein

(1950) for the case of Bernoulli, Poisson and normal distributions; see also the

n ≤ 3 Bernoulli example above.)

Consider W = w(M,S) such that Eθ(W ) = 0 for all θ in an open interval.

Then, from (2.6) and (2.7), we have, equivalently,

K∑
k=1

exp{−nka(θ)}Lwk
(θ;Bk) = 0, (4.1)

where wk(s) = w(k, s)rk(s)hnk
(s) and Lg(θ;∆) =

∫
∆ g(s) exp{θs}ds, the Laplace

transform of a function g on support ∆.

Note that rk(s) > 0 for all k and s ∈ Bk, and hn(s) > 0 for all n and s ∈ Xn.

Hence the equation Eθ(W ) = 0 holds only for the null function if and only if

(4.1) holds only for the null function, i.e., for each k, wk(s) = 0 for all s ∈ Bk.

Theorem 2. Consider a K-analysis group sequential design for a density having

form (2.1), with (reachable) stopping regions Bk (k ≤ K). If, for some 1 ≤ i <

j ≤ K and some positive-measure subset Bo
i of Bi,

Bo
i ⊕Xnj−ni

⊆ Bj, (4.2)

then the sufficient statistic (M,S) is not complete.

The condition in Theorem 2 is not necessary for completeness to fail, however

(but not shown here).

Remark. When Bo
i = Bi, (4.2) is a special case of part (i) of Lehmann and

Stein’s (1950) theorem; it suffices to note that our Cm ⊕ Xp−m is their W m
p .

This implies, in the Bernoulli sampling case (with bounded sample size), that

completeness requires every continuation set to be an interval.

Note that, for each i < K, Bi ⊕XnK−ni
⊆ Xni

⊕XnK−ni
= XnK

.

Corollary 1. If BK = XnK
, then (M,S) is not complete.

Case 1. If the support of (2.1) is (−∞,∞), then BK = (−∞,∞) and thus (M,S)

is not complete. A special case is that of normal sampling with known variance

(Lehmann and Stein (1950) and Liu and Hall (1999)).

Case 2. Suppose the support of (2.1) is X = (0,∞), such as for an exponential

distribution. If (0, c) ⊂ CK−1, for some c > 0, then BK = CK−1 ⊕ XnK−nK−1
=

X = XnK
, and thus (M,S) is not complete.
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Case 3. Suppose the support of (2.1) is X = {0, 1, . . .}, such as for a Poisson

distribution. If 0 ∈ CK−1, then, as in Case 2, BK = X = XnK
, and thus (M,S)

is not complete.

Remark. The origin may be shifted in Cases 2 and 3.

When (4.2) holds, and hence completeness fails, there exist infinitely many

unbiased estimators of η, since we can construct infinitely many zero-mean statis-

tics each of which yields an unbiased estimator when added to the Rao-Blackwell

estimator (3.1). (See (A.2) in the appendix; also, recall the n ≤ 3 Bernoulli

example above.) But is there a uniform minimum-variance one among them?

We show below that, when existent, it may have an undesirable property, and

we give a simple sufficient condition for non-existence.

Often, a parameter function η(θ) of practical interest is distinguishable in the

sense that over no open intervals of Θ is the function constant. Two particular

parameter functions, the natural parameter θ itself and the mean parameter

E(X) = a′(θ), are both monotone functions (noting that V ar(X) = a′′(θ) > 0),

and thus are distinguishable. Functions with a finite number of inverses — such

as pq in the Bernoulli case — remain distinguishable. An estimator η̂ = η̂(M,S)

is said to be distinguishable if for no non-singleton interval of any Bk is η̂ constant.

It is natural to prefer that a distinguishable parameter function be estimated by

distinguishable estimators, just like the restriction that a bounded parameter be

estimated by a bounded estimator (Wolfowitz (1946) and Savage (1947)). In

the discrete case, this requirement that an estimator is not constant on any two

adjacent boundary points may need relaxing somewhat since, it may be shown

that, in every curtailed Bernoulli sampling design, BnK
consists of two adjacent

points where the uniform minimum-variance estimate is constant.

