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Abstract: In this paper we consider S-estimators for multivariate regression. We

study the robustness of the estimators in terms of their breakdown point and in-

fluence function. Our results extend results on S-estimators in the context of uni-

variate regression and multivariate location and scatter. Furthermore we develop

a fast and robust bootstrap method for the multivariate S-estimators to obtain in-

ference for the regression parameters. Extensive simulation studies are performed

to investigate finite-sample properties. The use of the S-estimators and the fast,

robust bootstrap method is illustrated on some data.
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1. Introduction

Consider the multivariate regression model given by y = Btx + ε where x

is the p-variate predictor and y the q-variate response. It is assumed that the

q-variate error term ε has an elliptically contoured density with zero center and

scatter parameter Σ ∈ PDS(q). The unknown parameters B and Σ are to be

estimated from an observed data set Zn = {zi := (xt
i,y

t
i)

t, i = 1, . . . , n} ⊂ IRp+q.

We assume that the errors εi are i.i.d. and independent of the predictors. Note

that this model generalizes the univariate regression model (q = 1) as well as the

multivariate location/scatter model (p = 1; xi = 1 for i = 1, . . . , n).

The classical estimator for this model is the least squares estimator (see e.g.,

Johnson and Wichern (1988, p.301)). It is well known however that this estimator

is extremely sensitive to outliers in the data. Therefore, several robust alterna-

tives have been investigated in the literature, although most of the research has

been limited to the univariate regression case. An overview of strategies for ro-

bust multivariate regression is given by Maronna and Yohai (1997) in the context

of simultaneous equations models. An M-type method was proposed by Koenker

and Portnoy (1990), but their estimator lacks affine equivariance. Methods based

on the robust estimation of the location and scatter of the joint distribution of

the (x,y) variables have been introduced by Rousseeuw et al. (2004) and Ollila et

al. (2002, 2003). Agulló et al. (2002) investigated a multivariate generalization

of the least trimmed squares estimator (MLTS).



982 STEFAN VAN AELST AND GERT WILLEMS

In this paper we investigate S-estimators for multivariate regression. S-

estimators for univariate multiple regression were introduced by Rousseeuw and

Yohai (1984), and S-estimators for multivariate location and scatter have been

studied by Davies (1987), Rousseeuw and Leroy (1987) and Lopuhaä (1989).

Bilodeau and Duchesne (2000) introduced S-estimators in the context of Seem-

ingly Unrelated Regression, which encompasses the multivariate regression model

as a special case.

We study the robustness of these S-estimators and also develop a method

for robust inference concerning the regression parameters B. The standard errors

of the S-estimates can be approximated by using their asymptotic variances (see

Section 3). However, the asymptotic results only hold for some specified under-

lying model distribution such as the central normal model. They are not likely to

yield accurate approximations in situations with outliers where robust estimators

are actually recommended. The sampling distribution of S-estimators can also

be estimated by the bootstrap method (Efron (1979)), but performing classical

bootstrap on S-estimators can be extremely time-consuming and suffers from a

lack of robustness. Recently Salibian-Barrera and Zamar (2002) introduced a

fast and robust bootstrap method for MM-estimators of univariate regression.

We adapt their method to S-estimators of multivariate regression.

The rest of the paper is organized as follows. In Section 2 we define the mul-

tivariate regression S-estimators, investigate their breakdown points and derive

their influence functions. The asymptotic variance and corresponding efficiency

results are given in Section 3. In Section 4 we describe the fast and robust

bootstrap method for S-estimators and investigate its performance through sim-

ulations. Some examples are presented in Section 5, some remarks in Section 6.

Proofs are omitted and can be found in Van Aelst and Willems (2004).

2. Definitions and Robustness Properties

The S-estimators for multivariate regression are a natural extension of the

corresponding estimators for univariate regression and multivariate location and

scatter.

Definition 1. Let Zn = {(xt
i,y

t
i)

t; i = 1, . . . , n} ⊂ IRp+q with n ≥ p + q. The S-

estimators of multivariate regression (B̂n, Σ̂n) minimize the determinant det(C)

subject to

1

n

n∑

i=1

ρ
(
[(yi − Btxi)

tC−1(yi − Btxi)]
1

2

)
= b

among all (B,C) ∈ IRp×q × PDS(q).

The constant b can be chosen such that b = EF [ρ(‖r‖)], which assures con-

sistency at the model with error distribution F . In order to obtain positive



MULTIVARIATE REGRESSION S-ESTIMATORS 983

breakdown robust estimates, the function ρ is assumed to satisfy the following

properties:

1. ρ is symmetric, twice continuously differentiable and ρ(0) = 0;

2. ρ is strictly increasing on [0, c] and constant on [c,∞) for some c < ∞.

A popular choice is Tukey’s biweight ρ-function:

ρ(t) =

{
t2

2 − t4

2c2
+ t6

6c4
, |t| ≤ c,

c2

6 , |t| ≥ c.
(2.1)

Following Lopuhaä (1989), multivariate regression S-estimators satisfy a first

order condition given by the following equations:

1

n

n∑

i=1

u(di)xi(yi − Btxi)
t = 0, (2.2)

1

n

n∑

i=1

{
q u(di)(yi − Btxi)(yi − Btxi)

t − v(di)C
}

= 0, (2.3)

where d2
i = (yi−Btxi)

tC−1(yi−Btxi), u(t) = ρ′(t)/t and v(t) = ρ′(t)t−ρ(t)+b.

