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K. Y. Cheung1, Stephen M. S. Lee1 and G. Alastair Young2

1The University of Hong Kong and 2Imperial College London

Abstract: In nonregular smooth function models with vanishing first derivative,

the conventional bootstrap is known to be inconsistent, whereas the m out of n

bootstrap is consistent. We explore the effects of iterating the m out of n bootstrap

on coverage accuracy of bootstrap percentile confidence intervals in such models,

and develop a special iterative scheme which outperforms the non-iterated m out of

n bootstrap in terms of asymptotic coverage accuracy. Several numerical examples

are presented to motivate our development and illustrate its theoretical findings.
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1. Introduction

The bootstrap provides an attractive approach to nonparametric inference

about a scalar parameter θ of interest. The key underlying notion is that gen-

eration of bootstrap samples of size n by independent, uniform resampling from

a given dataset of size n may be used to mimic the variability that produced

the data in the first place. A typical bootstrap calculation is used to construct

a confidence interval for θ, though such an interval will often be used to test a

hypothesis of the form H0 : θ = θ0 through the familiar duality between con-

fidence sets and hypothesis tests. Testing in this way has, in the bootstrap

context, the attraction that bootstrap samples need not be generated under the

restriction imposed by H0, but by the simpler, uniform resampling scheme. The

background to this work is the knowledge that, in certain situations, validity of

the bootstrap may depend on the true value of the parameter. In the hypothesis

testing problem which motivates construction of a confidence set, validity may

therefore depend on whether H0 is true or not; it is, of course, the purpose of

the analysis to test this.

The idea of reducing the bootstrap resample size from n to m dates to Bre-

tagnolle (1983). That this device can yield consistent bootstrap estimators of

sampling distributions in wide generality was established by Shao (1994), who

considered the properties of the m out of n bootstrap in a number of nonregular
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cases, including that considered in the current paper. However, the theoretical

effect of using an m out of n bootstrap, with m = o(n), on the coverage ac-

curacy of bootstrap confidence intervals is unexplored. Typically, there is an

asymptotic loss of efficiency in use of the m out of n bootstrap in circumstances

where the standard n out of n bootstrap is known to work successfully; see, for

example, Bickel, Götze and van Zwet (1997), who suggest various remedies for

this efficiency loss.

A standard technique for enhancing bootstrap efficiency, at least in regular

situations, is bootstrap iteration. The idea of bootstrap iteration is that of using

nested levels of bootstrap sampling to estimate and adjust for the error in a non-

iterated bootstrap procedure. The effects of bootstrap iterations on the m out

of n bootstrap are as yet unexplored. Of theoretical and practical importance

is the question of whether iteration can improve the m out of n bootstrap by

reducing its asymptotic error, and the degree to which this may be achieved.

The problem of constructing a confidence interval for a function θ of a pop-

ulation mean under regularity conditions, but with the function having a null

derivative at the true population mean, provides an important testing ground

for analysis of iteration of the m out of n bootstrap. In this setting substitution

estimators are n-consistent, with limiting chi-squared type distributions, instead

of the usual
√
n-consistency coupled with a limiting normal distribution. The

m out of n bootstrap, with m chosen to be of order o(n), is found to be con-

sistent and, more precisely, incurs a one-sided coverage error of order O(n−1/2)

if m is chosen optimally. This order of coverage error is the same as that seen

for the percentile confidence interval in regular applications of the n out of n

bootstrap. An important aspect of our findings in this paper, therefore, is that

the m out of n bootstrap can produce the same levels of error as those seen in

regular applications of the n out of n bootstrap.

Naive iteration of the m out of n bootstrap suggests that second-level boot-

strap samples of size `, with ` = o(m), be drawn from first-level bootstrap samples

of size m, and that calibration of the nominal coverage be calculated from second-

level bootstrap distributions of the standardized function of the sample mean.

We show that such an iterative scheme in fact fails to improve upon the non-

iterated m out of n bootstrap in terms of coverage accuracy. This contrasts with

the effects of iterating the n out of n bootstrap in regular problems, where the

relevant derivative does not vanish. Even with ` and m set optimally, the order

of coverage error, O(n−1/2), is the same as that obtained from the non-iterated

procedure, when m is chosen optimally in the latter.

We propose a new scheme for iterating the m out of n bootstrap and show

that the resulting coverage error can be made of order O(n−2/3). The main thrust
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of the scheme is to calibrate the nominal coverage by second-level resamples of

size L ∝ n1/3 drawn from first-level resamples of size M ∝ n2/3, and to set the

interval end points using a different batch of first-level resamples of size m = L.

The need to draw the latter batch of resamples is the only extra computational

demand as compared to the naive iterative scheme, so that the new scheme is

computationally directly comparable to the less effective naive iterative proce-

dure. We note, however, that the reduction of coverage error is less than that

observed by iteration of the n out of n bootstrap in regular settings, when the

coverage error is reduced from order O(n−1/2) to O(n−1).

Section 2 describes the problem setting and reviews the m out of n bootstrap

percentile method. Section 3 presents two different ways to iterate the m out

of n bootstrap percentile method. The first approach is the intuitive method,

while the second one is new and more general. Section 4 investigates theoretical

properties of the proposed iterated bootstrap intervals, with particular attention

to optimal choices of the resample sizes involved. Some simulation studies of

confidence set coverage are given in Section 5. Section 6 provides a more practical

example, in illustrating how the confidence intervals have a natural application in

a hypothesis testing problem. Some empirical results for this practical hypothesis

testing example are given in Section 7. Concluding remarks are given in Section

8. Technical proofs are given in an Appendix, Section 9.

Our focus in this paper is investigation of bootstrap iteration in a regime

where the m out of n bootstrap is known to be required. However, we provide

in Section 8 a discussion which shows that appropriate versions of our iterative

schemes display similar properties in regular circumstances where derivatives are

non-vanishing. Our new scheme therefore provides a mechanism for recovery of

the asymptotic coverage accuracy, lost through use of an m out of n bootstrap,

in a regime where use of the conventional bootstrap would have been justified.

In practice, it is more likely that it is not known into which regime the inference

problem of interest falls. We also provide discussion of how the m out of n and

conventional n out of n bootstraps perform asymptotically in such circumstances.

2. Problem Setting

We consider the smooth function model setting introduced by Bhattacharya

and Ghosh (1978). Let X = (X1, . . . , Xn) be a random sample of n observations

drawn from a d-variate distribution F with mean µ. Define X̄ =
∑n

i=1Xi/n. The

parameter of interest is θ = g(µ) for some smooth real-valued function g on R
d.

