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A NOTE ON MINIMAL SUFFICIENCY

J. E. Chacón, J. Montanero, A. G. Nogales and P. Pérez

Universidad de Extremadura

Abstract: This paper shows that the classes of sufficient and minimal sufficient σ-

fields are closed under products. The results are used to construct several examples

that throw some light on the study of the relationship between minimal sufficiency

and invariance, a problem posed in Hall, Wijsman and Ghosh (1965).
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1. Stability of Minimal Sufficiency under Products

From now on (Ω,A,P) will denote a statistical experiment, i.e., P is a family

of probability measures on the measurable space (Ω,A).

Let B be a sub-σ-field of A. Recall that B is said to be sufficient if ∩P∈P

P (A|B) 6= ∅, for every A ∈ A, where P (A|B), the conditional probability of A

given B, is the set of all real and B-measurable functions g : (Ω,B) → R such

that P (A ∩ B) =
∫

B
gdP , for every B ∈ B.

B is said to be minimal sufficient if it is sufficient and it is P-contained in

any other sufficient σ-field C, in the sense that, for every B-measurable set B

there exists a C-measurable set C such that the symmetric difference B4C is

a P-null set. In the dominated case it is known that there exists a privileged

dominating probability (i.e., a probability measure of the form P ∗ =
∑∞

n=1 cnPn

such that cn ≥ 0,
∑

n cn = 1, {Pn : n ∈ N} ⊂ P and P � P ∗, ∀P ∈ P); in this

case, a sub-σ-field is minimal sufficient if and only if it is the least σ-field making

measurable some versions of the densities dP/dP ∗, P ∈ P.

The σ-field B is said to be complete if every real and B-measurable statistic

g : (Ω,B) → R such that EP (g) = 0, for all P ∈ P, is P-equivalent to 0 (i.e.,

P (g 6= 0) = 0, ∀P ∈ P).

It is well known that every sufficient and complete σ-field is minimal suf-

ficient. Landers and Rogge (1976) shows the stability of the class of complete

σ-fields under products. These results can be found, for example, in Pfanzagl

(1994) or Lehmann (1986), where the reader is referred for other concepts and

results to be used below. Our theorem shows that the classes of sufficient and

minimal sufficient σ-fields exhibit the same property.
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Theorem 1. For 1 ≤ i ≤ n, let Bi be a sufficient (resp., minimal sufficient)

σ-field in the statistical experiment (Ωi,Ai,Pi). Then the product σ-field
∏n

i=1 Bi

is sufficient (resp., minimal sufficient) for the product statistical experiment

(

n
∏

i=1

Ωi,

n
∏

i=1

Ai,

n
∏

i=1

Pi

)

.

Proof. We write (Ω,A,P) = (
∏n

i=1 Ωi,
∏n

i=1 Ai,
∏n

i=1 Pi) and B =
∏n

i=1 Bi.

(i) (Sufficiency) Suppose that, for every 1 ≤ i ≤ n, Bi is sufficient for Ai. We

show that B is sufficient for A, i.e., for every A ∈ A, ∩P∈PP (A|B) 6= ∅. First,

consider the case where A is a measurable rectangle
∏n

i=1 Ai. By hypothesis, for

1 ≤ i ≤ n, there exists fAi
∈ ∩Pi∈Pi

Pi(Ai|Bi). We show that the B-measurable

map FA(ω1, . . . , ωn) :=
∏n

i=1 fAi
(ωi) is in ∩P∈PP (A|B), i.e., for every B ∈ B,

P (A ∩ B) =

∫

B

FAdP, ∀P ∈ P. (1)

Fubini’s theorem readily shows that this is true when B is a measurable rectangle.

The general case is obtained by proving that the class of all events B ∈ B that

satisfy (1) is a Dynkin class containing the measurable rectangles. To extend (1)

to any event A ∈ A, we take

C := {A ∈ A / ∃FA : (Ω,B) → R such that (1) holds for every B ∈ B}.

