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Abstract: The Bayesian bootstrap for doubly censored data is constructed from

the empirical likelihood perspective, and a Gibbs sampler algorithm is proposed

for evaluating the Bayesian bootstrap posterior. The proposed Bayesian bootstrap

posterior is shown to be the limit of the nonparametric posteriors with Dirich-

let process priors as the prior information vanishes, and to be equivalent to the

weighted bootstrap on the observables. A small simulation study shows that the

proposed Bayesian bootstrap estimator compares favorably with the nonparametric

maximum likelihood estimator; furthermore its asymptotic properties are studied.

Key words and phrases: Bayesian bootstrap, doubly censored data, empirical like-

lihood, survival model.

1. Introduction

In survival analysis, data are subject to censoring. The most common type of

censoring is right censoring, in which the survival time is larger than the observed

right censoring time. In some cases, however, data are subject to left, as well as,

right censoring. When left censoring occurs, the only information available to

a statistician is that the survival time is less than or equal to the observed left

censoring time. Data with both right and left censored observations are known

as doubly censored data. Examples of doubly censored data have been given by

Gehan (1965), Mantel (1967), Peto (1973) and Turnbull (1974), among others.

Analysis of doubly censored data has been studied by many statisticians.

Turnbull (1974) proposed the self-consistent estimator (SCE), the concept first

introduced by Efron (1967), and showed that the SCE is the nonparametric

maximum likelihood estimator (NPMLE) for grouped survival data. Tsai and

Crowley (1985) studied the theoretical properties of the SCE and applied their

results to doubly censored data. The asymptotic properties of the SCE were

studied more rigorously by Chang and Yang (1987), Chang (1990) and Gu and

Zhang (1993). Gu and Zhang (1993) showed that SCE and the NPMLE may

not coincide, while Mykland and Ren (1996) provided a necessary and sufficient

condition for an SCE to be the NPMLE, and argued by simulation that finite
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sample performance of the NPMLE is better than that of an SCE. Wellner and

Zhan (1997) proposed an efficient algorithm for computing the NPMLE.

This paper is concerned with Bayesian bootstrap (BB) analysis of doubly cen-

sored data. Rubin (1981) first introduced the Bayesian bootstrap as a Bayesian

alternative to the bootstrap (Efron (1979)). It was further extended to the finite

population model (Lo (1988)), right censored data (Hjort (1991), Lo (1993)),

and proportional hazard model (Kim and Lee (2003)). There are three views

for the BB — the weighted bootstrap, the limit of the full Bayesian posterior,

and the Bayesian version of the empirical likelihood approach, all of which are

summarized in Section 2.

In this paper, we devise a BB procedure for doubly censored data, taking

the Bayesian version of the empirical likelihood approach as our reference point.

This choice has two important implications. First, the proposed BB procedure

is the same as the full Bayesian procedure of time discrete doubly censored data

proposed by Kuo and Smith (1992) and based on a certain noninformative prior.

Moreover, we show that the proposed BB posterior is the limit of the full Bayesian

posterior of the time continuous model. Therefore, the BB analysis may be

considered noninformative Bayesian inference. Also, we can use the efficient

Gibbs sampler algorithm proposed by Kuo and Smith (1992) for evaluating BB

posteriors. Second, the proposed BB procedure is equivalent to the weighted

bootstrap of Wellner and Zhang (1996), which is the first of its kind for doubly

censored data. In addition, the proposed BB algorithm is simpler and faster than

the standard bootstrap algorithm.

This paper is organized as follows. Section 2 summarizes the three views

on the BB. In Section 3, a BB procedure for doubly censored data is proposed.

The components of the BB — the BB likelihood, prior, posterior — and a com-

putational algorithm using Markov Chain Monte Carlo (MCMC) are discussed.

Section 4 explores the connection of the proposed BB to the weighted bootstrap

and the full Bayesian approach. Section 5 presents simulation results and a data

set is analyzed using the proposed BB. In Section 6, the asymptotic properties

of the proposed BB posterior are studied. Discussion follows in Section 7.

2. Three Views for Bayesian Bootstrap

In order to provide a background for the proposed BB procedure for doubly

censored data, this section reviews the three views of the BB. For the discussion

in this section, we consider the analysis of uncensored data.