The natural estimator of θ is θ̂ = g(X̄). This model has been used extensively

in the bootstrap literature; see, for example, Hall (1992).
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We depart in this paper from the usual regularity assumptions, by supposing

that ∇g(µ) = 0 and ∇2g(µ) 6= 0. The regularity conditions described in Chung

and Lee (2001) are assumed throughout. These consist primarily of smoothness

of g, Cramér’s condition, and finiteness of moments of F up to a certain order.

Standard asymptotic arguments show that n(θ̂−θ) converges in distribution

to a nondegenerate random variable Y , which is a linear combination of indepen-

dent χ2
1 variables. Babu (1984) shows that the conventional n out of n bootstrap

distribution of n(θ̂ − θ) converges weakly to a random measure rather than the

deterministic distribution of Y , and thus fails to produce consistent results. On

the other hand, Shao (1994) proves that the m out of n bootstrap, with m chosen

to be of order o(n), rectifies the problem and succeeds in yielding consistency.

We focus here on the problem of constructing bootstrap percentile confidence

intervals, and examine for the first time the coverage accuracy of the m out of n

bootstrap in this context.

Let X ∗
m denote a generic bootstrap resample of size m drawn randomly with

replacement from X , and X̄∗
m be its sample mean. Define θ̂∗m = g(X̄∗

m) and

Ĝm(y) = P{m(θ̂∗m − θ̂) ≤ y | X}. The m out of n bootstrap percentile method

specifies a nominal α level upper confidence limit to be

Im(α) = θ̂ − n−1Ĝ−1
m (1 − α).

The motivation is straightforward. An exact α level upper confidence interval for

θ is θ̂− n−1G−1(1 − α), where G−1(1 − α) satisfies P{n(θ̂− θ) ≤ G−1(1 − α)} =

1 − α, so that P{θ ≤ θ̂ − n−1G−1(1 − α)} = α. It follows immediately from

Shao (1994) that the above confidence limit is asymptotically correct under the

assumed regularity conditions, provided that m = o(n): P{θ ≤ Im(α)} → α as

n→ ∞.

3. Iterated m Out of n Bootstrap Confidence Intervals

Bootstrap iteration is well known to be effective in enhancing coverage ac-

curacy of bootstrap confidence intervals in regular cases. Beran (1987) proposed

a prepivoting idea, which amounts to calibration of the nominal coverage by one

bootstrap iteration, or a double bootstrap, and can be shown to reduce one-sided

coverage error by O(n−1/2) in the problem setting of the current paper, but with

the additional condition that ∇g(µ) 6= 0. For further discussion of bootstrap

iteration in regular problems, see also Hall (1986), Hall and Martin (1988) and

Martin (1990).

In our context, an intuitive application of the double bootstrap requires

second-level bootstrap resamples of size ` = o(m), denoted generically by X ∗∗
m,`,
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be drawn from X ∗
m. Let X̄∗∗

m,` be the sample mean of X ∗∗
m,`, and θ̂∗∗m,` = g(X̄∗∗

m,`).

The coverage probability of Im(α) is estimated by π̂∗
m,`(α), where

π̂∗m,`(t) = P{θ̂ ≤ θ̂∗m −m−1Ĝ∗−1
m,` (1 − t) | X}, t ∈ (0, 1),

and Ĝ∗
m,`(y) = P{`(θ̂∗∗m,` − θ̂∗m) ≤ y | X ,X ∗

m}. The nominal level α is then cal-

ibrated to π̂∗−1
m,` (α) and the resulting intuitively iterated m out of n bootstrap

upper confidence limit is J ∗
m,`(α) = Im(π̂∗−1

m,` (α)).

In practice, the confidence limit is approximated by a Monte Carlo construc-

tion, involving the drawing of an actual series of, say, B first-level bootstrap

samples of size m from X . From each of these is drawn a series of, say, C

second-level bootstrap samples of size l, replacing the probabilities by empirical

proportions. Interpolation is then used to approximate π̂∗−1
m,` (α); for more details

on the kind of algorithms applied in such constructions and for discussion on

appropriate values for B and C see, for example, Martin (1990).

As a generalization of the above scheme, the coverage probability of Im(α)

may be estimated by two levels of bootstrap resampling which are independent of

the first-level bootstrap resampling used for defining Ĝm. Specifically, denote by

X †
M a generic (first-level) bootstrap resample of sizeM drawn from X , and X ††

M,L a

generic (second-level) bootstrap resample of size L drawn from X †
M , both assumed

to be independent of the X ∗
m drawn from X for calculating Ĝm. Denote by X̄†

M

and X̄††
M,L the sample means of X †

M and X ††
M,L respectively. Define θ̂†M = g(X̄†

M )

and θ̂††M,L = g(X̄††
M,L). Define Ĝ†

M,L(y) = P{L(θ̂††M,L − θ̂†M ) ≤ y | X ,X †
M} and

π̂†M,L(t) = P{θ̂ ≤ θ̂†M −M−1Ĝ†−1
M,L(1 − t) | X}, t ∈ (0, 1). (1)

The latter is used for estimating the coverage probability of Im(α), based on

which the nominal level α is calibrated to π̂†−1
M,L(α). This defines an alternative

iterated m out of n bootstrap upper confidence limit J †
m,M,L(α) = Im(π̂†−1

M,L(α)).

Note that J †
m,m,`(α), which constitutes a special case of the confidence limit

J†
m,M,L(α), is asymptotically equivalent to J ∗

m,`(α).

4. Theory

Recall that X1 has mean µ. Denote by Σ the covariance matrix of X1,

assumed to be nonsingular. Assume that ∇2g(µ) is positive definite. A d × d

matrix Ξ = [ξij ] exists such that

ΞΞT =
∇2g(µ)

2
. (2)
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We prove the following lemma in the Appendix.

Lemma 1. Assume that g is continuously differentiable up to some high order

in an open neighbourhood of µ, and that F satisfies Cramér’s condition and has

finite moments up to some high order. Then there exists a d-variate statistic

ϑn(X̄, µ) = [ϑ
(1)
n (X̄, µ), . . . , ϑ

(d)
n (X̄, µ)]T satisfying, for some large integer ν > 0,

ϑn(X̄, µ)Tϑn(X̄, µ) = n(θ̂ − θ) + op(n
− ν

2 ) = n(g(X̄) − g(µ)) + op(n
− ν

2 ), (3)

ϑ(r)
n (X̄, µ) =

d
∑

i=1

ξirZ
(i) + n−

1

2
1

2!

d
∑

i,j=1

ξijrZ
(i)Z(j) + · · ·

+n−
ν
2

1

(ν + 1)!

d
∑

i1,...,iν+1=1

ξi1···iν+1rZ
(i1) · · ·Z(iν+1), (4)

where Z = [Z(1), . . . , Z(d)]T = n1/2(X̄ − µ) and the ξi···r are smooth functions of

µ.