The following results show that when completeness fails, a uniform minimum-

variance unbiased estimator of η is often not distinguishable, and hence may be

of less practical interest (assuming η is distinguishable).

Theorem 3. Assume that (4.2) holds for some 1 ≤ i < j ≤ K and Bo
i contains

an open interval. If η̂(M,S) is a uniform minimum-variance unbiased estimator

of η, then for each s ∈ Bo
i ⊕ Xnj−ni

, η̂(i, t) = η̂(j, s) for all t ∈ Bo
i such that

s − t ∈ Xnj−ni
. Moreover, η̂ is not distinguishable.

For discrete variables, the ‘open interval’ requirement should be omitted.

Consequently, in extension to a result of Liu and Hall (1999) for sampling

normal variables with known variance, we have

Corollary 2. If the support X of (2.1) is R, then for any estimable non-constant

parameter function η, a uniform minimum-variance unbiased estimator does not

exist.
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Proof. Suppose η̂(M,S) is such an estimator. Since X = R implies Xn = R,

we have, for each 1 ≤ i < K, Bi ⊕XnK−ni
= R = XnK

. It follows from Theorem

3 that η̂(i, t) = η̂(K, s) for all t ∈ Bi and all s ∈ XnK
. Hence η̂ is a constant, a

contradiction to its unbiasedness.

5. Exponential Distributions and an Application to Clinical Trials

In this section, we investigate the completeness of the sufficient statistic for a

class of group sequential designs when sampling from an exponential distribution.

We first briefly describe a clinical trial example for which the exponential

distribution assumption of the outcome measurement is appropriate. A new

treatment for asthma using magnesium is being evaluated. Before a large Phase

III trial is carried out to compare it with the standard treatment, investigators

plan to conduct a Phase II study to assess the efficacy and feasibility of mag-

nesium. The primary clinical outcome is the forced expiratory volume (FEV),

measured by having the patient exhale into a spirometer which is calibrated to

measure the amount of air exhaled in one second. The measurements are as-

sumed to follow an exponential distribution. The study was designed to have

two stages, allowing early stopping of the trial if the observed mean FEV at the

first stage is too low.

This example involves group sequential designs for exponential distributions,

whose densities have the form (2.1) with h(x) = 1[0,∞)(x) and a(θ) = − log(−θ)

with θ < 0 ; hence hn+1(s) = 1[0,∞)(s) sn/n! . We confine consideration to three

types of boundaries.

Type 1. (upper-boundary) The first type are those designs having only an upper

boundary at each stage: Bk = [lk,∞) with lk > 0, 1 ≤ k < K and BK = [0,∞)

to ensure eventual stopping. Such a design may be appropriate when larger

values of observation indicate an adverse effect. In this case, completeness fails,

as argued in Case 2 of Section 4.

Type 2. (lower-upper-boundary) If a trial needs to be stopped early for either

large or small values of observations, then each stage of the design may have

both a lower and an upper boundary, that is, Bk = [l1k, u1k) ∪ [l2k,∞) with

l11 = 0, l1k < u1k < l2k for 1 ≤ k < K, and BK = [l1K ,∞). Boundaries being

reachable requires 0 = l11 < u11 = l12 < u12 = . . . = l1K−1 < u1K−1 = l1K . Now

u1K−1 < l2K−1 implies [l2K−1,∞) ⊕ [0,∞) = [l2K−1,∞) ⊂ [u1K−1,∞) = BK ,

and hence completeness fails by Theorem 2. This Type can be extended to allow

an additional inner stopping boundary, resulting in two continuation intervals;

the same conclusion holds.
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Type 3. (lower-boundary) Now each stage has only a lower boundary, that is

Bk = [lk, uk), starting with l1 = 0, and reachability requires

0 = l1 < u1 = l2 < u2 = . . . = lK−1 < uK−1 = lK < uK = ∞. (4.3)

The asthma clinical trial described above uses this type of design (with K = 2)

to allow early stopping for small values of observations. For this type of design,

condition (4.2) is obviously not satisfied. Indeed, we have the following result, in

contrast to the other two types of designs.