It is shown above that C contains the measurable rectangles. The proof that C is

a Dynkin class is an easy consequence of the properties of conditional probability.

(ii) (Minimal sufficiency) Now suppose that Bi is minimal sufficient for Ai,

1 ≤ i ≤ n. Since B is sufficient, it is enough to prove that B ⊂ S
P

for every

sufficient σ-field S ⊂ A, where S
P

denotes the completion of S with the P-null

sets of A.

Given 1 ≤ i ≤ n, fix Pj ∈ Pj for j 6= i, and write P ′
i := {P1}× · · ·×{Pi−1}×

Pi × {Pi+1} × · · · × {Pn}. We consider any sub-σ-field Di of Ai as a sub-σ-field

of A by identifying it with
∏n

i=1 Cj , where Cj = {∅,Ωj} if j 6= i, and Ci = Di

(in particular, the same notation Di is used for both σ-fields). Consequently, an

Ai-measurable function f(ωi) is identified with the map F (ω1, . . . , ωn) := f(ωi).

Suppose that we have proved that

Bi ⊂ S
P ′

i ∩Ai. (2)

Then B ⊂
∨n

i=1(S
P ′

i ∩ Ai) ⊂
∨n

i=1(S
P
∩ Ai) ⊂ S

P ⋂∨n
i=1 Ai = S

P
, where the

symbol ∨ refers to the least σ-field containing the union. Hence it is enough to
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show (2). For the sake of simplicity, we prove the case i = 1. Now Pj ∈ Pj,

j = 2, . . . , n, are supposed to be fixed.

For this, notice that S, being sufficient for P, is also sufficient for P ′
1, and

hence S
P ′

1 is sufficient for P ′
1.

Now, we show that A1 is also sufficient for P ′
1, i.e., for all A ∈ A there exists

an A1-measurable function fA such that

(

n
∏

j=1

Pj

)

(A ∩ C) =

∫

C

fAd
(

n
∏

j=1

Pj

)

, ∀C ∈ A1,∀P1 ∈ P1.

It is easy to show that, when A is the measurable rectangle A1 × · · · × An, the

A1-measurable map fA := IA1
· P2(A2) · · ·Pn(An) works. The proof is extended

to any event A ∈ A by showing that the class C of all events A ∈ A such that

∩P ′∈P ′

1
P ′(A|A1) 6= ∅ is a Dynkin class.

According to Heyer (1982, Theorem 5.5), S
P ′

1 ∩A1 is sufficient for (Ω,A,P ′
1)

and, by the identification we are making throughout the proof, it is also sufficient

for (Ω1,A1,P1).

Since B1 is minimal sufficient, we have that B1 ⊂ S
P ′

1 ∩A1, as desired.

Remarks. (1) The previous result rests strongly upon Theorem 5.5 of Heyer

(1982), whose proof is far from being trivial. For exponential statistical exper-

iments it is possible to find a simple proof of the closure of minimal sufficiency

under products, which is stated now in terms of statistics. First, we recall some

facts about exponential families. Let (Ω,A,P) be an exponential statistical ex-

periment. Hence, the densities of the probability measures of the family P with

respect to some σ-finite measure admit the expression

fP (x) = C(P ) · exp
{

m
∑

i=1

Qi(P )Ti(ω)
}

· h(ω), ω ∈ Ω,

where Q1, . . . , Qm : P → R and T1, . . . , Tm : (Ω,A) → R. It is known (see, for

example, Pfanzagl (1994)) that the m-dimensional statistic T = (T1, . . . , Tm),

which is sufficient in any case, is minimal sufficient if Q1, . . . , Qm are affinely

independent (this means that a0 = a1 = · · · = am = 0 if a0 +
∑m

i=1 aiQi(P ) = 0,

for all P ∈ P); we refer to this as an exponential statistical experiment with

affinely independent coefficients. Moreover, it is known that T is complete if the

set {(Q1(P ), . . . , Qm(P )) : P ∈ P} has non-empty interior in R
m, and that T is