The first view of the BB is that it extends the Efron’s bootstrap (Efron

(1979)). Let X = (X1, . . . , Xn) be a random sample from an unknown distribu-
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tion F, and suppose a functional of F, T (F ), is of interest. In this situation, a typi-

cal bootstrap procedure consists of drawing many bootstrap samples X ∗
1 , . . . ,X ∗

B,

where each bootstrap sample is a random sample from the empirical distribution

of the original sample X , and inference about T (F ) is based on the T (F ∗
i )’s,

where F ∗
i is the empirical distribution of X ∗

i . Noting that F ∗
i

d
=
∑n

i=1 wiδXi
,

where nw = n(w1, . . . , wn) ∼ Multinomial(n, 1/n, . . . , 1/n), Rubin proposed a

smoother alternative, Dirichlet(1, . . . , 1), for the distribution of w. For this rea-

son, the BB is viewed as a weighted bootstrap. Theoretical properties of the BB

and weighted bootstrap have been studied by many authors including Lo (1987),

Weng (1989), Mason and Newton (1992), Praestgaard and Wellner (1993), Gas-

parini (1995), James (1997) and Choudhuri (1998).

The second view is that the BB posterior is the limit of the full Bayesian

posterior as the amount of the prior information vanishes, and that the BB consti-

tutes a noninformative (or default) Bayesian analysis of nonparametric problems.

More formally, if the prior on F is the Dirichlet process with parameter α, a non-

null finite measure, then the posterior is the Dirichlet process with parameter

α +
∑n

i=1 δXi
(Ferguson (1973)). As the total mass of α (or the prior sample

size) goes to 0, the posterior converges to Rubin’s BB posterior. As Gasparini

(1995) noted, this provides the basis for using the BB as a default nonparametric

Bayesian analysis.

The third view is that the BB posterior is obtained from

BB posterior ∝ empirical likelihood × prior. (1)

Assume that there are no ties in X . Furthermore, suppose the true distribution

belongs to Fn = {∑n
i=1 wiδXi

:
∑n

i=1 wi = 1, wi ≥ 0, i = 1, . . . , n}. Then the

model is effectively parametric, and Bayesian analysis can be carried out. Since

there is one observation at each Xi, the likelihood is given by

L(F ) =

n
∏

i=1

wi. (2)

Adopting a noninformative prior,
∏n

i=1 w−1
i , we get, by the usual Bayesian com-

putation, Rubin’s BB posterior. This description of BB was noted by many au-

thors (Owen (1990), Choudhuri (1998), Lazar (2000) and Kim and Lee (2003)).

Note that the likelihood used in this derivation is the empirical likelihood of

Owen (1990). This is the main idea we use to derive the BB posterior for doubly

censored data. That is, the model is reduced to a data-dependent parametric

model, Fn, and the usual Bayesian analysis is performed with an appropriate

prior. Here we call the likelihood on Fn the “BB likelihood”. In what follows,

we use the terms “empirical likelihood” and “BB likelihood” interchangeably.
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3. BB for Doubly Censored Data

3.1. Model

Let Xi, i = 1, . . . , n, be independent and identically distributed (i.i.d.) pos-

itive random variables with a common survival function SX . Independent of the

Xi’s, the Yi ≥ Zi are i.i.d. pairs of right and left censoring times with possibly

defective marginal distribution functions SZ and SY . Under the doubly censoring

mechanism, we observe only pairs of (Wi, δi) :

(Wi, δi) =







(Xi, 1), if Zi < Xi ≤ Yi,

(Yi, 2), if Xi > Yi,

(Zi, 3), if Xi ≤ Zi.

(3)

The censoring indicator δi takes on the values 1, 2 and 3, if the survival time Xi

is observed, right censored, and left censored, respectively. This section devel-

ops a BB procedure for inferring SX based on the doubly censored observations

(W1, δ1), . . . , (Wn, δn).

3.2. BB Likelihood

Let F be the space of all distribution functions on R
+ = [0,∞). The first

step in constructing the BB likelihood is to reduce F to a parametric model

Fn. A choice of Fn is a family of distribution functions F of the form F (t) =
∑l

i=1 piI(ui ≤ t), with some predefined data-dependent points, U = {u1 < · · · <

ul}. For doubly censored data, we propose U as follows. Let V1 < . . . < Vm be

distinct points of {W1, . . . ,Wn} and define, for k = 1, . . . ,m, α∗
k =

∑n
i=1 I(Wi =

Vk, δi = 1), β∗
k =

∑n
i=1 I(Wi = Vk, δi = 2) and γ∗

k =
∑n

i=1 I(Wi = Vk, δi = 3). Let

β∗
0 = 0.