Theorem 4. Following a group sequential design for an exponential distribution

having lower boundaries only (Type 3), the sufficient statistic (M,S) is complete.

Consequently the Rao-Blackwell estimator η̂u(M,S) is the uniform minimum-

variance unbiased estimator of the estimable parameter function η = η(θ).

Computation of the estimator involves numerical evaluation of multiple in-

tegrals when M ≥ 3. For illustration, consider estimation of E(X) = −1/θ at

M = 1, 2, 3. The functions rk in (2.5) are given recursively by r1(s) = 1[0,u1)(s),

r2(s) =
1

hn2
(s)

∫ ∞

u1

hn1
(u)hm2

(s − u)du

= 1[u1,u2)(s)
(n2 − 1)!

sn2−1

∫ s

u1

un1−1(s − u)m2−1

(n1 − 1)!(m2 − 1)!
du,

r3(s) =
1

hn3
(s)

∫ ∞

u2

r2(u)hn2
(u)hm3

(s − u)du

= 1[u2,u3)(s)
(n3 − 1)!

sn3−1

∫ s

u2

r2(u)un2−1(s − u)m3−1

(n2 − 1)!(m3 − 1)!
du.

At M = 1, the Rao-Blackwell estimator of η is η̂(1, s) = s/n1. For M = 2, 3,

(3.2) yields

η̂(2, s) =
1

r2(s)hn2
(s)

∫ ∞

u1

η̂(1, u)r1(u)hn1
(s)hm2

(s − u)du

=
1

r2(s)hn2
(s)

∫ s

u1

un1(s − u)m2−1

(n1)!(m2 − 1)!
du,

η̂(3, s) =
1

r3(s)hn3
(s)

∫ ∞

u2

η̂(2, u)r2(u)hn2
(s)hm3

(s − u)du

=

∫ s

u2

η̂(2, u)r2(u)un2−1(s − u)m3−1du

∫ s

u2

r2(u)un2−1(s − u)m3−1du

.
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For k = 2, the integrals in rk(s) and η̂(k, s) are incomplete beta functions, com-

monly available in software packages, but η̂(3, s) will require a numerical inte-

gration, for both the numerator and denominator.

6. Summary and Discussion

We have investigated unbiased estimation following group sequential sam-

pling for distributions in a one-parameter exponential family. The restrictions

to bounded sequential sampling and to exponential family distributions allowed

us to utilize Laplace transforms and their inverses to obtain conditions for com-

pleteness of the sufficient statistic to fail. The latter restriction covers most

distributions in Lehmann and Stein (1950), but rules out distributions like the

rectangular distribution.

We showed that the sufficient statistic (M,S) possesses truncation-adaptable

properties, similar to completeness, and the Rao-Blackwell estimator (3.1) has

minimum variance among truncation-adaptable unbiased estimators. With com-

pleteness of the sufficient statistic, minimum variance among all unbiased estima-

tors is assured. We suspect that this estimator remains a strong candidate regard-

less of completeness. When completeness fails, the uniform minimum-variance

unbiased estimator, if it exists, may remain constant over an open interval, an

undesirable property when the parameter function of interest is distinguishable

(a monotone function, for example).

To what extent our results can be extended to other distributions and more

general types of stopping regions is not clear, as the Laplace transform methods

used in the paper are specific to the exponential family.

Lehmann and Stein (1950) found, for Bernoulli and Poisson distributions,

necessary and sufficient conditions for the sequential sampling scheme to be com-

plete. For exponential distributions, we found a sub-class of group sequential pro-

cedures that are complete (Section 5). It remains an unsolved problem to find a

necessary and sufficient condition for a general sequential sampling scheme to be

complete with a general distribution, within or beyond the exponential family.