For any positive semi-definite matrix Γ, denote by φΓ the density function of

N(0,Γ). By Theorem 2(b) of Bhattacharya and Ghosh (1978), (4) implies that

a standard Edgeworth expansion of the density function fϑn of ϑn(X̄, µ) can be

derived, in the form

fϑn(t) = φΛ(t){1 + n−
1

2G1(t) + · · · + n−
ν
2 Gν(t) + o(n−

ν
2 )}, (5)

where Λ = ΞTΣΞ and the Gi are odd/even polynomials in t for odd/even i.

Let Z0 be an N(0,Σ) d-vector, and W = (1/2)ZT
0 ∇2g(µ)Z0. Define, for β ∈

(0, 1), H(x) = P(W ≤ x), J(x) = E[Z0Z
T
0 ;W ≤ x], K(x) = E[G2(Ξ

TZ0);W ≤ x],

C(β) = H ′(H−1(β))−1∇2g(µ)J ′′(H−1(β))∇2g(µ), and ∆(β) to be a d×d matrix

satisfying

Ξ∆(β)T + ∆(β)ΞT =
C(β)

2
. (6)

Specifically, we may set ∆(β)=limε→0 ε
−1(Ξ(ε)−Ξ), where Ξ(ε) satisfies Ξ(ε)Ξ(ε)T

= (∇2g(µ)+ εC(β))/2. Denote by tr(·) the trace function. Define, for β ∈ (0, 1),

D(β) = tr[Ξ−1Σ−1J(H−1(β))∆(β)] − β tr[Ξ−1∆(β)]. The following proposition

states asymptotic expansions for the coverages of Im(α), J∗
m,`(α) and J †

m,M,L(α).

An outline of the proof is given in the Appendix.

Proposition 1. Under the conditions of Lemma 1, for α ∈ (0, 1), we have

that
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(i) for m = o(n) and m→ ∞,

PF (θ ≤ Im(α))

= α−mn−1D(1 − α) +m−1K(H−1(1 − α)) +O(m−2 +m2n−2); (7)

(ii) for m = o(n), ` = o(m) and `→ ∞,

PF (θ ≤ J∗
m,`(α)) = α− (2mn−1 − `m−1)D(1 − α) + `−1K(H−1(1 − α))

+O(m2n−2 + `−2 + `2m−2); (8)

(iii) for m = o(n), M = o(n), L = o(M) and m,L→ ∞,

PF (θ ≤ J †
m,M,L(α))

= α−
[

(m+M)n−1 − LM−1
]

D(1 − α) + (m−1 − L−1)K(H−1(1 − α))

+O(m−2 +m2n−2 + L−2 + L2M−2 +M2n−2). (9)

The asymptotic expansions for the coverages enable us to deduce the optimal

choices of the resample sizes required by the different types of intervals, to yield

coverage errors of the smallest orders.

Corollary 1. Under the conditions of Proposition 1, the asymptotic orders of

coverage error are minimized by taking

(i) m ∝ n1/2, yielding coverage error of order O(n−1/2) for Im(α);

(ii) m ∝ n3/4 and ` = 2m2/n, yielding coverage error of order O(n−1/2) for

J∗
m,`(α);

(iii)m = L ∝ n1/3 and M = (mn)1/2, yielding coverage error of order O(n−2/3)

for J †
m,M,L(α).

We see from Corollary 1 that, if all are constructed with optimal orders of

resample size, J †
m,M,L(α) is asymptotically the most accurate among the three

confidence limits and, rather surprisingly, J ∗
m,`(α) fails to improve upon Im(α).

We provide a heuristic explanation of the results as follows. For the conven-

tional m out of n bootstrap interval Im(α), use of a smaller sample size m = o(n)

is required to diminish the effect of the non-vanishing ∇g(X̄) but, at the same

time, this increases the sampling error. This gives rise to the K(H−1(1 − α))

term in (7). Calibration by the intuitive approach of using second-level resamples

of size ` = o(m), parallel to the choice of m = o(n), can at best mimic and hence

eliminate the higher-order effect, which resides in the D(1 − α) term, due to the

non-vanishing ∇g(X̄). However, the sampling error now becomes dominated by

an O(`−1) term, which nullifies the improvement thus made. This explains the
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undesirable coverage accuracy offered by J ∗
m,`(α), even with optimal choices of m

and `. On the other hand, construction of J †
m,M,L(α) is undertaken by calibrating

the nominal coverage with a new batch of first-level resamples of size M , different

from those used for setting the interval end points. The choice of the second-level

resample size L can therefore be made in a way so as to simultaneously correct

for the error due to the non-vanishing ∇g(X̄), with an appropriate ratio L/M ,

and for the first-level sampling error, with L = m. The overall effect is to reduce

the coverage error of Im(α) by an order of magnitude.

The more general case where ∇2g(µ) is singular can be treated similarly.

Suppose without loss of generality that ∇2g(µ) has d1 positive and d2 = d − d1

negative eigenvalues. Then we can find d×dj matrices Ξj and random dj-vectors

ϑ̂j, j = 1, 2, such that

Ξ1Ξ
T
1 − Ξ2Ξ

T
2 =

∇2g(µ)

2
, (10)

ϑ̂T
1 ϑ̂1 − ϑ̂T

2 ϑ̂2 = n(θ̂ − θ) + op(n
− ν

2 ), (11)

ϑ̂j = n
1

2 ΞT
j (X̄ − µ) + Op(n

− 1

2 ), j = 1, 2. (12)

The proofs of Proposition 1 and Corollary 1 remain almost unchanged, yielding

essentially the same asymptotic conclusions, with ϑT
n = [ϑ̂T

1 , ϑ̂
T
2 ] and algebraically

more complicated definitions of C(β), ∆(β) and D(β).

5. Simulation Study

A simulation study was conducted to compare the coverage performances of

Im(α), J∗
m,`(α) and J †

m,M,L(α). The coverage probabilities were estimated by the

proportion of nominal level α upper confidence limits covering θ, out of 1,600

simulations, with α = 0.05, 0.1, 0.5, 0.9 and 0.95.

For each simulated random sample of size n, we drew first- and second-

level bootstrap samples of sizes prescribed by Corollary 1 to construct In1/2(α),

J∗
n3/4, 2n1/2(α) and J †

n1/3, n2/3, n1/3(α). Each level of bootstrap resampling was carried

out by simulating 1,000 bootstrap samples. Two examples, detailed in subsequent

sections, were considered. Cases other than the above two examples were also

examined with similar results, and are therefore not reported in this paper.

The true and m out of n bootstrap distributions of R = n(θ̂−θ) are also con-

sidered, to illustrate performance of the m out of n bootstrap in different regions

of the true distribution. The true distribution was approximated by simulating

10,000 replicates of R with n = 1, 000. The corresponding bootstrap distribution

was obtained from 10,000 replicates of m(θ̂∗m− θ̂), which was computed using the
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ordinary m out of n bootstrap method with n = 1, 000 and m = 32. Five boot-

strap distributions derived from five independent samples, each of size 1, 000,

were examined and found to have very similar shapes, so only one of them is

reported in each example.

