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1. Introduction

The Markov chain Monte Carlo (MCMC) method has been used extensively

in obtaining a sample from a complicated multivariate probability distribution π.

This method can be implemented as follows: (a) define an ergodic Markov chain

X with stationary distribution π; (b) start the chain in some arbitrary state and

run the chain for a long time, say M steps, where M is a large integer; (c) output

the final state xM . The ergodicity of the Markov chain guarantees that, if M is

sufficiently large, then the distribution of XM is close to π.

One of the problems with the MCMC approach is that it may be difficult to

determine how large M should be. It is now well-known that perfect simulation

methods, first proposed by Propp and Wilson (1996), can be used to solve this

problem. A perfect simulation algorithm is one which can self-verify whether the

simulated chain has reached stationarity and thus produce exact samples from

the equilibrium distribution π.

The development in the area of perfect simulation has been rapid. There are

two main types of methods: one is based on the CFTP idea proposed by Propp

and Wilson (1996), the other the interruptible method proposed by Fill (1998).

In the following we concentrate on CFTP methods. Most of the CFTP methods

depend on a partial order defined in a state space, so they are called monotone

CFTP methods. Dominated CFTP is a variant of CFTP developed by Kendall

(1998) that permits perfect simulation of a general class of point processes (also

see Kendall and Møllêr (2000)). Dominated CFTP has an importance going
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beyond point processes since it allows applications of CFTP to a wide class of

non-uniformly ergodic Markov chains which need not be monotonic. Kendall

and Thönnes (1999) used dominated CFTP to carry out perfect simulations in

stochastic geometry, showing how to get perfect samples from Boolean models

conditioned to cover a finite set of points. Extended state-space CFTP presented

by Cai and Kendall (2002) can be used to obtain a perfect sample from the

equilibrium distribution π of a discrete or continuous time Markov chain which

is not uniformly ergodic and which takes values in a state space, without assuming

any monotonicity. However, we need to explore the monotonicity in an extended

state space. Cai (2002) also studied how the rates of convergence for Gibbs fields

depend on the interaction and the kind of scanning used by monotone CFTP

methods. Wilson (2000) presented a read-once perfect simulation method and

applied it to locally stable point processes. His method is related to CFTP, but

only runs the Markov chain forward in time and never restarts it at previous

times in the past. However, the method still depends heavily on a monotone

structure.

Another variant of CFTP was developed in the direction of not assuming any

monotonicity at all. For example, Murdoch and Green (1998) extended CFTP

to various MCMC samplers on a continuous state space. Their methods do not

depend on any monotonicity structures but are not applicable to point processes.

Fernández, Ferrari and Garcia (2002) presented a perfect simulation algorithm for

measures that are absolutely continuous with respect to some Poisson processes

and that can be obtained as invariant measures of birth-death processes. Their

algorithm does not require monotonicity and can directly provides samples of an

infinite-volume measure, but it seems difficult to apply them to other problems.

Huber (1998) and Harvey and Neal (2000) have shown that the CFTP method

may be generalized by using a single summary state rather than a pair of extremal

states. This single state summarizes one’s knowledge of the possible states of the

system, allowing the state of some subsystems to be uncertain. Childs, Patterson

and Mackay (2001) developed a summary state CFTP method for Ising models.

The purpose of this paper is to present a general non-monotone CFTP

method and to show its applications through general birth-death processes and

area-interaction point processes.

After reviewing the basic form of the monotone CFTP method presented

by Propp and Wilson (1996) in Section 2, we give a general description of the

non-monotone CFTP method in Section 3. The application of the new method

to a birth-death process is given in Section 4, to area-interaction point processes

in Section 5. Finally, conclusions and comments are given in Section 6.
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2. The Simplest form of Monotone CFTP Method

The standard MCMC method is to run a Markov chain from time, say, t = 0

to infinity. Since this is impossible, the algorithm has to stop when the chain

has been run long enough. It is difficult to know then whether the output is

a sample from the equilibrium distribution of the Markov chain or not. The

CFTP method provides a way to determine when the algorithm should stop and

guarantees that, under certain conditions, the output at time 0 is a sample from

the equilibrium distribution of the Markov chain.

Specifically, the simplest CFTP method (Propp and Wilson (1996)) runs a

Markov chain as follows. Suppose the state space of the Markov chain is finite.