To investigate the global robustness of the S-estimators, we compute their

breakdown point. For a given data set Zn the finite-sample breakdown point

(Donoho and Huber (1983)) of a regression estimator Tn is defined as the smallest

fraction of observations of Zn that need to be replaced to carry Tn beyond all

bounds. Formally,

ε∗n(Tn,Zn) = min{m

n
: sup

Z′

n

‖Tn(Zn) − Tn(Z ′

n)‖ = ∞},

where the supremum is over all possible collections Z ′
n that differ from Zn in at

most m points. The breakdown point of a covariance estimator is the smallest

fraction of outliers that can make the first eigenvalue arbitrarily large or the last

eigenvalue arbitrarily small.

The breakdown point of multivariate regression S-estimators is given below.

This result extends the results for multivariate location and scatter given by

Lopuhaä and Rousseeuw (1991) and the results for univariate regression given

by Rousseeuw and Yohai (1984).

Theorem 1. Let Zn ⊂ IRp+q. Denote by k(Zn) the maximal number of ob-

servations lying on the same hyperplane of IRp+q, and take r := b/ρ(∞). If

k(Zn) < dn − nre,

ε∗n(B̂n,Zn) = ε∗n(Σ̂n,Zn) =
1

n
min(dnre, dn − nre − k(Zn)).



984 STEFAN VAN AELST AND GERT WILLEMS

The maximal breakdown point is achieved when r = (n − k(Zn))/(2n), in

which case ε∗n = d(n−k(Zn))/2)e/n. If we assume that limn→∞ k(Zn)/n = 0, we

can define the asymptotic breakdown point as ε∗ = limn→∞ ε∗n. The condition

limn→∞ k(Zn)/n = 0 is satisfied when the data are in general position, which

means that k(Zn) = p + q − 1 (Rousseeuw and Leroy (1987, p.117)). For the

S-estimators we then have that ε∗ = r = b/ρ(∞), if r ≤ 0.5. Hence, in order

to achieve a specified breakdown point ε∗ as well as consistency at the normal

model, the constant c in Tukey’s biweight (2.1) should be chosen as the solution

to EΦ[ρ(‖r‖)]/(c2/6) = ε∗. Here, Φ indicates the multivariate standard normal

distribution. It is easy to see that such a solution for c can always be found.

Furthermore, note that the value of c only depends on the dimension q of the

responses. In the remainder of this paper we refer to the 25% and 50% breakdown

S-estimators without explicitly mentioning that we use the Tukey biweight and

have chosen c and b in order to obtain consistency at the normal model.

In order to obtain the influence function we first introduce the functional

form of the multivariate regression S-estimators. Let H denote the class of all

distributions on IRp+q.

Definition 2. The S-functional S : H → (IRp×q × PDS(q)) is the solution

S(H) = (BS(H),ΣS(H)) to the problem of minimizing det(C), subject to

∫
ρ
(
[(y − Btx)tC−1(y − Btx)]1/2

)
dH(z) = b,

among all (B,C) ∈ IRp×q × PDS(q).

The influence function of a functional T at a distribution H measures the

effect on T of an infinitesimal contamination at a single point (Hampel et al.

(1986)). It can be viewed as a measure of local robustness, in contrast with

the global robustness measured by the breakdown point. If we denote the point

mass at z = (xt,yt)t by ∆z and consider the contaminated distribution Hε,z =

(1 − ε)H + ε∆z, then the influence function is given by

IF (z;T,H) = lim
ε→0

T (Hε,z) − T (H)

ε
=

∂

∂ε
T (Hε,z)|ε=0.

Now consider a model with unimodal elliptically symmetric error distribution

FΣ. That is, errors have a density function of the form fΣ(u) = det(Σ)−1/2g(ut

Σ−1u), where Σ ∈ PDS(q) and the function g has a strictly negative derivative.

Note that, provided it exists, the covariance matrix of FΣ equals Σ except for a

multiplicative constant. It can easily be seen that the S-estimators are equivariant

under regression transformations and affine transformations of the regressors or

responses. Therefore it suffices to compute the influence function at a distribution
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H0 of z = (xt,yt)t for which B = 0, and at the error distribution F0 = FIq
. Since

B = 0 the error distribution is also the distribution of y.

Theorem 2. For a model H0 as described above, the influence functions of the

S-estimators for multivariate regression are given by

IF(z;BS ,H0) = EH0
[xxt]−1xIF(y;Mq, F0)

t, (2.4)

IF(z; ΣS ,H0) = IF(y;Sq, F0), (2.5)

with (Mq, Sq) the q-dimensional S-estimators for location and scatter.

The influence functions of (Mq, Sq) are given in Lopuhaä (1989). In partic-

ular, for the location part we have that

IF(y;Mq , F0) =
1

β
ρ′(‖y‖) y

‖y‖ ,

where β = EF0
[(1 − 1/q)u(‖y0‖) + (1/q)ρ′′(‖y0‖)] and u(t) = ρ′(t)/t as before.