As commented earlier in Section 3.1, computation of the unbiased estima-

tors can be complex and extensive, especially when K, the number of looks, is

relatively large (≥ 4). For normal distributions, these estimators are available in

the software S+SeqTrial by Emerson, Hesterberg and Bruce (2002). Extension

of this program to accommodate other distributions of the exponential family is

necessary. Note that the computation for K ≤ 3 is relatively simple and closed

forms are often available for K = 2. If the trial stops at a stage k ≥ 4, one can

approximate the unbiased estimators by retaining only the most recent one or

two stages and computing the estimators as if these were the only stages before

stopping. Some limited numerical results show this strategy to work well for
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normally distributed variables with various stopping boundaries (Hall, Ding and

Liu (2002)).

Appendix A. Proofs of Theorems

Proof of Theorem 1. Without ambiguity, we use the notation η̂ta(M,S) for

both the estimator (defined for s ∈ BM ) and its extension to s ∈ CM . By

definition, η̂ta(M,S) is unbiased for η under each truncated design Dk (k < K).

For each Dk, the density of (M,S) is still given by (2.6), except with Bk in the

indicator in rk(s) being replaced by Bk ∪ Ck = Ck−1 ⊕Xmk
. It follows that

k−1∑
i=1

∫
Bi

η̂ta(i, s)ri(s)fni,θ(s)ds +

∫
Bk∪Ck

η̂ta(k, s)rk(s)fnk,θ(s)ds = η(θ), (A.1)

with the sum term omitted when k = 1.

We derive recursive formulas for η̂ta by induction. Since D1 is a non-

sequential design with sample size n1, the completeness of Sn implies a unique

η̂ta(1, s) = η̂n1
(s) in (A.1).

Suppose η̂ta(j, s), s ∈ Bj ∪ Cj, j = 1, · · · , k < K, have been determined to

satisfy (A.1). Then η̂ta(k + 1, s) must satisfy the equation
∫
Bk+1∪Ck+1

η̂ta(k + 1, s)rk+1(s)fnk+1,θ(s)ds =

∫
Ck

η̂ta(k, s)rk(s)fnk,θ(s)ds,

which, from (2.3) and the convolution of Laplace transforms, becomes
∫
Bk+1∪Ck+1

η̂ta(k + 1, s)rk+1(s)hnk+1
(s) exp{sθ}ds

=

∫
Xmk+1

hmk+1
(s) exp{sθ}ds

∫
Ck

η̂ta(k, s)rk(s)hnk
(s) exp{sθ}ds

=

∫
Bk+1∪Ck+1

δ(k + 1, s) exp{sθ}ds,

where

δ(k + 1, s) =

∫
Ck

hmk+1
(s − u)η̂ta(k, u)rk(u)hnk

(u)du

=

∫
Xmk+1

hmk+1
(u)η̂ta(k, s − u)rk(s − u)hnk

(s − u)du.

By uniqureness of Laplace transforms, this leads to (3.2).

Since each step of the induction has only one solution, estimators satisfying

(A.1) are unique.
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Proof of Theorem 2. The theorem follows from the fact that a class of zero-

mean statistics can be constructed based on (4.2), as demonstrated below. Let

w(i, s) be such a function on Bi that takes the value 0 on Bi \ B
o
i , and define

w(j, s) = −1Bo
ij
(s)

1

rj(s)hnj
(s)

∫
Bo

i (s;j)
w(i, t)ri(t)hni

(t)hnj−ni
(s − t)dt

and

Bo
i (s; j) = Bo

i ∩ {t : s − t ∈ Xnj−ni
}, Bo

ij = Bo
i ⊕Xnj−ni

. (A.2)

Now consider Wo = wo(M,S) where, for s ∈ Bk, wo(k, s) = w(k, s) if k = i

or j and = 0 otherwise. Then Eθ(Wo) = 0 for θ in an open interval.