Start the simulation at time −T from all possible starting points and run these

chains till time 0. If all the chains coalesce at the same state by time 0 then the

simulation finishes. The output is a sample from the equilibrium distribution of

the Markov chain. If all the paths started at time −T have not coalesced by time

0, choose a new value −T1 < −T and restart the simulation from time −T1. In

this, re-use the random numbers ut which are used in the previous stage of the

simulation. The process should be continued until all chains coalesce by time 0.

To deal with the case when the state space is very large or infinite, a mono-

tone CFTP method can be used (Propp and Wilson (1996)). Here suppose the

state space S admits a natural partial order ≤, and that there exist 0̂ and 1̂ in S

such that 0̂ ≤ x ≤ 1̂ for all x ∈ S. Furthermore suppose we can define an update

rule φ such that φ(x, u) ≤ φ(y, u) for all u whenever x ≤ y. Then we have the

simplest form of monotone CFTP algorithm in Table 1.

Table 1. Simplest form of Monotone CFTP algorithm.

Monotone CFTP(−T ):

upper ← 1̂

lower ← 0̂
for t = −T, · · · , 1

upper ← φ(upper, ut)

lower ← φ(lower, ut)

if upper = lower

output upper
else

Monotone CFTP(-2T)

3. Non-monotone CFTP Method

To develop a monotone CFTP algorithm we need to explore a certain mono-

tone structure in the original state space or in an extended state space of the
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Markov chain. Unfortunately there are many cases in which the monotonicity

does not exist or is difficult to define. Therefore it is important to develop a

method which does not require monotone structures.

Let us look at the monotone CFTP method in another way. Let X = {Xt}

be the Markov chain run from its equilibrium distribution π, corresponding to

running from time −∞. Let Xmax = {Xmax
t } and Xmin = {Xmin

t } be the upper

and lower chains run from t = −T . Then for t0 > −T , we have

Xmin
t0
≤ Xt0 ≤ Xmax

t0
.

Let St0 be the set of all states that lie between Xmin
t0

and Xmax
t0

. Then St0 =

Wt0 ∪ Vt0 , where Wt0 = {Xt0} and Vt0 = St0\{Xt0}. So Wt0 contains an exact

sample of π, we call Wt0 the certain part of X at t0; Vt0 contains other states of

the chain, we call it the uncertain part of X at t0.

Although, theoretically, we know Xt0 is an exact sample of π, it is not easy

to pick up Xt0 from the set St0 if it contains more than one state. However, if

the two extreme chains have coalesced by time 0, then Xmin
0 = X0 = Xmax

0 , so,

V0 = ∅ and we obtain a perfect sample.

Monotone CFTP provides a way to determine when the uncertain part of

X has disappeared. Although this way to look at CFTP has been explored

before, little has been done on how to use it to construct non-monotone CFTP

algorithms. In the following we give general principles of the non-monotone

CFTP method, then give some applications.

To construct a non-monotone CFTP we run a single chain, rather than two

extreme chains. Let X−T
t be the state of a Markov chain X at time t starting

from time −T . If the chain has reached its equilibrium by time t0, then X−T
t0

must contain all the properties of being an exact sample from the equilibrium.

We view the single state X−T
t0

as a union of certain and uncertain parts, once the

uncertain part disappears by time 0 we have a perfect sample.

Specifically, a general non-monotone CFTP can be constructed as follows.

• Start the chain from time −T and run it to time 0.

• For −T ≤ t ≤ 0, let X−T
t = W−T

t tV −T
t , where t is the union over the two

types of information.

• If by time 0 the uncertain part V −T
0 of X−T

0 disappears, we have a perfect

sample X−T
0 = W−T

0 from the equilibrium distribution of X.

• Otherwise, we go back further in time and re-run the chain until the uncer-

tain part V −T
t of X−T

t disappears by time 0.
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The detailed construction of the non-monotone CFTP algorithm is problem

specific. In the following we apply the general method to two examples: a general

birth-death process and an area-interaction point process. In the two examples

we show both the monotone and the non-monotone constructions, and we see

how to express the two types of information in different problems.