5.1. Exponential example

The underlying distribution F was taken to be N(0,Σ), where

Σ =













2.5142 6.1865 9.8587 13.5310 17.2033

6.1865 15.8259 25.4654 35.1048 44.7443

9.8587 25.4654 41.0720 56.6786 72.2853

13.5310 35.1048 56.6786 78.2525 99.8263

17.2033 44.7443 72.2853 99.8263 127.3671













. (13)

This non-singular covariance matrix was generated randomly. The parameter of
interest was θ = g(µ) = exp(||µ||2). Figure 1 shows the true and 32 out of 1, 000
bootstrap distributions of n(θ̂ − θ) at both the left and right tails. It is found
that the bootstrap is much less effective in estimating the long (right) tail. Note
that upper confidence limits of high nominal level α are derived from the left or
short tail of the distribution, and those of low level α are derived from the right
or long tail.

PSfrag replacements

00

5,000

10,000

15,000

20,000

40,000

80,000

100,000

120,000

160,000

200,000

0.000

0.005

0.010

0.015

0.020

-100

-200

-300

-0.005

-0.010

-1.0

-0.6

-0.1

-0.2

-0.3

-0.02

-0.01

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

0.01

0.02

0.03

0.005

0.005

0.00

0.05

0.00.0

0.1

0.20.2

0.3

0.40.4

0.5

0.60.6

0.80.8

1.01.0

200 400 600 800
RR

n

Right (long) tailLeft (short) tail

True

Bootstrap

e
m

p
ir

ic
a
l
c
d
f

e
m

p
ir

ic
a
l
c
d
f

Coverage Error

non-iterated

iterated

iterated

intuitive iterated

intuitive iterated

α

= 0.95

= 0.9

= 0.5

α = 0.1

= 0.05

α = 0.5

α = 0.05

= 0.1

= 0.01

= 0.05
power

µ

Figure 1. Exponential Example: true and m out of n bootstrap distributions
of R = n(θ̂ − θ) approximated from 10,000 samples, with n = 1, 000 and
m = 32.
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Figure 2 compares the coverage errors of the three intervals for different

sample sizes n. For α = 0.05, 0.1 and 0.5, all methods display large coverage

errors, suggesting that the bootstrap itself, iterated or not, fails to satisfactorily

capture the long tail of the true distribution, which is intuitively understandable.

As n grows bigger, to say 10,000, the coverage error of J †
m,M,L(α) decreases

significantly, while that of Im(α) remains almost unchanged. For α = 0.9 and

0.95, sound performance is noted for all methods, which yield intervals of high

coverage accuracy, and J †
m,M,L either outperforms or is similar to Im(α).
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Figure 2. Exponential Example: coverage errors of Im(α), J∗
m,`(α) and

J†
m,M,L(α) for α = 0.05, 0.1, 0.5, 0.9 and 0.95.

5.2. Sine example

In the second example, samples were generated from N(µ,Σ), with Σ as in

(13), and mean µ = [2π/
√

5, 2π/
√

5, 2π/
√

5, 2π/
√

5, 2π/
√

5]T . The parameter

was θ = g(µ) = sin ||µ||.
Figure 3 compares the true andm out of n bootstrap distributions of n(θ̂−θ),

and shows that the bootstrap is less effective in estimating the long (left) tail.



NONREGULAR SMOOTH FUNCTION MODELS 955

PSfrag replacements

0

5,000

10,000

15,000

20,000

40,000

80,000

100,000

120,000

160,000

200,000

0.000

0.005

0.010

0.015

0.020

-100-200-300

-0.005

-0.010

-1.0

-0.6

-0.1

-0.2

-0.3

-0.02

-0.01

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

0.01

0.02

0.03

0.005

0.005

0.00

0.05

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

1.0

200

400

600

800

R

n

Right (long) tail

Left (short) tail

True
Bootstrap

e
m

p
ir

ic
a
l
c
d
f

Coverage Error

non-iterated

iterated

iterated

intuitive iterated

intuitive iterated

α

= 0.95

= 0.9

= 0.5

α = 0.1

= 0.05

α = 0.5

α = 0.05

= 0.1

= 0.01

= 0.05
power

µ

Figure 3. Sine Example: true and m out of n bootstrap distributions of

R = n(θ̂−θ) approximated from 10,000 samples, with n = 1, 000 andm = 32.

0.04

0.06

PSfrag replacements

0
0

000

5,000

10,000

15,000

20,000

40,000
40,000

40,00040,00040,000

80,000
80,000

80,00080,00080,000

100,000

120,000
120,000

120,000120,000120,000

160,000
160,000

160,000160,000160,000

200,000

0.000

0.005

0.010

0.015

0.020

-100

-200

-300

-0.005

-0.010

-1.0

-0.6

-0.1

-0.2

-0.3

-0.02

-0.01

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

0.01
0.02

0.02

0.03

0.005

0.005

0.00
0.00

0.05

0.0

0.0

0.0

0.1

0.2

0.2

0.2

0.3

0.4

0.4

0.5

0.6

0.6

0.8

1.0

200

400

600

800

R

n
n

nnn

Right (long) tail

Left (short) tail

True

Bootstrap

empirical cdf

C
ov

er
a
g
e

E
rr

o
r

C
ov

er
a
g
e

E
rr

o
r

C
ov

er
a
g
e

E
rr

o
r

C
ov

er
a
g
e

E
rr

o
r

C
ov

er
a
g
e

E
rr

o
r

non-iterated
iterated

iterated

intuitive iterated

intuitive iterated

αα = 0.95= 0.9

= 0.5

α = 0.1

= 0.05

α = 0.5α = 0.05

= 0.1
= 0.01
= 0.05
power

µ

Figure 4. Sine Example: coverage errors of Im(α), J∗
m,`(α) and J†

m,M,L(α)

for α = 0.05, 0.1, 0.5, 0.9 and 0.95.



956 K. Y. CHEUNG, STEPHEN M. S. LEE AND G. ALASTAIR YOUNG

Unlike the exponential example, upper confidence limits of high nominal level α

correspond to the long tail of the distribution, while those of low levels correspond

to the short tail.

Figure 4 plots the coverage errors against n. For α = 0.05 and 0.1, the m out

of n bootstrap has satisfactory performance in general, and our iterative scheme

is effective in reducing the coverage error further. For α = 0.9 and 0.95, which

correspond to the long tail, both methods incur large errors and iterations worsen

the situation further, illustrating again that the very use of the bootstrap, even

though it is consistent, is questionable when it comes to mimicking the long tail

of a distribution. Nevertheless, it is found in these cases that when n increases

beyond 10,000, coverages of J †
m,M,L(α) converge to α at a faster rate than those

of Im(α), which agrees with our asymptotic findings.