For the covariance matrix, Lopuhaä (1989) obtained

IF(y;Sq, F0) =
1

γ1
ρ′(‖y‖)‖y‖q

( yyt

‖y‖2
− 1

q
Iq

)
+

2

γ3
(ρ(‖y‖) − b)Iq,

where γ1 = EF0
[ρ′′(‖y0‖)‖y0‖2 + (q + 1)ρ′(‖y0‖)‖y0‖]/(q + 2) and γ3 = EF0

[ρ′(‖y0‖)‖y0‖]. Note that the influence function of BS is bounded in y but un-

bounded in x, so good leverage points can have a high effect on the S-estimator.

The latter can also be seen from Figure 2.1 where we plotted the influence func-

tion at the normal model in the case of univariate simple regression with intercept

(q = 1, p = 2).

PSfrag replacements

IF
(x

,y
)

y x

-10

-5

-5 -5

-2

-1

-0.04

-0.02

-0.1

0.02

0.04

0.06

0.08

0.0

0.1

0.12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0
0

1

1.5

2

2.5

3

3.5

4

4.5

5

5
5

6

7

8

9

10

15

20

25

30

35

40

45

50

60

69

70

80

90

100

200

25% breakdown S

50% breakdown S
30% bad leverage points

15% bad leverage points

30% vertical outliers

15% vertical outliers

Normal errors

T

3

errors

Mahalanobis distance of residual

Mahalanobis distance of X

Robust distance of residual

Robust distance of X

Classical bootstrap

Fast bootstrap

Mahalanobis distance of residuals

Robust distance of residuals

PSfrag replacements

IF
(x

,y
)

y x

-10

-5 -5

-2

-1

-0.04

-0.02

-0.1

0.02

0.04

0.06

0.08

0.0

0.1

0.12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0
0

1

1.5

2

2.5

3

3.5

4

4.5

5
5

6

7

8

9

10

15

20

25

30

35

40

45

50

60

69

70

80

90

100

200

25% breakdown S

50% breakdown S
30% bad leverage points

15% bad leverage points

30% vertical outliers

15% vertical outliers

Normal errors

T

3

errors

Mahalanobis distance of residual

Mahalanobis distance of X

Robust distance of residual

Robust distance of X

Classical bootstrap

Fast bootstrap

Mahalanobis distance of residuals

Robust distance of residuals

Figure 2.1. Influence function at the normal model of the 25% breakdown

biweight S-estimator for simple regression: slope (left) and intercept (right).
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3. Efficiency

As noted by Bilodeau and Duchesne (2000), the multivariate regression

S-estimators satisfy first-order conditions of M-estimators as defined in Huber

(1981). Hence we conclude that the estimators are asymptotically normal with

convergence rate n1/2 (by Theorem 3.1, Chap. 6 of Huber (1981)).

The asymptotic variance-covariance matrix of BS at the model distribution

H0 can be computed by means of the influence function, as

ASV (BS ,H0) = EH0
[IF (z;BS ,H0) ⊗ IF (z;BS ,H0)

t]

(see Hampel et al. (1986, pp.85 and 226). Here ⊗ denotes the Kronecker product.

Denoting Σx := EH0
[xxt], it follows from (2.4) that

ASV (BS ,H0) = Kpq(ASV (Mq, F0) ⊗ Σ−1
x ), (3.1)

where Kpq is the commutation matrix, the permutation matrix satisfying Kpq

vec(At) = vec(A) where A is a p× q matrix and vec is the operator which stacks

the columns of a matrix on top of each other.

From (3.1) we find that the asymptotic variance of (BS)jk is

ASV ((BS)jk,H0) = (Σ−1
x

)jjASV ((Mq)k, F0),

while the asymptotic covariances, for j 6= j ′, are given by

ASC((BS)jk, (BS)j′k,H0) = (Σ−1
x

)jj′ASV ((Mq)k, F0),

and all other asymptotic covariances (for k 6= k ′) equal 0. The asymptotic

variances of Mq can also be found in Lopuhaä (1989). We now compute the

asymptotic relative efficiency of S-estimators with respect to the least squares

(LS) estimator. Due to affine equivariance, we can assume without loss of gen-

erality that Σx = Ip. In this case all asymptotic covariances are zero, and

ASV ((BS)jk,H0) = ASV ((Mq)k, F0). We then obtain

ARE((BS)jk,H0) =
ASV ((BLS)jk,H0)

ASV ((BS)jk,H0)
=

ASV ((X)k, F0)

ASV ((Mq)k, F0)

= ARE((Mq)k, F0)

for all j = 1, . . . , p and k = 1, . . . , q. Hence the asymptotic relative efficiency of

a multivariate regression S-estimator does not depend on the dimension p of the

carriers nor on their distribution, but only on the dimension q and distribution

of the errors. Table 3.1 lists some relative efficiencies for the normal distribution,

as well as for multivariate Student distributions Tν with degrees of freedom ν = 3
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and ν = 8. Note that for the functional X , corresponding to the empirical mean,

ASV ((X)k,Φ) = 1 and ASV ((X)k, Tν) = ν/(ν − 2). We see that the asymptotic

efficiency of S-estimators at the normal model is quite high and increases with the

dimension q. Moreover, at the heavy tailed Student distributions the S-estimators

are generally even more efficient than the classical least squares estimator. It is

also interesting to note that, while at the normal model the 25% breakdown

S-estimator is always more efficient than its 50% counterpart, this is not true

anymore at the Student distributions. When the number of response variables

increases, the 50% breakdown estimator gains efficiency with respect to the 25%

estimator, and eventually becomes more efficient.