4. General Birth-death Processes

Suppose X is a continuous-time Markov chain on the non-negative integers

such that each individual departs at a constant rate µ, and individuals arrive at

rate α(X) depending on the current population. That is, the Markov chain has

transition rates
X → X + 1 at rate α(X),

X → X − 1 at rate µX.
(1)

If for all X we have α(X)>0,
∑∞

j=0vj <∞ with v0 =1, and vj =(α(0) · · · α(j−1))

/(µjj!) for j ≥ 1, then the stationary distribution of X is given by

πj =
vj

∑∞
i=0 vi

, j = 0, 1, 2, · · · .

We want to sample from π = (π0, π1, · · · ).

4.1. Monotone CFTP approach to the birth-death processes

Kendall (1996) showed how to construct a dominated CFTP algorithm for

the birth-death process under the monotone condition

0 < α(0) ≤ α(X) ≤ α(X + 1) ≤ λ . (2)

Thus, given λ, we define another process Y such that Y → Y + 1 at rate λ and

Y → Y − 1 at rate µY . It is easy to prove that the Y process satisfies detailed

balance and has an equilibrium distribution which is Poisson of mean λ/µ.

Now let L be the ordered set of birth-death times of Y on [−T, 0] when Y

is simulated from its equilibrium distribution. For each time incidence t in L

we attach a mark pt to it, where pt is a value randomly chosen in the interval

(0, 1). Let X−T,max
t (X−T,min

t ) be the value of the maximum (minimum) process

at time t starting from time −T . Then under (2) we can define the evolution of

the maximum and minimum processes of X as follows.

• At time −T set X−T,max
−T = Y−T and X−T,min

−T = 0.

• For t ∈ L,
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if t is a birth time of Y ,

X−T,max
t = X−T,max

t− + 1 if pt ≤
α(X−T,max

t− )

λ
,

X−T,min
t = X−T,min

t− + 1 if pt ≤
α(X−T,min

t− )

λ
;

if t is a death time of Y ,

X−T,max
t = X−T,max

t− − 1 if pt ≤
X

−T,min

t−

Yt−
,

X−T,min
t = X−T,min

t− − 1 if pt ≤
X

−T,max

t−

Yt−
.

• If X−T,max
0 = X−T,min

0 we output X−T,max
0 . Otherwise we go back further

in time and repeat the above procedure until coalescence occurs.

Note that in the above algorithm Y should be simulated from its equilibrium

distribution and both maximum and minimum processes use the same marks pt.

Coalescence eventually occurs for large enough T . For example, when Y = 0

coalescence occurs. Furthermore, it is not difficult to prove that after coalescence

the chain will evolve with the transition rates given by (1) and we have a perfect

sample from the equilibrium distribution of X.

The monotone condition (2) plays a crucial role in the above construction.

It guarantees that if there is a birth in the minimum process, then there must be

a birth in the maximum process, because the acceptance probabilities satisfy

α(X−T,min
t− )

λ
≤

α(X−T,max
t− )

λ
.

On the other hand, if there is a death in the maximum process, then there must

be a death in the minimum process, because

X−T,min
t−

Yt−
≤

X−T,max
t−

Yt−
.

So at any time −T ≤ t ≤ 0, we always have X−T,min
t ≤ X−T,max

t . The condition

(2) also guarantees that the virtual chain (the chain starting from −∞) is sand-

wiched between the two extreme chains (The details can be found in Kendall

(1996)).

4.2. Non-monotone CFTP Approach to the Birth-death Processes

Suppose the overall birth rate α(X) does not satisfy (2) but 0 < α(X) ≤ λ.

To construct a non-monotone CFTP method in this case we need to express the
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two parts of Xt clearly. First we write X−T
t = W−T

t + V −T
t , where X−T

t is the

number of all possible individuals in the population at time t if the chain starts

from time −T , W−T
t is the number of individuals we are sure should be in the

population at time t, and V −T
t is the number of individuals for whom we are

not sure whether they should be in the population at time t or not. We assume

that we know nothing about the individuals in the population at time −T , so

V −T
−T = Y−T , and W−T

−T = 0. The construction of X−T
t process will depend on

the constructions of W−T
t and V −T

t which are shown as follows.

• At time −T set W−T
−T = 0, V −T

−T = Y−T .