• Case 1. If α∗
i > 0, then Vi ∈ U.

• Case 2. If α∗
i = 0, γ∗

i > 0, then

1. if α∗
j = 0 and γ∗

j = 0 for j < i, then 0 ∈ U, or

2. if β∗
i−1 > 0 and β∗

j = 0 and α∗
j = 0 for all i ≤ j ≤ m, then (Vi−1+Vi)/2 ∈

U.

• Case 3. If α∗
m = 0 and β∗

m > 0, then ∞ ∈ U.

Remark. If α∗
1 > 0 and α∗

m > 0, then U consists of only Vis with α∗
i > 0. That

is, U contains all distinct uncensored observations. Cases 2 and 3 deal with

situations in which the smallest or largest observation is censored, respectively.

The main motivation behind our choice of U is that the support of the limit

of the full Bayesian posteriors with Dirichlet process priors is U, provided α∗
1 > 0
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and α∗
m > 0. In addition, the maximum likelihood estimator of SX on Fn is an

SCE (Mykland and Ren (1996)).

With U, the parameters to be estimated are p = (p1, . . . , pl), and the likeli-

hood of p is

L(p) =

l
∏

k=1

pαk

k

(

1 −
k
∑

i=1

pi

)βk
(

k
∑

i=1

pi

)γk

, (4)

where αk =
∑n

i=1 I(Wi = uk, δi = 1), βk =
∑n

i=1 I(uk−1 ≤ Wi < uk, δi = 2) and

γk =
∑n

i=1 I(uk−1 < Wi ≤ uk, δi = 3), for k = 1, . . . , l.

3.3. Prior

For the prior on p, we propose the improper

π(p) =

l
∏

k=1

1

pk

. (5)

A motivation for (5) is that the BB posterior constructed via the product

of the BB likelihood (4) and the prior (5) can be obtained as a limit of the full

Bayesian posterior as the prior information vanishes. Consider the full Bayesian

analysis with the Dirichlet process with base measure αF0(t), where F0(t) is the

prior mean and α governs the amount of prior information. If we let α go to

0 (the amount of prior information goes to 0), then the full Bayesian posterior

converges to the BB posterior. See Section 4.1 for details.

Remark. Without censored observations, the BB posterior distribution derived

from (4) and (5) is the same as Rubin’s BB posterior (1981). Furthermore, the

proposed BB posterior is equivalent to Lo’s (1993) BB for right censored data.

3.4. MCMC

The BB posterior of p is

π(p|D) ∝
l
∏

k=1

pαk

k

(

1 −
k
∑

i=1

pi

)βk
(

k
∑

i=1

pi

)γk l
∏

k=1

1

pk

, (6)

where D = {(W1, δ1), . . . , (Wn, δn)}. This posterior is by no means a well known

distribution. However, Bayesian computation using the Gibbs sampler algorithm

proposed by Kuo and Smith (1992) poses no difficulty in this case.

Let X∗
n = (X∗

1 , . . . , X∗
n) be the survival times, some of which are observed

(when δi = 1) while others are not (when δi = 2 or 3). The main idea of the

Gibbs sampler is to generate X∗
n from L(X∗

n|p,D), and then p from L(p|X∗
n,D),

successively.
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Sampling from L(X∗
n|p,D) can be easily done as follows. Once p and D are

given, it suffices to generate X∗
i from L(X∗

i |p,Wi, δi), for i = 1, . . . , n. When

δi = 1, X∗
i should be Wi with probability 1. When δi = 2, we generate X∗

i

from the distribution F (t|t > Wi), where F (t) =
∑l

i=1 piI(ui ≤ t). Since F is

finitely supported, a random number from F (t|t > Wi) can be generated easily.

Similarly, when δi = 3, X∗
i is generated from the distribution F (t|t ≤ Wi).

Once X∗
n and D are given, L(p|X∗

n,D) is the same as Rubin’s BB posterior:

L(p|X∗
n,D) ∼ Dirichlet(r1, . . . , rp), where ri =

∑n
k=1 I(X∗

k = ui).