not complete if Q1, . . . , Qm are polynomial dependent and the distributions of T

with respect to every P ∈ P are dominated by the Lebesgue measure in R
m (see

Wijsman (1958)). Now we are prepared for the proof.
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Let (Ω,A,P) and (Ω′,A′,P ′) be two exponential statistical experiments with

affinely independent coefficients. With obvious notations, if

a0 +
m

∑

i=1

aiQi(P ) +
m′

∑

i′=1

a′i′Q
′
i′(P

′) = 0, ∀P ∈ P,∀P ′ ∈ P ′,

then, for every P ∈ P, we have a0 +
∑m

i=1 aiQi(P ) = 0 and a′1 = · · · = a′m′ = 0

by the affine independence in the second experiment; from this and the affine

independence in the first one, we also obtain a0 = a1 = · · · = am = 0. This

shows that the product experiment (Ω×Ω′,A×A′,P×P ′) is also an exponential

statistical experiment with affinely independent coefficients.

(2) Andersen (1967), in a different context and under much more restrictive

hypotheses, also deals with the problem solved by the theorem above.

2. Minimal Sufficiency and Invariance

First, let us briefly recall the definitions of some well known concepts of

invariance. A transformation on (Ω,A,P) is a bimeasurable bijection from (Ω,A)

onto itself. Let G be a group of transformations on (Ω,A); we say that the

statistical experiment is G-invariant (resp., strongly G-invariant) if P g ∈ P (resp.,

P g = P ) for every P ∈ P and every g ∈ G, where P g denotes the probability

distribution of g with respect to P , i.e., P g(A) := P (g−1(A)), for A ∈ A. An

event A ∈ A is said to be G-invariant (resp., almost-G-invariant) if g−1(A) = A

(resp., if g−1(A) differs from A in a P-null set); we write AG (resp., AA) for the

σ-field of all G-invariant (resp., almost-G-invariant) events. A sub-σ-field B of A
is said to be G-stable if g−1(B) ⊂ B, for every g ∈ G.

For the study of the relationship between sufficiency and invariance we refer

to Hall, Wijsman and Ghosh (1965) (see also Berk (1972), Nogales and Oyola

(1996) and Berk, Nogales and Oyola (1996)), whose main result is the following.

Theorem 2. (Hall, Wijsman and Ghosh (1965)) Let B be a G-stable and suffi-

cient σ-field. If B ∩ AA is P-contained in B ∩ AG, then B ∩ AG is sufficient for

AG.

They also consider the following question: if G is a group of transformations

leaving invariant the statistical experiment (Ω,A,P), and B is a G-stable and

minimal sufficient σ-field, is B ∩ AG minimal sufficient for AG? They solve this

question in the negative by means of the next example. It is noted there that

the answer is positive for sufficiency and completeness.

Example 1. (Hall, Wijsman and Ghosh (1965)) The statistical experiment

(Rn,Rn, {N(cσ, σ2)n : σ > 0}), corresponding to a sample of size n of a nor-

mal distribution with known coefficient of variation, remains invariant under
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the group G := {gk : k > 0}, where gk(x1, . . . , xn) := (kx1, . . . , kxn). It is

well known that (X̄, S) is a minimal sufficient statistic for this experiment and

that T := (X1/Xn, . . . , Xn−1/Xn, sign(Xn)) is a G-invariant maximal statistic.

Hence, AG is the induced σ-field T−1(Rn) of T . It is readily shown that the

σ-field B induced by (X̄, S) is G-stable and that the statistic X̄/S induces the

σ-field B ∩ AG. But B ∩ AG is not minimal sufficient for AG, as this σ-field is

ancillary and, hence, the trivial σ-field {∅, Rn} is sufficient for it.

Here we give an example showing that the answer to the above question in

the discrete case is also negative.