• For t ∈ L,

if t is a birth time of Y ,

W−T
t = W−T

t− + 1, V −T
t = V −T

t− , if pt ≤
min

v≤V
−T
t−

α(W−T
t− +v)

λ
,

W−T
t = W−T

t− , V −T
t = V −T

t− , if pt >
max

v≤V
−T
t−

α(W−T
t− +v)

λ
,

W−T
t = W−T

t− , V −T
t = V −T

t− + 1, if
min

v≤V
−T
t−

α(W−T
t− +v)

λ
< pt

≤
max

v≤V
−T
t−

α(W−T
t− +v)

λ
;

if t is a death time of Y ,

W−T
t = W−T

t− − 1, V −T
t = V −T

t− , if pt ≤
W−T

t−

Yt−
,

W−T
t = W−T

t− , V −T
t = V −T

t− , if pt >
X−T

t−

Yt−
,

W−T
t = W−T

t− , V −T
t = V −T

t− − 1, if
W−T

t−

Yt−
< pt ≤

X−T
t−

Yt−
.

• If V −T
0 = 0 we output X−T

0 = W−T
0 . Otherwise we go back further in time

and repeat the above procedure until V −T
0 = 0.

In the following we show the correctness of the above construction.

Theorem 1. Suppose we simulate X with an initial value X−T
−T = W−T

−T +V −T
−T =

Y−T . If there exists t0 ∈ [−T, 0] such that V −T
t0

= 0, then V −T
t = 0 for all
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t ∈ [t0, 0]. Furthermore, the process X−T
t = W−T

t for t > t0 evolves as a birth-

death process defined by (1).

Proof. First note that for each fixed initial time −T , we can simulate X with

an initial value X−T
−T = Y−T as follows.

If Y has a birth at t (Yt = Yt− +1), then X−T
t = X−T

t− +1 if pt ≤ α(X−T
t− )/λ,

and X−T
t = X−T

t− otherwise.

On the other hand, if Y has a death at t (Yt = Yt−−1), then X−T
t = X−T

t− −1

if pt ≤ X−T
t− /Yt−, and X−T

t = X−T
t− otherwise.

Kendall (1996) showed that the process X constructed above is a birth-death

process defined by (1).

Now let us look at the non-monotone CFTP algorithm. Suppose V −T
t0

= 0

and t > t0 is the first jump time of X after t0. Then V −T
t− = V −T

t0
= 0, X−T

t− =

W−T
t− , and

min
v≤V −T

t−

α(W−T
t− + v) = max

v≤V −T
t−

α(W−T
t− + v) = α(W−T

t− ) = α(X−T
t− ).

So if t is a birth time of Y , then

W−T
t = W−T

t− + 1, V −T
t = V −T

t− = 0, if pt ≤
min

v≤V
−T
t−

α(W−T
t− +v)

λ
=

α(X−T
t− )

λ
,

W−T
t = W−T

t− , V −T
t = V −T

t− = 0, if pt >
max

v≤V
−T
t−

α(W−T
t− +v)

λ
=

α(X−T
t− )

λ
,

and W−T
t = W−T

t− , V −T
t = V −T

t− + 1 will never happen for t > t0. Therefore we

have X−T
t = W−T

t + V −T
t = W−T

t .

On the other hand, if t is a death time of Y , then

W−T
t = W−T

t− − 1, V −T
t = V −T

t− = 0, if pt ≤
W−T

t−

Yt−
=

X−T
t−

Yt−
,

W−T
t = W−T

t− , V −T
t = V −T

t− = 0, if pt >
X−T

t−

Yt−
,

and W−T
t = W−T

t− , V −T
t = V −T

t− − 1 will never happen for t > t0. It is clear

that, in any case, we have X−T
t = W−T

t + V −T
t = W−T

t . Therefore the process

X−T
t = W−T

t for t > t0 is a birth-death process defined by (1). Furthermore,

V −T
t = 0 for all t ∈ [t0, 0] and, specifically, we have V −T

0 = 0.

It is noted that Yt = 0 will eventually occur for large enough T , so V −T
t = 0

will occur for large enough T . Furthermore, we have the following result.