Table 3.1. Asymptotic relative efficiencies for (BS)jk w.r.t. the LS estimator

at normal and Student distributions.

q = 1 q = 2 q = 3 q = 5 q = 10 q = 30 q = 50

Φ 0.759 0.912 0.951 0.976 0.990 0.997 0.998
ε∗ = 25% T8 0.894 1.059 1.108 1.141 1.162 1.173 1.174

T3 1.738 2.035 2.137 2.222 2.289 2.336 2.346

Φ 0.287 0.580 0.722 0.846 0.933 0.981 0.989

ε∗ = 50% T8 0.390 0.739 0.897 1.038 1.153 1.228 1.250

T3 0.904 1.601 1.903 2.177 2.410 2.583 2.620

We conclude this section with some finite-sample relative efficiencies, ob-

tained through simulation. For several dimensions and sample sizes, we gener-

ated m = 1, 000 random samples with both the errors and the predictors drawn

from the standard multivariate normal distribution. An intercept term was in-

cluded as well. The entries in the matrix B were all set equal to 1, but this

particular choice does not matter due to affine equivariance. For each sample we

computed the S-estimates. The Monte Carlo variance of B̂n is measured here as

n ave
j,k

(V̂ar((B̂n)jk)) for j = 1, . . . , p and k = 1, . . . , q, where V̂ar((B̂n)jk) is the

empirical variance over the m estimates. The finite-sample relative efficiency is

then estimated by the inverse of this variance estimate for the normal distribu-

tion, and by ν/(ν − 2) over the variance estimate for the Tν distribution. Table

3.2. lists finite-sample relative efficiencies for the 25% breakdown S-estimator for

the normal and T3 model. The results for q = 2 and q = 5 are, respectively, ob-

tained from simulations using the multivariate regression model with p = 2 and

p = 5. We see that the finite-sample relative efficiencies are generally slightly

lower than the asymptotic relative efficiencies. Results for the 50% breakdown

estimator were found to be similar.
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Table 3.2. Finite-sample relative efficiencies for the 25% breakdown S-
estimator B̂n w.r.t. the LS estimator at the normal and T3 distribution.

n = 30 n = 50 n = 100 n = 200 n = ∞
q = 2 0.840 0.875 0.938 0.908 0.912

Φ
q = 5 0.778 0.865 0.917 0.956 0.976

q = 2 1.704 1.889 2.005 2.003 2.035
T3

q = 5 1.392 1.706 1.887 1.951 2.222

4. Robust Inference

4.1. Fast and robust bootstrap

We now consider inference about the regression parameter B. Inference can

be based on the asymptotic variance, but this is not expected to give accurate

results when the actual errors are not symmetric, e.g., when outliers are present.

An alternative approach is given by the nonparametric bootstrap (Efron (1979))

which is, unlike the asymptotic approach, not particularly based on stringent

distributional assumptions. The use of the bootstrap method is increasing enor-

mously nowadays, due to increasing computer power. The basic idea is to gener-

ate a large number of samples from the original data set, and to recalculate the

estimates for each resample. Then the distribution of, e.g.,
√

n(B̂n − B) can be

approximated by the sample distribution of
√

n(B̂∗
n − B̂n), where B̂∗

n is the value

of the recalculated estimator. However, there are two important drawbacks of

the classical bootstrap method applied to S-estimators. First, although Ruppert

(1992) provided a reasonably fast algorithm to compute S-estimators, they still

are computer intensive. When the classical bootstrap is used to obtain percentile

confidence intervals, for example, many resamples are to be generated and the

S-algorithm has to be applied on each of those bootstrap samples. The mini-

mum number of resamples needed for sufficiently accurate confidence intervals

is often taken to be about 1,000, and this number should be adjusted exponen-

tially when interested in the joint distribution of several parameters. Hence, the

method may not be feasible due to the computational cost, especially for high

dimensional data.

The second problem that arises concerns the robustness of the method. Even

if the estimator is resistant to the proportion of outlying observations in the orig-

inal data set, when taking a bootstrap sample this proportion can become high

enough to break down the estimator for that particular resample. Consequently,

inference based on the resulting bootstrap distribution can break down even if

the S-estimate in the original sample does not. Singh (1998) and Stromberg

(1997) quantified this problem in the context of robust location estimation.

Salibian-Barrera and Zamar (2002), in the context of MM-estimators for

univariate regression, proposed a procedure to compute bootstrap values of B̂∗
n
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without explicitly calculating the actual MM-estimate each time. For each resam-
ple they compute an approximation of B̂∗

n based on a fixed-point representation of

the estimator. Using this approximation rather than the actual MM-algorithm
in each bootstrap sample results in a considerable gain in computation time.

Furthermore, since outliers are downweighted no matter how many outliers are
present in a resample, the method is more robust than the classical bootstrap.