6. Practical Use in Hypothesis Testing

The confidence intervals we have considered are constructed explicitly to

provide accurate confidence sets for g(µ), under the assumption that ∇g(µ) = 0.

In practice, the value of ∇g(µ) will typically be unknown, and we may be in-

terested first in examination of the assumption. The familiar dual relationship

between confidence interval construction and hypothesis testing allows our con-

fidence intervals to be utilised to test the null hypothesis that ∇g(µ) = 0 and

∇2g(µ) is nonsingular. Depending on the outcome of this test, inference for

θ = g(µ) might then proceed using the conventional n out of n bootstrap, or

the m out of n bootstrap, as appropriate. Analysis of the coverage properties of

confidence sets obtained by such a hybrid scheme, involving the preliminary test-

ing of the degeneracy condition ∇g(µ) = 0, then construction of the confidence

interval for the quantity of interest, is beyond the scope of the current paper,

but a key requirement is clear. A powerful test of the degeneracy condition is

desired, in order that the more efficient n out of n bootstrap is applied when in

fact ∇g(µ) 6= 0.
Let I2,m(2α) = [Im(α), Im(1 − α)], J∗

2,m,`(2α) = [J∗
m,`(α), J∗

m,`(1 − α)] and

J†
2,m,M,L(2α) = [J †

m,M,L(α), J †
m,M,L(1 − α)] be the two-sided analogues of Im(α),

J∗
m,`(α) and J †

m,M,L(α), of nominal confidence level 1 − 2α, respectively.

Define S = {x ∈ R
d : ∇g(x) = 0, ∇2g(x) is nonsingular} and assume that

g(S) = {g(x) : x ∈ S} = {G1, . . . , Gr} is a finite set. Assume further that
g(x) 6= Gi for all i if ∇g(x) 6= 0.

Consider the general problem of testing the null hypothesis against the al-
ternative hypothesis that ∇g(µ) 6= 0. For instance, if d = 1 and g(x) = x2, the
problem reduces to one of testing whether µ = 0. A less trivial example is given by
taking g(x) = cos(x), which corresponds to testing whether µ is an integral mul-
tiple of π. We illustrate below how our bootstrap intervals can be used to define
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a test of asymptotic size α. All bootstrap resample sizes are assumed to be of the
optimal orders as prescribed by Corollary 1. Consider first the non-iterated m out
of n bootstrap. Define a test statistic Tm =

∑r
i=1 1{Gi ∈ I2,m(α)}, where 1{·}

denotes the indicator function, such that the null hypothesis is rejected if Tm = 0.
It is immediate from Corollary 1 that the size of the above test is α+O(n−1/2).
Under the alternative hypothesis, we have that Ĝ−1

m (α/2) ∼ m1/2σΦ−1(α/2), and
hence I2,m(α) degenerates to θ in probability as n→ ∞ with θ 6= Gi for all i. It
follows that, for ∇g(µ) 6= 0, the power of the test equals

P(Tm = 0) ≥ 1 −
r

∑

i=1

P {Gi ∈ I2,m(α)} = 1 − o(1). (14)

The testing procedures based on the iterated bootstrap intervals are similar,
with Tm replaced by T ∗

m,` =
∑r

i=1 1{Gi ∈ J∗
2,m,`(α)} and T †

m,M,L =
∑r

i=1 1{Gi ∈
J†

2,m,M,L(α)} respectively. According to Corollary 1, the sizes of the tests are,

respectively, α+O(n−1/2) and α+O(n−2/3). Note that, for ∇g(µ) 6= 0, Ĝ−1
m (1−

π̂∗ −1
m,` (α/2)) ∼ m`−1/2σΦ−1(α/2) and Ĝ−1

m (1− π̂† −1
m,M,L(α/2)) ∼ m1/2M1/2L−1/2σ

Φ−1(α/2). Arguing as in (14), both tests have asymptotic power equal to 1.

7. Simulation Study, Hypothesis Testing

We illustrate the hypothesis testing problem with the special case where
d = 1 and g(x) = x2. The size α was chosen to be 0.01, 0.05 and 0.1. In this
simulation exercise, 1,600 random samples of size n = 100 were generated from
each of two distributions: the exponential distribution of unit rate and the chi-
squared distribution with 1 degree of freedom. Location shifts were then used to
produce samples from distributions of different means µ. From each simulated
sample, 1,000 first-level resamples and, if applicable, 1,000 second-level resamples
from each first-level resample were drawn, of sizes provided by Corollary 1. The
two-sided intervals I2,10(α), J∗

2,32,20(α) and J †
2,5,22,5(α) were then constructed for

each random sample, and the power of each test was estimated by the proportion
of the 1,600 intervals of each type that excluded the value 0.

Figures 5 and 6 plot the powers of the tests against µ for the exponential
and chi-squared data respectively. Both cases display power functions of similar
shapes. For µ > 0, both iterated approaches behave similarly and are much more
powerful than the non-iterated method. For µ < 0, the non-iterated bootstrap
test becomes the most powerful, while the power of the modified iterated boot-
strap is either higher than or comparable to that of its intuitive counterpart. The
sizes of the two tests based on the iterated bootstraps are either more accurate
than or similar to that based on the non-iterated bootstrap. Among the three
methods, the modified iterated bootstrap appears to yield the most symmetric
power function about µ = 0.
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8. Conclusion

Our empirical findings illustrate that success of the percentile bootstrap,

iterated or not, depends primarily on its effectiveness in mimicking the true sam-

pling distribution. If the non-iterated m out of n bootstrap succeeds, in the sense

of producing intervals of acceptable accuracy, then our iterative scheme, imple-

mented through the confidence set J †
m,M,L(α), reduces the coverage error further

and speeds up the convergence rate. In cases where the m out of n bootstrap

gives a less effective estimate of the distribution of n(θ̂ − θ), especially near its

long tail, Im(α) may suffer from coverage error of unacceptable magnitude, and

is therefore practically useless. Bootstrap iterations cannot remedy the problem

but still succeed in accelerating the convergence rate if n becomes unrealistically

large. The study also warns against over-reliance on asymptotic implications in

practical applications.

Our primary aim in this paper has been to elucidate the theoretical effects of

bootstrap iteration on the m out of n bootstrap, in as much generality as possible

within the assumed model context. We have therefore, in Corollary 1, specified

the orders of resample size in general orders of magnitude terms, without con-

sideration of how they might optimally be set in any particular problem. The

question of empirical choice of resample sizes is beyond the scope of the current

paper, but simulation evidence suggests to us that in the examples studied, cov-

erage accuracy of J †
m,M,L(α) is quite insensitive to specification of the constant

c in the prescription m = L = cn1/3 provided by Corollary 1.