Theorem 2. Suppose Yt0 = 0 for some t0 ∈ [−T, 0]. Then for any −S ≤ −T ≤
t0 ≤ t ≤ 0, we have X−S

t = X−T
t .
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Proof. Since Yt0 = 0, and X−T
t0

= W−T
t0

+ V −T
t0
≤ Yt0 , X−S

t0
= W−S

t0
+ V −S

t0
≤

Yt0 , we see that W−S
t0

= W−T
t0

= 0, V −S
t0

= V −T
t0

= 0, X−S
t0

= X−T
t0

= 0.

Therefore, any chains starting from any time −S ≤ −T will coalesce at time t0.

Furthermore, it follows from Theorem 1 that for any t ∈ [t0, 0], X−S
t = X−T

t =

W−T
t . This completes the proof.

Since we know that the process (1) converges to its equilibrium, it follows

from Theorem 1 and Theorem 2 that the value of X−T
0 = W−T

0 is a perfect

sample from this equilibrium distribution.

5. Area-interaction Point Processes

Consider an area-interaction point process in Rd with distribution having

a Radon-Nikodym density p(X) with respect to the unit rate Poisson process

restricted to a compact window W. Thus

p(X) = αλ#(X)γ−md(X⊕G) ,

where α is a normalization constant, λ, γ are positive parameters, and the grain

G is a compact subset of Rd, X ⊕G =
⋃

{x⊕G : x ∈ X}. The attractive case

has γ > 1, while γ < 1 corresponds to a repulsive case. We want to obtain a

perfect sample from this point process.

5.1. Monotone CFTP approach to area-interaction processes

Following Kendall’s (1998) work, a dominant process can be constructed as

a space-time Boolean model Ψ ⊂ W ×R:

Ψ =
⋃

{(G⊕ x)× [s, s + `] : [(x, s, `); p] ∈ Z} ,

where Z is a Poisson process on Rd×R×(0,∞)× [0, 1] governed by the intensity

measure
(

λe−`I[x∈W ]

)

md(dx)m1(ds)m1(d`)m1(dp) .

Here s is called the birth time of the cylinder (G ⊕ x) × [s, s + `], and s + ` is

called the death time of the cylinder. Furthermore for each (G⊕ x), a mark p is

attached with p chosen randomly in (0, 1).

The basic idea of the dominated CFTP method for area-interaction point

processes is to use the ordered list of space-time cylinder birth and death times

lying in [−T, 0] in order to construct two time-evolving point processes Y max(−T ,

u), Y min(−T, u) on W ⊆ Rd such that Y (−T, u) will always be sandwiched

between Y max(−T, u) and Y min(−T, u) for any −T ≤ u ≤ 0, these all have the

common equilibrium distribution which is the distribution of the target area-

interaction point process X.
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Specifically let L be the set of ordered list of space-time cylinder birth and

death times lying in [−T, 0] and take

Z [−T,0] = {[(x, s, `); p] ∈ Z : −T ≤ s + `, s ≤ 0} ,

Ξ(−T, t) = Y (−T, t−)⊕G =
⋃

{G⊕ x : x ∈ Y (−T, t−)},

Ξmin(−T, t) = Y min(−T, t−)⊕G, Ξmax(−T, t) = Y max(−T, t−)⊕G.

Then the construction of a dominated CFTP for the area-interaction process

when d = 2 is given as follows.

• At time −T set

Y max(−T,−T ) = {x : [ (x, s, l); p ] ∈ Z [−T,0], s≤ −T ≤ s+l},

Y min(−T,−T ) = {x : [ (x, s, l); p ] ∈ Z [−T,0], s≤ −T ≤s+l, p≤γ−m2(G)}.

• For t ∈ L,

if t is a death time of a cylinder,

Y min(−T, t) = Y min(−T, t−)\{x},

Y max(−T, t) = Y max(−T, t−)\{x};

if t is a birth time of a cylinder and γ > 1,

Y min(−T, t) = Y min(−T, t−) ∪ {x} if p ≤ γ−m2((G⊕x)\Ξmin(−T,t−)),

Y max(−T, t) = Y max(−T, t−) ∪ {x} if p ≤ γ−m2((G⊕x)\Ξmax(−T,t−));

if t is a birth time of a cylinder and γ < 1,

Y min(−T, t) = Y min(−T, t−) ∪ {x} if p ≤ γm2(G)−m2((G⊕x)\Ξmax(−T,t−)),

Y max(−T, t) = Y max(−T, t−) ∪ {x} if p ≤ γm2(G)−m2((G⊕x)\Ξmin(−T,t−)).