Example 2. Let Ω = {1, 2, 3, 4, 5, 6}, A be the set of all subsets of Ω and

P := {P1, P2}, where P1 := (1/6)(ε1 + ε2) + (1/4)(ε3 + ε4) + (1/12)(ε5 + ε6) and

P2 := (1/12)(ε1 + ε2) + (1/4)(ε3 + ε4) + (1/6)(ε5 + ε6), where εi stands for the

probability measure degenerate at {i}. Let g be the permutation (6, 5, 4, 3, 2, 1),

Id be the identity map on Ω and G := {Id, g}. The least σ-field B containing the

sets {1, 2}, {3, 4} and {5, 6} is minimal sufficient, since P ∗ = (1/2)(P1 + P2) is a

privileged dominating probability and

dP1

dP ∗
=

4

3
I{1,2} + I{3,4} +

2

3
I{5,6} and

dP2

dP ∗
=

2

3
I{1,2} + I{3,4} +

4

3
I{5,6}.

B is also G-stable and non-complete (take a non-null function f : Ω → R such

that f(1) = f(2) = f(5) = f(6) = 1 and f(3) = f(4) = −1). AG is the least

σ-field containing the sets {1, 6}, {3, 4} and {2, 5}. B ∩ AG is the least σ-field

containing the set {3, 4} but it is not minimal sufficient, since AG is ancillary

and, hence, the trivial σ-field {∅,Ω} is sufficient for it.

In the light of the two examples below, we can pose the question if only non-

trivial ancillary invariant σ-fields can be exhibited as counterexamples. That is,

if AG is not ancillary and B is minimal sufficient, is B ∩ AG minimal sufficient

for AG? To show that the answer remains negative, we use Theorem 1.

Example 3. Let (Ω′,A′,P ′) (resp., (Ω′′,A′′,P ′′)) be a dominated statistical

experiment invariant under the action of a group of transformations G′ (resp.,

G′′) and B′ (resp., B′′) be a G′-stable and minimal sufficient (resp., G′′-stable and

minimal sufficient) sub-σ-field of it. Let us suppose that B ′ ∩A′
G′ is not minimal

sufficient for A′
G′ , with obvious notations, because A′

G′ is ancillary and B′ ∩A′
G′

is not P ′-equivalent to the trivial σ-field.

Let (Ω,A,P) = (Ω′,A′,P ′) × (Ω′′,A′′,P ′′), B = B′ × B′′ and G = {(g′, g′′) :
g′ ∈ G′, g′′ ∈ G′′}, where (g′, g′′)(ω′, ω′′) = (g′(ω′), g′′(ω′′)). Since (Ω,A,P) is

G-invariant and B is G-stable and minimal sufficient by Theorem 1, it is enough

to take the starred objects in such a way that the following propositions hold:

(i) (A′×A′′)G = A′
G′ ×A′′

G′′ , (ii) B∩AG = (B′∩A′
G′)× (B′′∩A′′

G′′) and (iii) A′′
G′′
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is not ancillary. In this case, AG is not ancillary, because A′′
G′′ is not; B ∩ AG is

not minimal sufficient since ({∅,Ω′}×B′′)∩AG is sufficient for AG, as Theorems

1 and 2 show.

Take (Ω′,A′,P ′) as the statistical experiment (Ω,A,P) of Example 2, and

let Ω′′ = {a, b, c}, A′′ be the set of all subsets of Ω′′ and P ′′ = {P ′′
1 , P ′′

2 }, where

P ′′
1 = (1/4)(εa + εb) + (1/2)εc and P ′′

2 = (1/5)(εa + εb) + (3/5)εc. Let B′′ be the

smallest σ-field containing the set {a, b} and G′′ := {Id′′, g′′}, where Id′′ denotes

the identity map on Ω′′ and g′′ the permutation (b, a, c). Then A′′
G′′ = B′′ is

minimal sufficient and (i)–(iii) are readily verified:

(i) It is clear that (A′×A′′)G ⊃ A′
G′ ×A′′

G′′ , since (g′, g′′)(A′×A′′) ⊂ A′×A′′

for every g′, g′′, A′, A′′. Moreover, as A′
G′ × A′′

G′′ = σ({1, 6} × {a, b}, {1, 6} ×

{c}, {3, 4} × {a, b}, {3, 4} × {c}, {2, 5} × {a, b}, {2, 5} × {c}), it is easy to verify

that, if A ∈ (A′ ×A′′)G and (x, y) ∈ A, the atom of (x, y) in A′
G′ ×A′′

G′′ is also

contained in A, which shows that A ∈ A′
G′ ×A′′

G′′ .