4. Some Properties of the Proposed BB

4.1. BB as the limit of full Bayesian posteriors

The proposed BB posterior is the same as the full Bayesian posterior of the

time discrete model considered by Kuo and Smith (1992), if F is assumed in

advance to have mass on U. What seems a difference is that the BB uses the

noninformative prior on p while Kuo and Smith (1992) use a proper Dirichlet

distribution prior. However, since the prior (5) can be obtained as the limit of

the Dirichlet distribution, the BB procedure can be considered a noninformative

Bayesian analysis of Kuo and Smith’s time discrete model. The explanation of

the BB via the empirical likelihood approach also justifies using Kuo and Smith’s

model even for time continuous observations with appropriately chosen support

points.

This analogy persists for time continuous models. That is, the proposed BB

can be obtained as a limit of the full Bayesian posterior of the time continuous

model. Suppose a priori that F is a Dirichlet process with mean F0 and precision

parameter α > 0, F ∼ DP (αF0). Let L(F |D, α, F0) be the posterior distribution

of F when the prior distribution of F is DP (αF0). Then,

L(F |D, α, F0)
d→ L(B)(F |D) (7)

on D[0,∞), provided α1 > 0 and αl > 0, where D[0,∞) is the space of right

continuous functions with left limits defined on [0,∞) equipped with the uniform

topology. The proof is provided in the Appendix.

Remark. If α(1) = 0 and γ(1) > 0, the full Bayesian posteriors of F on [0,W(1)] do

not vanish as α → 0. Hence, the limiting posterior differs from the BB posterior

on [0,W(1)]. As n gets larger, however, W(1) converges to 0 if R
+ is the support of

the distribution of Wi; therefore, the discrepancy between the limiting posterior

and BB posterior becomes minimal for large n. Similar remarks apply when

α(m) = 0 and β(m) > 0.
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4.2. BB as a weighted bootstrap

Let Q(t) = Pr(W > t) and Qj(t) = Pr(W > t, δ = j), for j = 1, 2, 3. Let

Q
(n)
j =

∑n
i=1 I(Wi > t, δ = j)/n for j = 1, 2, 3, and let Q(n)(t) = Q

(n)
1 + Q

(n)
2 +

Q
(n)
3 . Put SX(t) = Pr(X > t), SY (t) = Pr(Y > t) and SZ(t) = Pr(Z > t). Then

we have

SX(t) = Q(t) −
∫

u≤t

SX(t)

SX(u)
dQ2(u) +

∫

t<u

1 − SX(t)

1 − SX(u)
dQ3(u), (8)

SY (t) = 1 +

∫ t

0

dQ2(u)

SX(u)
, (9)

SZ(t) = −
∫ ∞

t

dQ3(u)

1 − SX(u)
. (10)

See Chang and Yang (1987) for details. In fact, the SCE S
(n)
X of SX is defined

as the solution of the empirical version of (8), where the empirical version means
population quantities are replaced by their empirical estimators; for example,

Q1(t) is replaced by Q
(n)
1 (t). The estimators S

(n)
Y and S

(n)
Z of SY and SZ are

given by the empirical version of (9) and (10).
Using (8), we can devise a weighted bootstrap for doubly censored data. The

standard weighted bootstrap procedure for the observables is to assign the mass
ri to (Wi, δi), where (r1, . . . , rn) ∼ Dirichelt(1, 1, . . . , 1). Once the weighted
bootstrap for the observables is defined, the weighted bootstrap distributions of

Q, Qj, for j = 1, 2, 3, are defined as Q(w)(t) =
∑n

i=1 riI(Wi ≤ t) and Q
(w)
j (t) =

∑n
i=1 riI(Wi ≤ t, δi = j), for j = 1, 2, 3. Then we can define the weighted

bootstrap distributions of SX , SY and SZ , denoted by S
(w)
X , S

(w)
Y and S

(w)
Z , as

the solutions of (8), (9) and (10) with Q and Qi replaced by Q(w) and Q
(w)
j

for j = 1, 2, 3. This weighted bootstrap procedure for doubly censored data was
studied by Wellner and Zhan (1996).

In general, solutions of (8), (9) and (10) are not unique. However, if we

assume that the support of S
(w)
X is confined to U, there exists a unique solution.