Their method can, in principle, be used for any estimator that can be written as
a smooth fixed-point equation, such as S-estimators.

Suppose an estimator θ̂ of the parameter θ can be represented by g(θ̂) = θ̂,
where the function g involves the sample Zn. Then, using the smoothness of g,
we can calculate a Taylor expansion about the limiting value of the estimate θ̂,

θ̂ = g(θ) + ∇g(θ)(θ̂ − θ) + R, (4.1)

where R is the remainder term and ∇g(·) is the matrix of partial derivatives.
Supposing that the remainder term is small, (4.1) can be rewritten as

√
n(θ̂−θ) ≈

[I − ∇g(θ)]−1√n(g(θ) − θ). Taking bootstrap equivalents on both sides and
estimating the matrix [I−∇g(θ)]−1 by [I−∇g(θ̂)]−1 yields

√
n(θ̂

∗ − θ̂) ≈ [I−∇g(θ̂)]−1√n(g∗(θ̂) − θ̂), (4.2)

where the function g∗ is the function g computed with a bootstrap sample instead
of the original sample Zn. For each bootstrap sample, we can then calculate the

right-hand side of (4.2) instead of the left-hand side. Hence, we approximate the
actual estimator in each sample by computing the function g∗ in θ̂ and applying

a linear correction.
We now apply this procedure to our multivariate regression S-estimators.

We rewrite the estimating equations (2.2) and (2.3) in the following way:

B̂n = An(B̂n, Σ̂n)−1Bn(B̂n, Σ̂n), (4.3)

Σ̂n = Vn(B̂n, Σ̂n) + wn(B̂n, Σ̂n)Σ̂n, (4.4)

where

An(B,C) =

n∑

i=1

u(di)xix
t
i (p × p), (4.5)

Bn(B,C) =

n∑

i=1

u(di)xiy
t
i (p × q), (4.6)

Vn(B,C) =
1

nb

n∑

i=1

q u(di)(yi − Btxi)(yi − Btxi)
t (q × q), (4.7)

wn(B,C) =
1

nb

n∑

i=1

w(di) (1 × 1), (4.8)
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and w(t) = ρ(t) − ρ′(t)t. Note that there are different ways to transform (2.2)

and (2.3) into fixed-point equations. We prefer (4.3) and (4.4) because other

formulations turned out to be numerically unstable in certain situations.

Now let

θ :=

(
vec(B)

vec(Σ)

)
and g

(
vec(B)

vec(C)

)
:=

(
vec(A−1

n Bn)

vec(Vn + wnC)

)
.

Expressions for the partial derivatives of this function, contained in the matrix

∇g(·), are given in Van Aelst and Willems (2004).

For a bootstrap sample {(x∗

i ,y
∗

i ), i = 1, . . . , n} we then have that

g∗(θ̂) =

(
vec(A∗

n(B̂n, Σ̂n)−1B∗
n(B̂n, Σ̂n))

vec(V∗
n(B̂n, Σ̂n) + w∗

n(B̂n, Σ̂n)Σ̂n)

)
, (4.9)

where A∗
n,B∗

n,V∗
n and w∗

n are the bootstrap versions of quantities (4.5) to (4.8),

that is, with (xi,yi) replaced by (x∗

i ,y
∗

i ). Thus, in order to get the values of√
n(θ̂

∗ − θ̂) for each bootstrap sample, we calculate (4.9), apply the linear cor-

rection given by the matrix of partial derivatives, and use approximation (4.2).

To generate bootstrap samples in a regression setup, one can either use case

resampling or error resampling (see e.g., Davison and Hinkley (1997)). The for-

mer assumes random explanatory variables, the latter assumes a fixed design.

In this paper we use the case resampling method, which means that we gener-

ate resamples by drawing with replacement from the observations {(xi,yi), i =

1, . . . , n}, but the method can also be applied in the case of error resampling. In

particular, Salibian-Barrera (2003a, 2003b) recently derived the validity of the

robust bootstrap for fixed design, in case of univariate MM-estimators.

Let us now focus on confidence intervals resulting from this fast bootstrap

procedure. One way to characterize the robustness of bootstrap confidence in-

tervals is to define the breakdown point of a bootstrap quantile estimate for a

statistic Tn. For t ∈ [0, 1], let Q∗
t denote the tth quantile of the bootstrap sample

distribution of T ∗
n :

Q∗

t = min{x :
1

R
× #{T ∗

n
j ≥ x; j = 1, . . . , R} ≤ t},

where R is the number of bootstrap samples drawn. Singh (1998) defined the

upper breakdown point of a statistic as the minimum proportion of asymmetric

contamination that can carry the statistic over any bound. Let us now define the

expected upper breakdown point of the bootstrap quantile Q∗
t as the minimum

proportion of asymmetric contamination that is expected to be able to carry Q∗
t

over any bound, where the expectation is taken over the distribution of drawing
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R samples with replacement. It is easy to see that the expected upper breakdown

point for the classical bootstrap quantile is given by the following formula:

εE
n (C) = inf{δ ∈ [0, 1] : P (Bin(n, δ) ≥ dε∗nne) ≥ t}

(Singh (1998)). Here ε∗n is the breakdown point for the bootstrapped estimator.