Proof of Theorem 3. An unbiased estimator η̂ has uniform minimum variance

among all unbiased estimators of η if and only if it is uncorrelated with every zero-

mean statistic (Lehmann and Casella (1998), Theorem 1.7). Thus for every zero-

mean Wo constructed above, Eθ(Wo η̂) = 0 for θ in an open interval which, along

with (2.3) and the uniqueness of Laplace transforms, yields, for each s ∈ Bo
ij ,

η̂(j, s)wo(j, s)rj(s)hnj
(s) = −

∫
Bo

i (s;j)
η̂(i, t)wo(i, t)ri(t)hni

(t)hnj−ni
(s − t)dt.

By construction of wo after (A.2) above, we have∫
Bo

i (s;j)
{η̂(j, s) − η̂(i, t)}w(i, t)ri(t)hni

(t)hnj−ni
(s − t)dt = 0 (A.3)

for every s ∈ Bo
ij and t ∈ Bo

i (s; j), and every function w(i, t) defined on Bo
i .

Setting w(i, t) = η̂(j, s) − η̂(i, t) in (A.3) hence yields η̂(j, s) = η̂(i, t) for every

s ∈ Bo
ij and t ∈ Bo

i (s; j).

We now show that η̂ is not distinguishable if Bo
i contains an open interval.

We first note that, if the distribution is absolutely continuous, then there exists at

least one s ∈ Bo
ij such that Bo

i (s; j) also contains an open interval I, since Xnj−ni

contains an open interval. Hence η̂ is constant on I, upsetting distinguishability.

If the distribution is discrete, then Bo
i contains a reachable point, say a (an

integer). Because Xnj−ni
is a set of (at least two) integers, {a}⊕Xnj−ni

has a one-

to-one mapping on Xnj−ni
. Therefore, for each s ∈ {a}⊕Xnj−ni

, s−a ∈ Xnj−ni
,

η̂(j, s) = η̂(i, a), again upsetting distinguishability.

Proof of Theorem 4. Let W = w(M,S) be such that Eθ(W ) = 0 for all θ < 0,

and write m′
k = nK − nk. Then, with Type 3 boundaries, (4.1) becomes

∫ ∞

l1K

wK(s) exp{θs}ds = −
K−1∑
k=1

exp{m′
ka(θ)}

∫ uk

lk

wk(s) exp{θs}ds,
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with wk being defined as in (4.1).

Apply (2.3) and the convolution of Laplace transforms to obtain

∫ ∞

l1K

wK(s) exp{θs}ds = −
K−1∑
k=1

∫ ∞

0
hm′

k
exp{θs}ds

∫ uk

lk

wk(s) exp{θs}ds

= −
K−1∑
k=1

∫ ∞

lk

w̃k(s) exp{θs}ds, (A.4)

where

w̃k(s) =

∫
{u: lk≤u≤uk,s−u≤0}

wk(u)hm′

k
(s − u)du =

∫ min(uk,s)

lk

wk(u)hm′

k
(s − u)du.

We first show that w(1, s) = 0 for all s ∈ B1 = [0, u1). Recall (5.1). By the

uniqueness of Laplace transforms, w̃1(s) = 0 for every 0 ≤ s ≤ l2 = u1, that is,

for every such s, ∫ s

0
w1(u)hm′

1
(s − u)du = 0. (A.5)

Repeatedly differentiating the left side of (A.5) up to m′
k times yields w1(s) = 0,

thus implying w(1, s) = 0.

Now, with the first term eliminated, the right side of (A.4) reduces to K − 2

terms. Using the above approach again, we can then show w(2, s) = 0 for every

s ∈ [l2, u2), and then go on to show sequentially that w(k, s) = 0 for 3 ≤ k ≤ K−1

for s ∈ [lk, uk). Hence w(K, s) = 0 for s ≥ lK .
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