(ii) It is easy to see that B ∩ AG ⊃ (B′ ∩ A′
G′) × (B′′ ∩ A′′

G′′). For the

reverse inclusion, it is enough to prove that, if B ∈ B ∩ AG and (x, y) ∈ B for

x ∈ {1, 2, 5, 6} and y ∈ {a, b}, then {1, 2, 5, 6} × {a, b} ⊂ B; but this follows from

B ∈ B′×B′′ = σ({1, 2}×{a, b}, {3, 4}×{a, b}, {5, 6}×{a, b}, {1, 2}×{c}, {3, 4}×

{c}, {5, 6} × {c}) and B ∈ A′
G′ ×A′′

G′′ = σ({1, 6} × {a, b}, {3, 4} × {a, b}, {2, 5} ×

{a, b}, {1, 6} × {c}, {3, 4} × {c}, {2, 5} × {c}).

(iii) A′′
G′′ is not ancillary since it is sufficient and P ′′ is not a singleton.

The next example shows a positive and non-trivial situation where minimal

sufficiency is inherited after an invariance reduction, i.e., a case where B is min-

imal sufficient, G-stable, non-complete while B ∩ AG is minimal sufficient for

AG.

Example 4. Let (Ω,A,P), B and Id be as in Example 2. Consider the group

Γ := {Id, γ}, γ being the permutation (2, 1, 3, 4, 6, 5). It is clear that Γ leaves

invariant this statistical experiment. Moreover B is minimal sufficient, Γ-stable

and non-complete, and we have that AΓ is the σ-field generated by the sets {1, 2},

{3}, {4} and {5, 6}. Since B ⊂ AΓ, B = B ∩AΓ is minimal sufficient for AΓ.

Remark. The example above is, in fact, more general. It is known that if

(Ω,A,P) is dominated and strongly G-invariant and there exists a minimal suf-

ficient sub-σ-field B, then B ⊂ AA; see, for example, Ghosh (1988, Chap.VIII).

Hence, in this case, minimal sufficiency is trivially inherited after an invariance

reduction (when it is understood as restricting to the almost invariant σ-field,

instead of to the invariant one).

Theorem 1 above allows us to construct a positive and non-trivial example

where the condition B ⊂ AG is not verified.
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Example 5. Let (Ω,A,P), B and Γ be as in the previous example. Let Ω′ =

{a, b, c}, A′ be the σ-field of all its subsets, P ′
1 = εa, P ′

2 = εb and P ′
3 = εc.

B′ = A′ is a sufficient and complete σ-field and hence is minimal sufficient. Let

Γ′ = {Id′, γ′}, where Id′ is the identity map on Ω′ and γ′ is the permutation

(b, a, c). Then A′
Γ′ = σ({a, b}). The product experiment remains invariant under

the action of the group Γ × Γ′ and the σ-field of the invariant events is (A ×
A′)Γ×Γ′ = AΓ×A′

Γ′ . B×B′ is a Γ×Γ′-stable, minimal sufficient and non-complete

σ-field that does not contain nor is contained in (A×A′)Γ×Γ′ . Moreover, it holds

that (B × B′) ∩ (A×A′)Γ×Γ′ = (B ∩AΓ) × (B′ ∩A′
Γ′). Since B′ ∩A′

Γ′ is minimal

sufficient, Theorem 1 shows that (B×B ′)∩ (A×A′)Γ×Γ′ is minimal sufficient for

(A×A′)Γ×Γ′ .
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