In other words, the bootstrap quantile estimate Q∗
t can be severely affected by

outliers when τ ∗ > t, where τ ∗ denotes the expected proportion of bootstrap

samples containing more than ε∗nn outliers. This result can be applied to the

multivariate regression S-estimators.

As for the fast bootstrap, it can be shown that the recalculation in the

bootstrap sample will not break down as long as that bootstrap sample contains

at least p non-outlying observations in general position. Denote by BD(n, δ) the

number of distinct non-outlying observations in a resample of size n, drawn with

replacement from a sample of size n with a proportion δ of outliers.

Theorem 3. Let Zn ⊂ IRp+q and assume k(Zn) = p + q − 1. Let ε∗n be the

breakdown point of an S-estimate B̂n. Then the expected upper breakdown point

of the tth fast bootstrap quantile of any regression parameter Bjk, j = 1, . . . , p;

k = 1, . . . , q, is given by min(ε∗n, εE
n (R)), where

εE
n (R) = inf {δ ∈ [0, 1] : P (BD(n, δ) < p) ≥ t}.

Table 4.1. Expected upper breakdown values for classical bootstrap and fast

and robust bootstrap on maximal breakdown S-estimators.

p = 2, q = 1 p = 8, q = 2

n 10 30 50 100 20 30 50 100

εE
n (C) 0.15 0.31 0.36 0.40 0.10 0.22 0.30 0.37

Q∗

0.05 εE
n (R) 0.50 0.50 0.50 0.50 0.30 0.50 0.50 0.50

εE
n (C) 0.08 0.24 0.30 0.36 0.00 0.16 0.25 0.33

Q∗

0.005 εE
n (R) 0.40 0.50 0.50 0.50 0.20 0.40 0.50 0.50

Table 4.1 lists some values for εE
n (C) and εE

n (R) for different dimensions and

sample sizes, for the S-estimator with maximal breakdown point. Two different

quantiles are considered, Q∗

0.05 and Q∗

0.005, which can, respectively, be used to con-

struct 90% and 99% percentile confidence intervals. We see that both bootstrap

methods can pose robustness problems when the ratio n/(p + q) is very small.

Otherwise the fast and robust bootstrap clearly yields a gain in breakdown point

over the classical bootstrap. In particular the expected upper breakdown point

for the fast bootstrap generally equals the breakdown value of the S-estimator

itself. Analogous results can be found for the expected lower breakdown value.
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Concerning the convergence of the fast bootstrap method, the univariate

regression case is covered by the result of Salibian-Barrera and Zamar (2002),

since S-estimators are a special case of MM-estimators. An extension of the

proof to the multivariate setting is fairly straightforward, although some tedious

calculations are needed to obtain the regularity conditions.

4.2. Simulation results

To investigate the performance of the fast bootstrap we carried out an ex-

tensive simulation study. We are primarily interested in the performance of

confidence intervals for the regression coefficients based on the fast bootstrap.

We would like those intervals to have a coverage that is close to the nominal

value, while being relatively short.

Simulations were performed for sample sizes n = 30, 50, 100 and 200. We

considered actual multivariate regression models (p = 2; q = 2 and p = 5; q = 5),

univariate regression models (p = 2; q = 1 and p = 5; q = 1), and multivariate

location and scatter models (p = 1; q = 2 and p = 1; q = 5). An intercept

term was included in each regression model by setting the first entry in xi equal

to 1. The remaining predictor variables were generated from the (p − 1)-variate

Gaussian distributions N(0, Ip−1). The true value of the parameter B was set to

1Ip,q, the p×q matrix having 1 for each entry. As before, this choice does not affect

the performance results due to the equivariance properties of the S-estimators.

We considered the following situations in the simulation:

• normal errors, generated from N(0, Iq);

• long-tailed errors, generated from the multivariate Student distribution with

3 d.f. (T3) and 1 d.f. (T1, Cauchy distribution);

• vertical outliers, proportion 1 − δ of the errors generated from N(0, Iq) and

proportion δ generated from N(5
√

χ2
q;0.99 1Iq,1, (1.5)

2Iq), for δ = 0.15 and

δ = 0.30;

• bad leverage points, proportion 1−δ of the errors generated from N(0, Iq) and

proportion δ generated from N(10 1Iq,1, 10 Iq), with corresponding predictors

substituted by predictors generated from N(−10 1Ip−1,1, 10 Ip−1), for δ = 0.15

and δ = 0.30.

The latter situation obviously was not applied to the location/scatter mod-

els. For each of these situations, and for each of the sample sizes and dimen-

sions given above, we constructed 1,000 datasets and computed S-estimates with

Tukey’s biweight function. Both the 25% and the 50% breakdown estimators

were considered. Next we applied the fast bootstrap to generate R = 1, 000

recalculated values (B̂∗
n, Σ̂∗

n).
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Bootstrap confidence intervals for the components Bjk were constructed us-