See Mykland and Ren (1996). Now, since S
(w)
X , S

(w)
Y and S

(w)
Z are functions of

(r1, . . . , rn), we can show by the standard change of variable technique, with a

carefully calculated Jacobian matrix, that the law of S
(w)
X , whose support is U,

is the same as the BB posterior of SX , provided

{Wi : δi = 1} ∩ {Wi : δi 6= 1} = ∅. (11)

The detailed proof of this assertion is available from the authors upon request.
This equivalence allows frequentists to use the proposed BB for approximating

the sampling distribution of S
(n)
X , since the weighted bootstrap is thought to be

an alternative to Efron’s bootstrap.
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5. Illustrations

In this section we illustrate the application of the proposed BB to simulation
models, as well as to a data set. The BB posteriors are calculated via the MCMC
algorithm presented in Section 3.4 with 10,000 iterations, of which the first 1,000
iterations are discarded as burn-in.

First, we perform a small simulation to evaluate the true coverage probability
of the probability interval based on the BB posterior. Survival time X is gener-
ated from Exp(100) — the exponential distribution with mean 100. The left and
right censoring variables (Z, Y ) are generated by (Z, Y ) = (Z,Z + W ), where
Z ∼ Exp(10) and W ∼ Exp(140), Z and W independent. Under this model,
the censoring probability is about 48%, of which 38% is due to right censoring
and 10% is due to left censoring. Table 1 presents the coverage probabilities
of the 95% probability intervals of the 25% and 50% (median) quantiles based
on the proposed BB. The results show that the BB posterior can be used as an
alternative frequentist’s method for doubly censored data.

Table 1. The coverage probabilities of the 95% equal tail probability intervals
of the 25% and 50% quantiles. These coverage probabilities are calculated
based on 10000 independent samples.

Sample size n 20 50 100

25% quantile 94.1 94.5 95

50% quantile 93.2 93.8 94.9

Next, we compare the performance of the Bayes estimator and NPMLE of
F . We use the following simulation model: X ∼ Exp(1), Y ∼ Exp(2) and
Z = (Y − 0.5)I(Y ≥ 0.5). Table 2 presents the average distances (sup-norm) of
the estimators to the true distribution. The results for the NPMLE are quoted
from Mykland and Ren (1996). The Bayesian bootstrap estimator seems to
provide results that are closer to the true model than those of the NPMLE.

Table 2. The average distance (sup-norm) of the estimators from the true
model.

n = 25 ‖S − NPMLE‖ 0.3276 (0.0959)

‖S − Bayes‖ 0.3133 (0.0884)

n = 50 ‖S − NPMLE‖ 0.2427 (0.0648)

‖S − Bayes‖ 0.2343 (0.0594)

Finally, we analyze a data set consisting of times to the first use of marijuana

collected from 191 California high school boys. The students were asked “ When

did you first use marijuana?” For this question, there are three possible answers

− “ I started at age 14.” (uncensored) “ I never used it.” (right censoring)

and “ I have used it but don’t remember” (left censoring). The full data set is
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available in Turnbull and Weiss (1978). Figure 1 presents the Bayesian bootstrap
estimate of the survival function, along with the 5% and 95% quantiles of the
Bayesian bootstrap posterior. The survival curves in the figure are drawn by
linearly interpolating the estimates of survival probabilities at t ∈ U.
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Figure 1. Posterior mean and the 5%, 95% quantiles of survival probabilities

6. Large Sample Properties

In this section, we prove that the BB posterior of SX centered at the SCE

S
(n)
X is asymptotically equivalent to the distribution of the SCE S

(n)
X centered at

the true survival function SX . We assume the following regularity conditions:

A1. Pr(Z ≤ Y ) = 1;
A2. SY (t) − SZ(t) > 0 on (0,∞);
A3. SX , SY and SZ are continuous functions of t and 0 < SX(t) < 1 for t > 0;
A4. SX(0) = SY (0) = 1, SX(∞) = SY (∞) = SZ(∞) = 0;
A5. there exists δ and T , 0 < δ < T < ∞ such that SZ(t) is constant with a value

less than 1 on [0, δ] and SZ(T ) = 0, i.e., Pr(Z = 0) > 0,Pr(Z ∈ (0, δ)) = 0
and Pr(Z ≤ T ) = 1.

Remark. Chang (1990) used the above regularity conditions to prove the weak
convergence of a self-consistent estimator.

Theorem 1. L(B)(
√

n(SX − S
(n)
X )|D) and L(

√
n(S

(n)
X − SX)) converge in dis-

tribution to the same Gaussian process on D[0, T ], where D[0, T ] is the space

of right continuous functions with left limits defined on [0, T ] equipped with the

uniform topology.