Our contribution in this paper is primarily didactic, rather than methodolog-

ical. The m out of n percentile method interval with optimal choice of m will,

from a theoretical viewpoint, yield coverage accuracy in the context of the paper

of the same order as that seen in more conventional settings. We have argued

that implementation of an iterated m out of n bootstrap in this context must

be carried out in a rather special manner if the iteration is to reduce the order

of asymptotic coverage error. Even then the theoretical improvements are less

than from applications of bootstrap iteration in regular situations. In practice,

though in some circumstances the m out of n bootstrap produces intervals of ac-

ceptable accuracy and then the iterative scheme seems very effective as a means

of reducing substantially the coverage error, coverage accuracy of the m out of n

percentile interval can be very poor, in which case iteration appears to have little

practical significance. As Figures 1 and 3 demonstrate, very large samples may

be required for the m out of n bootstrap to provide reasonable distributional es-

timates, in which case bootstrap percentile confidence intervals per se are poor in

terms of coverage accuracy. While improvements over the non-iterated m out of

n bootstrap are realisable through use of our iterative scheme, inordinate sample

sizes may be required for acceptably low coverage error of the iterated interval.
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We conclude by commenting on the effects of using the m out of n bootstrap

and its iterated versions in regular circumstances, where the conventional n out

of n scheme is asymptotically justified.

Consider the same smooth function model as before, except assume now

∇g(µ) 6= 0. The confidence limits Im(α), J∗
m,`(α) and J †

m,M,L(α) have analogues

in the present context, now using square roots of the various sample sizes as nor-

malizing factors. Denote these analogues by Ĩm(α), J̃∗
m,`(α) and J̃†

m,M,L(α) re-

spectively. Asymptotic expansions for their coverages can be obtained by similar,

but more straightforward, Edgeworth-type arguments. Using these expansions,

it can be deduced that Ĩm(α) incurs a coverage error of order O(m−1/2), which

is inferior to the O(n−1/2) error given by the conventional n out of n bootstrap

interval. Naive iteration of the m out of n bootstrap produces in this context an

even poorer coverage error, of order O(`−1/2). On the other hand, we may set

L = m in our special iterative scheme to calibrate the nominal coverage level in

order to achieve a coverage error of order O(M−1/2), which recovers some of the

efficiency loss of the m out of n bootstrap. However, neither the intuitive nor

the special iterative scheme succeeds in reducing coverage error of the m out of

n bootstrap confidence limit to the order O(n−1/2) given by the non-iterated n

out of n bootstrap. We note finally that these remarks refer to the confidence

limits Ĩm(α) and their iterated versions, not to use of the limits Im(α) etc., which

use a different normalising factor, m instead of m1/2. These two different nor-

malising factors are necessary to ensure correct asymptotic coverage in the two

regimes ∇g(µ) = 0, ∇g(µ) 6= 0 respectively, so that, for instance, use of Im(α)

yields asymptotically correct coverage α for g(µ) in the former regime, but not

in the latter. In the same way, the conventional n out of n bootstrap, which

in the notation above corresponds to the confidence limit Ĩn(α) ≡ In(α), gives

asymptotically correct coverage when ∇g(µ) 6= 0, but not when ∇g(µ) = 0. De-

termination of a bootstrap scheme which gives asymptotically low coverage error

in both regimes is much harder than achieving low coverage error seperately in

the two regimes, and is a topic for future investigation.
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Appendix

In what follows, we assume that all asymptotic expansions hold up to a

sufficiently high order, without detailing the precise order of the remainder term

unless this is specifically required.



NONREGULAR SMOOTH FUNCTION MODELS 961

A.1. Proof of Lemma 1

Write x = [x1, . . . , xd]
T for a generic d-vector. Define

gi1···ir(x) =
∂rg(x)

∂xi1 · · · ∂xir

, ij = 1, . . . , d, j = 1, . . . , r, r = 1, 2, . . . .

Write for brevity gi1···ir = gi1···ir(µ). Taylor expansion of n(θ̂ − θ) yields

n(θ̂ − θ) =
1

2!

d
∑

i,j=1

gijZ
(i)Z(j) + n−

1

2
1

3!

d
∑

i,j,k=1

gijkZ
(i)Z(j)Z(k) + · · · . (15)

Substituting (4) into ϑn(X̄, µ)Tϑn(X̄, µ), expanding to a series in terms of Z (i)Z(j)

· · · , using (2) and equating with (15), the coefficients ξi···r can be obtained re-

cursively. In particular, we have, with Ξ−1 = [ξij ],

ξijr =
1

6

d
∑

s=1

gijsξ
rs, (16)

ξijkr =
1

8

d
∑

s=1

gijksξ
rs − 1

48

d
∑

s,t,u,v=1

gistgjkuξ
rsξvtξvu, etc.

A.2. Preliminary results

Let Y1, . . . , YN be a random sample drawn from a d-variate distribution F̃

with mean µ̃ and nonsingular dispersion matrix Σ̃. Define Ȳ =
∑N

i=1 Yi/N

and V = N 1/2(Ȳ − µ̃). Define WN =
∑d

i=1 γiV
(i), and SN by the asymptotic

expansion

SN =
1

2!

d
∑

i,j=1

γijV
(i)V (j) +N− 1

2
1

3!

d
∑

i,j,k=1

γijkV
(i)V (j)V (k) + · · · ,

where V = [V (1), . . . , V (d)]T and the γi··· are some smooth functions of µ̃ symmet-

ric in the subscripts i, · · · . Write γ = [γ1, . . . , γd]
T and let Γ be the d× d matrix

[γij]. Assume that Γ is symmetric and positive definite. Write Γ−1 = [γij ].

Let {ψN} be any fixed sequence converging to 0 as N → ∞. Define F(x) =

PF̃ (ψNWN + SN ≤ x). Assume the conditions of Lemma 2 to be stated below.