ing the bias corrected and accelerated (BCA) method (see e.g., Davison and

Hinkley (1997, p.202). The bootstrap intervals are compared with confidence

intervals based on the asymptotic normality of the S-estimator. The latter are

of the form [(B̂n)jk −Φ−1(1−α/2)
√

V̂jk/n, (B̂n)jk + Φ−1(1−α/2)
√

V̂jk/n] for a

100(1 − α)% confidence interval, where V̂jk denotes the empirical version of the

asymptotic variance (EASV) of the (j, k)th component of B̂n. Note that a com-

parison with the classical bootstrap method is not made due to the computational

cost. Some of the results are presented in Figures 4.1−4.3, respectively, for

multivariate regression (p = 5, q = 5), univariate regression (p = 5, q = 1), and
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Figure 4.1. Coverage for 95% intervals, for fast bootstrap (solid) and EASV
(dash-dotted): p = 5, q = 5.
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multivariate location (p = 1, q = 5). These figures show the actual percentages

of the 95% confidence intervals that were observed to contain the true value of

the parameter (i.e., 1). The nominal value of 95% is indicated by the horizontal

line. For Figures 4.1 and 4.2 we considered the intervals for the slope parameters

(i.e., all parameters contained in B except for the intercept), while for Figure 4.3

all location parameters were considered (i.e., all parameters contained in B). The

left panels contain the results for 25% breakdown while the right panels show

the 50% breakdown results. The results for p = 2 and q = 2 are very similar

to the results shown here. Furthermore, results for the T1 error distribution are

omitted since they resemble the results for T3.
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Figure 4.3. Coverage for 95% intervals, for fast bootstrap (solid) and EASV
(dash-dotted): p = 1, q = 5.

In Figure 4.1 it can be seen that the coverage of the intervals based on the

EASV (dash-dotted) is generally lower than 95%. It increases however to the

nominal value as the sample size grows, except in the case of bad leverage points.
In the latter case the EASV is not robust against outliers and hence the intervals

are not robust either. The fast bootstrap (solid) outperforms the EASV method,
especially in case of bad leverage points. For small sample sizes the fast bootstrap

is generally somewhat conservative in this setup. For univariate regression, in
Figure 4.2, one notices that for the 50% breakdown estimator the intervals have

rather poor coverage in case of normal errors and T3 errors. Results improve

when the sample size grows however. In the other cases for the univariate setup,
results for the fast bootstrap are very close to the expected coverage and, in

all situations, the bootstrap yields much better results than the EASV method.
Finally, for the multivariate location model presented in Figure 4.3, the actual

coverage is always very close to the nominal coverage. As in the previous setups,
the fast bootstrap is more conservative than the EASV method.

Furthermore, we found that the length of the bootstrap intervals is com-

parable to the length of the intervals based on the EASV and asymptotic nor-
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mality. Table 4.2 shows the average length of the intervals obtained with the

25% breakdown S-estimator, for the cases of normal errors and 15% vertical out-

liers. Results for the other cases were similar. Naturally, intervals obtained with

the 50% breakdown estimator were found to be somewhat longer (results not

reported here), especially in the normal case, which is in accordance with the

efficiency loss associated with higher breakdown. In general, EASV intervals are

shorter than the bootstrap intervals. However, these EASV intervals also have

a coverage that is too low and always lower than the bootstrap intervals, as can

be seen in Figures 4.1−4.3.

Table 4.2. Average lengths for 95% confidence intervals based on 25% break-
down S-estimator.

Normal errors 15% vertical outliers

n 30 50 100 200 30 50 100 200

p = 5, q = 5

Boot 1.056 0.664 0.431 0.292 1.006 0.694 0.455 0.310
EASV 0.729 0.559 0.397 0.281 0.757 0.598 0.426 0.300

p = 5, q = 1

Boot 1.246 0.867 0.513 0.339 1.120 0.729 0.473 0.320
EASV 0.717 0.597 0.438 0.313 0.769 0.605 0.431 0.306

p = 1, q = 5

Boot 0.759 0.577 0.403 0.284 0.786 0.606 0.429 0.303
EASV 0.710 0.554 0.394 0.280 0.754 0.591 0.423 0.300

We can conclude that the fast bootstrap performs well in all situations con-

sidered. The method usually outperforms the competing EASV method and, in

particular, the fast bootstrap is indeed robust against outliers in the data, as

was expected. However, a word of caution is needed here with regard to the

level of the fast bootstrap intervals. It should be noted that these confidence

intervals are designed to reflect the sampling variability of the S-estimators and

do not contain a correction for possible bias due to asymmetric contamination.

Therefore, the intervals might not keep the nominal level. Correcting for bias

due to contamination is a difficult task. Seminal work in this direction based

on the concept of bias bounds has been done by Berrendero and Zamar (2001)

and Adrover et al. (2004). Our simulation results indicate that bias is a minor

concern for the outlier configurations that were used in this study, but there is

no guarantee that this will be the case for any type of contamination.

Several algorithms are available to compute S-estimators, most of which use

resampling and are rather slow. Ruppert (1992), however, provided an improved

resampling algorithm for univariate regression and multivariate location and scat-

ter which is fast and has good accuracy. In this paper, for the simulations as well
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as for the examples in the next section, we used an extension of this algorithm

to multivariate regression, similar to Bilodeau and Duchesne (2000).

5. Examples

In this section we present two examples illustrating the use of the multivariate

S-estimators and the fast bootstrap method.