Proof. Let q(n) =
√

n(Q
(n)
1 − Q1, Q

(n)
2 − Q2, Q

(n)
3 − Q3) and q(w) =

√
n(Q

(w)
1 −

Q
(n)
1 , Q

(w)
2 − Q

(n)
2 , Q

(w)
3 − Q

(n)
3 ). Then it is not hard to prove that L(w)(q(w)|D)
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and L(q(n)) converge weakly to the same Gaussian process on D[0, T ]3 (see Lo

(1987)).

Let r(n) =
√

n(S
(n)
X − SX , S

(n)
Y − SY , S

(n)
Z − SZ) and r(w) =

√
n(S

(w)
X −

S
(n)
X , S

(w)
Y −S

(n)
Y , S

(w)
Z −S

(n)
Z ). Let Φ be the mapping from D[0, T ]3 to D[0, T ]3 such

that Φ(q(n)) = r(n) defined by the system of equations (8), (9) and (10). Since

Φ is an asymptotically linear continuous mapping (Chang, (1990)), L(w)(r(w)|D)

and L(r(n)) have the same limiting distribution, which is also a Gaussian process

on D[0, T ]3.

Finally, by A3, (11) holds with probability 1, and hence the law of S
(w)
X is

the same as the BB posterior.

7. Discussion

The computation of the BB posterior is much easier than that of the stan-

dard bootstrap method with the NPMLE. Wellner and Zhan (1997) proposed an

algorithm for finding the NPMLE, which is a combination of EM and ICM (it-

erative convex minorant) algorithms. However, this does not provide a variance

estimator. In practice, to estimate the variance, a bootstrap with the Wellner and

Zhan algorithm is used. This is executed by first generating a bootstrap sample

(W ∗
1 , δ∗), . . . , (W ∗

n , δ∗n) and finding the MLE based on the bootstrap sample. This

procedure is repeated many times to have many bootstrap estimates of F , and

the variance of the NPMLE is estimated based on the bootstrap estimates of F.

Computation is extremely demanding. For comparison of the proposed BB and

the bootstrap with NPMLE, we repeated the simulation of Wellner and Zhan

(1997). With a sample of size 5,000 and censoring probability 0.6, the bootstrap

with NPMLE needed 119 hours, or about 5 days, for 1,000 bootstrap samples −
this is quoted from Wellner and Zhan (1997). In contrast, the BB proposed here

took less than 40 minutes to generate 10, 000 BB posterior samples. We acknowl-

edge that this is not a fair comparison, because the computations were executed

on different machines with different programs. However, we believe that it gives

a clear impression on the speed of the BB computation.

Appendix. The proof of (7)

Since F has increasing sample paths (distribution functions), it suffices to

show convergence in distribution of the finite dimensional distributions of F. That

is, for given sequence of numbers 0 = t0 < t1 < . . . < tK < tK+1 = ∞, it suffices

to prove that

L(F (t1), F (t2) − F (t1), . . . , F (tK+1) − F (tK)|D,α, F0)
d→L(B)(F (t1), F (t2) − F (t1), . . . , F (tK+1) − F (tK)|D). (12)
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For i = 1, 2, 3, let ∆i = {Wk : δk = i, k = 1, . . . , n}. Then, the posterior
distribution of F given only the uncensored observations ∆1 is a Dirichlet process
with mean Fn and precision parameter αn, where

Fn(t) =

∑

i:Wi∈∆1
I(Wi ≤ t) + αF0(t)

n1 + α

and αn = n1 + α. Here, n1 is the number of observations in ∆1. Hence, the
posterior distribution of F is the same as the posterior distribution of F given
∆2 and ∆3 only, with the Dirichlet process prior having mean Fn and precision
parameter αn.

Next, let S = {t1, . . . , tK} ∪ ∆2 ∪ ∆3 and let s1 < · · · < sm be the or-
dered distinct numbers in S. Then the likelihood of ∆2 and ∆2 depends on
(F (s1), F (s2) − F (s1), . . . , F (sm+1) − F (sm)), where sm+1 = ∞. Hence we can
obtain the posterior density of (F (s1), F (s2)−F (s1), . . . , F (sm+1)−F (sm)) given
∆2 and ∆3 by direct calculation. Finally, it is easy to show that the posterior
density of (F (s1), F (s2)−F (s1), . . . , F (sm+1)−F (sm)) converges to the BB pos-
terior density as α → 0, and the proof is done.
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