Arguing as in Section 4, define a d × d matrix Ξ̃ = [ξ̃ij ] by Ξ̃Ξ̃T = Γ/2, and a

d-variate statistic ϑ̃N = [ϑ̃
(1)
N , . . . , ϑ̃

(d)
N ]T with

ϑ̃
(r)
N =

d
∑

i=1

ξ̃irV
(i) +N− 1

2
1

2!

d
∑

i,j=1

ξ̃ijrV
(i)V (j) + · · · , (17)
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satisfying, for some large integer ν > 0, ϑ̃T
N ϑ̃N = SN + op(N

− ν
2 ), where the ξ̃i···r

are smooth functions of µ̃. The density of ϑ̃N admits an expansion of the form

fϑ̃N
(t) = φΛ̃(t)

{

1 +N− 1

2 G̃1(t) +N−1G̃2(t) + · · ·
}

, (18)

where Λ̃ = Ξ̃T Σ̃ Ξ̃ and the G̃i are odd/even polynomials in t for odd/even i. Define

W̃ = (1/2)Z̃T
0 ΓZ̃0, for Z̃0 = [Z̃

(1)
0 , . . . , Z̃

(d)
0 ]T ∼ N(0, Σ̃). Define, for β ∈ (0, 1),

H̃(x) = P(W̃ ≤ x), Ĩ(x) = E[G̃1(Ξ̃
T Z̃0)Z̃0; W̃ ≤ x], J̃(x) = E[Z̃0Z̃

T
0 ; W̃ ≤ x],

K̃(x) = E[G̃2(Ξ̃
T Z̃0); W̃ ≤ x], and Υ̃(x) = [υ̃1(x), . . . , υ̃d(x)]

T , where υ̃r(x) =
∑d

i,j,s=1 γijsγ
rs

E[Z̃
(i)
0 Z̃

(j)
0 ; W̃ ≤ x], r = 1, . . . , d.

The following lemma states asymptotic expansions for F and its inverse F
−1.

Lemma 2. Assume that F̃ satisfies Cramér’s condition and has finite moments

up to some high order. Then, for x ∈ R,

F(x) = H̃(x) +N−1K̃(x) + ψ2
Nγ

T J̃ ′′(x)
γ

2

−ψNN
− 1

2γT

{

Ĩ ′(x) − Υ̃′(x)

6

}

+O(ψ4
N +N−2), (19)

and, for β ∈ (0, 1),

F
−1(β) = H̃−1(β) − H̃ ′(H̃−1(β))−1

{

N−1K̃(H̃−1(β)) + ψ2
Nγ

T J̃ ′′(H̃−1(β))
γ

2

−ψNN
− 1

2γT

[

Ĩ ′(H̃−1(β)) − Υ̃′(H̃−1(β))

6

]}

+O(ψ4
N +N−2). (20)

Proof of Lemma 2. Note that

F(x) = PF̃ (ϑ̃T
N ϑ̃N ≤ x) − ψN

∂

∂x
E

{

E[WN |ϑ̃N ]; ϑ̃T
N ϑ̃N ≤ x

}

+
1

2
ψ2

N

∂2

∂x2
E

{

E[W 2
N |ϑ̃N ]; ϑ̃T

N ϑ̃N ≤ x
}

+ · · · + op(N
− ν

2 ). (21)

Write Ξ̃−1 = [ξ̃ij ]. Inverting (17), noting (16) and the fact that (Ξ̃Ξ̃T )−1 = 2Γ−1,

we obtain an asymptotic expansion for V (r), which yields that

WN = ϑ̃T
N Ξ̃−1γ − 1

6
N− 1

2 ϑ̃T
N Ξ̃−1Ω̃(Ξ̃T )−1ϑ̃N +Op(N

−1), (22)

where Ω̃ = [ω̃ij] with ω̃ij =
∑d

r,s=1 γrγijsγ
rs. Noting (22), (18) and the fact that
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E[h(Z̃0)] = 0 for all odd functions h, we have

E

{

E[WN |ϑ̃N ]; ϑ̃T
N ϑ̃N ≤ x

}

= E

{(

Z̃T
0 γ − 1

6
N− 1

2 Z̃T
0 Ω̃Z̃0

)

(

1 +N− 1

2 G̃1(Ξ̃
T Z̃0)

)

; W̃ ≤ x

}

+O(N− 3

2 )

= N− 1

2γT Ĩ(x) − 1

6
N− 1

2 γT Υ̃(x) +O(N− 3

2 ). (23)

Similar arguments give that

E

{

E[W 2
N |ϑ̃N ]; ϑ̃T

N ϑ̃N ≤ x
}

= γT J̃(x)γ +O(N−1), (24)

PF̃ (ϑ̃T
N ϑ̃N ≤ x) = H̃(x) +N−1K̃(x) +O(N−2), (25)

and that the omitted terms in (21) are of order O(ψ4
N +ψ3

NN
−1/2). Substituting

(23), (24) and (25) into (21) yields (19). The quantile expansion (20) follows

directly by inverting (19).

A.3. Proof of Proposition 1

We note first that it is easily checked that the conditions assumed by Lemma

2 are satisfied under the conditions of Proposition 1.

Write Z∗ = [Z∗(1), · · · , Z∗(d)]T = m1/2(X̄∗
m − X̄). Define ĝi = gi(X̄), ĝij =

gij(X̄), etc. To prove (7), note first that

m(θ̂∗m − θ̂) =
(m

n

) 1

2

d
∑

r=1

n
1

2 ĝrZ
∗(r) +

1

2!

d
∑

r,s=1

ĝrsZ
∗(r)Z∗(s)

+
1

3!
m− 1

2

d
∑

r,s,t=1

ĝrstZ
∗(r)Z∗(s)Z∗(t) + · · · .

Setting N = m, V = Z∗, γi = n1/2ĝi, γij··· = ĝij···, ψN = (m/n)1/2 and condi-

tioning on X , we may apply Lemma 2 to derive an asymptotic expansion (20) for

the conditional βth quantile F
−1(β) = Ĝ−1

m (β). It follows by expanding smooth

functions of X̄ about µ that

H̃(x) = H(x) + n−
1

2∇H(µ)(x)TZ +Op(n
−1), Ĩ(x) = I(x) +Op(n

− 1

2 ),

J̃(x) = J(x) +Op(n
− 1

2 ), K̃(x) = K(x) +Op(n
− 1

2 ), Υ̃(x) = Υ(x) +Op(n
− 1

2 ),

where ∇H(µ)(x) denotes the d-vector of partial first derivatives of H̃(x) with

respect to X̄, evaluated at X̄ = µ, Υ(x) = [υ1(x), . . . , υd(x)]
T with υr(x) =

∑d
i,j,s=1 gijsg

rs
E[Z

(i)
0 Z

(j)
0 ;W ≤ x], r = 1, . . . , d, and (∇2g(µ))−1 = [gij ]

−1 = [gij ].
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Substituting into (20) and noting that ∇g(µ) = 0 so that γ = n1/2∇g(X̄) =

∇2g(µ)Z +Op(n
−1/2), we have

Ĝ−1
m (β) =H−1(β) − n−

1

2B(β)TZ −m−1H ′(H−1(β))−1K(H−1(β))

− 1

2
mn−1ZTC(β)Z +Op(m

−2 +m2n−2), (26)

where

B(β) =H ′(H−1(β))−1 ×
{

∇H(µ)(H−1(β)) −∇2g(µ)I ′(H−1(β)) +
1

6
∇2g(µ)Υ′(H−1(β))

}

.