5.1. Milk data

First consider the data given by Daudin et al. (1988), which consist of 8

measurements on 85 bottles of milk. We would like to investigate a possible

linear dependency of the variables ‘Density’ and ‘Cheese produced’ on some or

all of the other variables. Figure 5.1 presents the diagnostic plots of the fit of the

corresponding multivariate regression model, based on the least squares estimator

and on the 25% breakdown S-estimator. These plots show the Mahalanobis or

robust distances of the residuals versus the Mahalanobis or robust distances of

the explanatory variables (see also Rousseeuw et al. (2004)). The horizontal and

vertical lines, respectively, indicate the square roots of the 0.975-quantiles of the

χ2
q and the χ2

p−1 distribution. In this example we have q = 2 and p = 7. The S-

estimator detects one extreme bad leverage point (observation 69), some vertical

outliers which are less serious, and some good leverage points. The least squares

estimator does not reveal observation 69 as an outlier. In fact, this observation

with its high leverage pulls the least squares fit toward it.
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Figure 5.1. Diagnostic plots for the Milk data; LS (left) and 25% breakdown
S (right).

To test the significance of the regression fit, we use both the classical and

fast bootstrap with R = 1, 000 on the 25% breakdown S-estimator. An intercept

was included so that we have 14 regression coefficients. Nine of these were found
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to be not significant by both the classical and the fast bootstrap, based on the

fact that their 99% BCA confidence intervals did include 0. For the remaining

five coefficients, the results are shown in Table 5.1. We see that for B22 and B72

the classical bootstrap intervals do contain 0, and the fast bootstrap intervals

do not. However, these can be considered boundary cases and generally we see

that the differences between classical and fast bootstrap results are small. It

seems that the one serious outlier did not severely distort the inference results

for the classical bootstrap here. Some distortion is present though, as can be seen

from Figure 5.2 where we plotted the recalculations from the classical bootstrap

versus those from the fast bootstrap, for two of the coefficients. Clearly some

bootstrap samples yielded notably different estimates for the fast and the classical

procedures, presumably due to the bad leverage point and the other outliers.

Table 5.1. 99% confidence limits for Milk data based on S-estimator.

fast classical
S-estimate lower upper lower upper

B11 0.997 0.981 1.008 0.971 1.007

B71(×102) 0.027 0.012 0.041 0.005 0.042

B22 0.082 0.002 0.162 -0.011 0.194

B32 0.379 0.082 0.765 0.019 0.754
B72 0.050 0.010 0.102 -0.004 0.100
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Figure 5.2. Scatter plots for the Milk data: classical bootstrap versus fast

bootstrap recalculations; B32 (left) and B72 (right).

Although the lack of robustness of the classical bootstrap was not critical

for this application, the fast bootstrap obviously still has the advantage over the

classical procedure of being much less time consuming. Performing the classical
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bootstrap procedure on the Milk data needed 706 CPU seconds, while the fast

bootstrap only took 7.5 CPU seconds.

5.2. Life expectancy data

The following dataset can be found in The World Almanac and Book of Facts

1993 and contains data on the life expectancy in 38 countries, as well as some

social characteristics. We consider a multivariate regression model where the

female and male life expectancy are the response variables and the two explana-

tory variables are the number of people per television and the number of people

per physician. The latter variables are log-transformed, which yields a better fit.

An intercept term is also included. Again we applied both least squares and the

25% breakdown S-estimator. The diagnostic plots for the estimators are shown

in Figure 5.3. Two (small) vertical outliers are detected by the S-estimator. The

only difference between the LS and the S-estimates here is that the S-estimator

more explicitly marks the good leverage points. This example shows that, next

to being fast and robust, the fast bootstrap for the multivariate S-estimator also

accurately mimics the classical bootstrap when there are only small outliers in

the data. The estimates for the standard errors of the S-estimates are given

in Table 5.2, respectively obtained through the fast bootstrap without linear

correction, the (full) fast bootstrap, the classical bootstrap and the empirical

asymptotic variance. We see that the standard errors obtained from the fast and

classical bootstrap procedures are very similar. Furthermore, the effect of the

linear correction seems to be critical in order for the fast method to approxi-

mate the classical bootstrap here. The asymptotic variance yields estimates that

are markedly smaller. According to the simulations, the latter presumably are

underestimations and the bootstrap estimates should be more accurate.
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Figure 5.3. Diagnostic plots for the Life expectancy data; LS (left) and 25%
breakdown S (right).
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Table 5.2. Standard error estimates for Life expectancy data based on S-

estimator.

B11 B21 B31 B12 B22 B32

S-estimate 99.5 -3.03 -3.03 87.0 -2.50 -2.18

uncorrected fast bootstrap 5.27 0.72 0.93 4.66 0.58 0.81
fast bootstrap 8.11 1.08 1.42 7.28 0.81 1.24

classical bootstrap 8.63 1.32 1.55 7.90 0.98 1.38

empirical ASV 4.60 0.62 0.79 4.11 0.56 0.70

6. Remarks

Recently, Tatsuoka and Tyler (2000) introduced multivariate MM-estimators

in the location and scatter setting, combining high breakdown with high efficiency

in all dimensions. A generalization to multivariate regression is possible and may

be worth considering to obtain robust inference through a similar adaptation of

the bootstrap method of Salibian-Barrera and Zamar (2002).
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