• If Y min(−T, 0) = Y max(−T, 0) we output Y min(−T, 0). Otherwise, we go

back further in time and repeat the above procedure until coalescence oc-

curs.

Kendall (1998) proved that the above algorithm terminates at finite time

with probability one and the output is a perfect sample from the area-interaction

point process.
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5.2. Non-monotone CFTP approach to area-interaction point pro-

cesses

From Kendall (1998) we see that the monotone property of the acceptance

probability involved in the above construction is crucial. Without using this

monotone structure, we need to explore a way of expressing the uncertainty at

any time t.

It is noted that the state of the underlying Markov chain Y (−T, t) at time

t, starting from time −T , is a point pattern in a bounded window W. By using

this fact we let

Y (−T, t) = W (−T, t) ∪ V (−T, t),

where W (−T, t) is the part of Y (−T, t) which consists of all the points that

should be in the point configuration Y (−T, t) at time t, and V (−T, t) is the part

of Y (−T, t) which consists of all the points that may or may not be in the Y (−T, t)

at time t. Furthermore, let all the points in W (−T, t) have an extra mark q = 0

and all the points in V (−T, t) have an extra mark q = 1. Then when all the points

in Y (−T, t) have marks q = 0 we have a perfect sample from the equilibrium

distribution. Specifically, a dominated non-monotone CFTP method for area-

interaction point processes can be constructed as follows ( the construction of

W (−T, t) and V (−T, t) are implicit).

• At time −T , set Y (−T,−T ) = {x : [ (x, s, l); p ] ∈ Z [−T,0], s ≤ −T ≤ s + l}

and assign marks q = 1 to all the points.

• For t ∈ L,

if t is a death time of a cylinder [(x, s, l) : p]∈Z, Y (−T, t)=Y (−T, t−)\{x};

if t is a birth time of a cylinder and γ > 1, then if

p ≤ γ−m2((G⊕x)\Ξ(−T,t−)) (3)

is independent of those points with q = 1 and alive at time t−, we have

Y (−T, t) = Y (−T, t−) ∪ {x} and assign a mark q = 0 to the new-born x,

and if

p > γ−m2((G⊕x)\Ξ(−T,t−)) (4)

is independent of those points with q = 1 and alive at time t−, we have

Y (−T, t) = Y (−T, t−). In any other cases we have Y (−T, t) = Y (−T, t−)∪

{x} and assign a mark q = 1 to the new-born x.

If t is a birth time of a cylinder and γ < 1, then if

p ≤ γm2(G)−m2((G⊕x)\Ξ(−T,t−)) (5)
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is independent of those points with q = 1 and alive at time t−, we have

Y (−T, t) = Y (−T, t−) ∪ {x} and assign a mark q = 0 to the new-born x,

and if

p > γm2(G)−m2((G⊕x)\Ξ(−T,t−)) (6)

is independent of those points with q = 1 and alive at time t−, we have

Y (−T, t) = Y (−T, t−). In any other cases we have Y (−T, t) = Y (−T, t−)∪
{x} and assign a mark q = 1 to the new-born x.

• If all the points in Y (−T, 0) have a mark q = 0, we output Y (−T, 0).

Otherwise, we go back further in time and repeat the above procedure until

q = 0 for all the points in Y (−T, 0).

Note that conditions (3), (4), (5) and (6) are easy to check since only those

grains which overlap with the new born grain are involved. Comparing with the

dominated monotone CFTP for the area interaction point processes, we see that

• All points which are accepted with q = 0 are those which should be accepted

by both maximal and minimal processes at time t.

• All points which are accepted with q = 1 are those which should be accepted

only by the maximal process.

• All points which are rejected are those which should be rejected by both

maximal and minimal processes.

Therefore, once all the points in the pattern by time t = 0 have q = 0, the

maximal and minimal processes coalesce and we have a perfect sample.

5.3. The performance of the algorithm and examples

For each run the program terminates once a perfect sample is obtained. The

running time depends on the values of λ, γ and the radius of the grain r, etc. The

relationship between them is complicated. In the following, we consider several

special cases. In all cases, the length of the observed window W is 10, the initial

time interval is [−2, 0]. All the results are obtained by running the program on

a COMPAQ Laptop (Pentium II, 64 MB memory).