Now apply (19) of Lemma 2 with F̃ = F , N = n, ψN = n−1/2, γ = B(β), Γ =

∇2g(µ)+mn−1C(β), γijk··· = gijk···, V = Z and x = H−1(β)−m−1H ′(H−1(β))−1

K(H−1(β)) to get

PF

{

n(θ̂ − θ) ≤ Ĝ−1
m (β)

}

= H̃
(

H−1(β) −m−1H ′(H−1(β))−1K(H−1(β))
)

+O(m−2 +m2n−2). (27)

Recall (6) to obtain

φΛ̃(t) = φΛ(t)
{

1 +mn−1
[

tT Ξ−1∆(β)Ξ−1Σ−1(ΞT )−1t− tr(Ξ−1∆(β))
]

+O(m2n−2)
}

,

so that

H̃(x) =H(x) +mn−1
{

tr
[

Ξ−1Σ−1J(x)∆(β)
]

−H(x) tr(Ξ−1∆(β))
}

+O(m2n−2). (28)

Now (7) follows from (27) and (28), which proves (i).

Next we prove (iii) and then (ii) follows as a special case.

Define ĝ†i = gi(X̄
†
M ), ĝ†ij = gij(X̄

†
M ), etc., Z†† = L1/2(X̄††

M,L − X̄†
M ) and Z† =

M1/2(X̄†
M − X̄). For an asymptotic expansion of the quantile Ĝ†−1

M,L(β) we may

appeal to Lemma 2 conditional on X and X †
M , setting N = L, ψN = (L/M)1/2,

γi = M1/2ĝ†i , γij··· = ĝ†ij··· and V = Z††. It follows that

H̃(x) = H(x) +M− 1

2∇H(µ)(x)T (Z† +M
1

2n−
1

2Z) +Op(M
−1),

Ĩ(x) = I(x) +Op(M
− 1

2 ), J̃(x) = J(x) +Op(M
− 1

2 ),

K̃(x) = K(x) +Op(M
− 1

2 ), Υ̃(x) = Υ(x) +Op(M
− 1

2 ).
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Substituting into (20) and noting that γ=∇2g(µ)(Z†+M1/2n−1/2Z)+Op(M
−1/2),

we have

Ĝ†−1
M,L(β)

=H−1(β) −M− 1

2B(β)T (Z† +M
1

2n−
1

2Z)−L−1H ′(H−1(β))−1K(H−1(β))

−1

2
LM−1(Z†+M

1

2n−
1

2Z)TC(β)(Z† +M
1

2n−
1

2Z) +Op(L
−2+L2M−2).

Apply again Lemma 2, now conditional on X , with N = M , V = Z †, γijk··· =
ĝijk···,

Γ = ∇2g(X̄) + (L/M)C(β),

ψNγ = (M/n)
1

2n
1

2∇g(X̄) +M− 1

2B(β) + LM− 1

2n−
1

2C(β)Z,

x=H−1(β) − n−
1

2B(β)TZ − L−1H ′(H−1(β))−1K(H−1(β))

−1

2
(L/n)ZTC(β)Z,

H̃(x) = β + n−
1

2ZT
{

∇H(µ)(H−1(β)) −H ′(H−1(β))B(β)
}

+(L/M)D(β) − L−1K(H−1(β)) +Op(L
−2 + L2M−2 +M2n−2),

Ĩ(x) = I(H−1(β)) +Op(L
−1 + LM−1),

J̃(x) = J(H−1(β)) +Op(L
−1 + LM−1),

K̃(x) =K(H−1(β)) +Op(L
−1 + LM−1),

Υ̃(x) = Υ(H−1(β)) +Op(L
−1 + LM−1),

to yield an asymptotic expansion for P{M(θ̂†M − θ̂) ≤ Ĝ†−1
M,L(β) | X} up to order

Op(L
−2 + L2M−2). It then follows that

π̂†−1
M,L(α) = α− L−1K(H−1(1 − α)) +

1

2
(M/n)H ′(H−1(1 − α))ZTC(1 − α)Z

+(L/M)D(1 − α) + n−
1

2ZT∇2g(µ)J ′′(H−1(1 − α))B(1 − α)

+Op(L
−2 + L2M−2 +M2n−2).

Setting β = 1 − π̂†−1
M,L(α) in (26), the probability

PF

{

n(θ̂ − θ) ≤ Ĝ−1
m (1 − π̂†−1

M,L(α))
}

(29)

can be expanded using (19) in Lemma 2, with N = n, V = Z, ψN = n−1/2,
γijk··· = gijk···,

Γ = ∇2g(µ) +
(M +m

n

)

C(1 − α),

γ =
{

I + C(1 − α)(∇2g(µ))−1
}

B(1 − α),

x =H−1(1−α)+H ′(H−1(1−α))−1
[

(L−1−m−1)K(H−1(1−α))− L

M
D(1−α)

]

.
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The leading term H̃(x) in (19) can be expanded as in (28) with m/n replaced by

(M +m)/n:

H̃(x) = 1−α+ (L−1−m−1)K(H−1(1 − α)) +
[

(m+M)n−1−LM−1
]

D(1−α)

+O(m−2 +m2n−2 + L−2 + L2M−2 +M2n−2). (30)

The other terms in (19) are of order Op(n
−1), which are swamped by O(m−2 +

m2n−2). Using (30) and taking the complement of (29) yields (9), which proves

(iii).

Note that π̂∗−1
m,` (α) = π̂†−1

m,` (α), so that the coverage of J ∗
m,`(α) can be derived

directly from (9) with M,L set to m, ` respectively. This proves (8) in (ii).

A.4. Proof of Corollary 1.

For (i), the optimal m follows by minimizing max{mn−1,m−1}. For (ii),

consider the problem of minimizing max{`−1,m2n−2, `2m−2} with respect to m

and `. Standard Lagrangian arguments show that the optimal m and ` are n3/4

and n1/2 respectively. In other words, O(`−1 +m2n−2 + `2m−2) is minimized by

taking m ∝ n3/4 and ` ∝ n1/2. Now set in particular ` = 2m2/n (∝ n1/2) to

eliminate the term involving D(1−α). This choice of (m, `) yields the minimum

order O(n−1/2) for the coverage error.

For (iii), first find m,L,M to minimize max{m−2, m2n−2, L−2, L2M−2,

M2n−2}. Standard Lagrangian arguments show that an optimal solution is to

take L = n1/3, M = n2/3 and m ∈ [n1/3, n2/3], so that O(m−2 +m2n−2 + L−2 +

L2M−2 + M2n−2) is minimized by taking L ∝ n1/3, M ∝ n2/3 and m ∝ mn

for mn ∈ [n1/3, n2/3]. To further eliminate the terms involving D(1 − α) and

K(H−1(1 − α)), set in particular m = L ∝ n1/3 and M = (mn)1/2, which yields

the minimum order O(n−2/3) for the coverage error.
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