(A) Relationship between running time and the values of λ.

In the attractive case, we let ln γ=2, r=0.5, λ=0.1, 0.5, 1, 1.5, . . . , 4.5, 5, 6, 7.

In the repulsive case, we let ln γ = −2, r = 0.5, λ = 0.1, 0.5, 1, 1.5, . . . , 4.5, 5.

For each value of λ, we ran the corresponding program 50 times. Each time

we started with a different random seed for the random number generator. After

each run we recorded the CPU time. Therefore, for each λ, we have 50 recorded

running times. By working out the sample mean x̄λ and the sample standard
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deviation sλ of the running time, we obtained Figure 1. In Figure 1 the solid

curves are the sample means, the two dash curves are the curves of x̄λ ± 2 sλ.
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(a) Attractive case with ln γ = 2, r = 0.5 and λ = 0.1, 0.5, 1, 1.5, . . . , 4.5, 5, 6, 7.

(b) Repulsive case with ln γ = −2, r = 0.5, and λ = 0.1, 0.5, 1, 1.5, . . . , 4.5, 5.

Figure 1. Running time (in seconds) versus the values of λ.

(B) Relationship between running time and the value of γ.

In the attractive case, we let λ = 1, r = 0.5, ln γ = 0, 0.5, 1.5, . . . , 4.5, 5, 6, 7,

8, 9, 10, 20, 30, 40.

In the repulsive case, we let λ = 1, r = 0.5, ln γ = 0,−0.5,−1.5, . . . ,−4.5,−5.

As in (A), for each value of lnγ we ran the corresponding program 50 times

and recorded the running time. The results are shown in Figure 2.
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(b) Repulsive case with λ = 1, r = 0.5 and ln γ = 0,−0.5,−1.5, . . . ,−4.5,−5.

Figure 2. Running time (in seconds) versus the values of ln γ.
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(C) Relationship between running time and the values of r.

In the attractive case, we let λ = 1, ln γ = 2, and r = 0.1, 0.2, . . . , 1.2, 1.3.

In the repulsive case, we let λ = 1, ln γ = −2, and r = 0.1, 0.2, . . . , 0.7.

Again, as in (A), for each value of r we ran the corresponding program 50

times and recorded the running time. The results are shown in Figure 3
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(a) Attractive case with λ = 1, ln γ = 2, and r = 0.1, 0.2, . . . , 1.2, 1.3.

(b) Repulsive case with λ = 1, ln γ = −2, and r = 0.1, 0.2, . . . , 0.7.

Figure 3. Running time (in seconds) versus the values of r.

There are several common features in Figures 1, 2 and 3. First, as values of

the parameters increase (or γ decreases in the repulsive case) the running time

also increases. This is what was expected, because in this case the interaction

between points becomes stronger when the number of points in a fixed window

W increases, when the value of γ changes, which itself measures the level of

interaction in some way, and when the radius of the grain increases so that more

and more grains overlap with each other.

Second, on average, the repulsive case program is slower than the attractive

one, especially when the absolute values of the parameters become large. However

we would like to comment that this is true only for the specific values of the

parameters we have chosen. Indeed when we checked the running times, we

found that for the parameter values λ = 1, ln γ = 2 and r = 0.5 in the attractive

case, λ = 1, ln γ = −2 and r = 0.5 in the repulsive case, on average, the repulsive

case program is faster than the attractive one. The region of triples (λ, γ, r) for

which the attractive case method is faster than the repulsive case needs further

investigation.

Third, the variations of the running time increase as the values of the pa-

rameters increase (or γ decreases in the repulsive case). A possible explanation
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is as follows. The stronger the interaction between points, the longer running
time is required. The longer running time increases the chances of getting an
“extreme” point pattern during the simulation and this needs longer running
time for coalescence. Consequently, the variability of the running time increases.

Next we show two perfect samples from an area-interaction point processes.
The parameters are set as follows.

For the attractive area-interaction point process, we let λ = 1, γ = e2 = 7.39,
the length of the window W be 10, the radius of the grain be 0.5, and the initial
time interval be [−2, 0]. We run the attractive program on the above setting and
get the results shown in Figure 4.
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Perfect sample from an attractive area-interaction point process with λ = 1,
γ = e2 = 7.39, the length of the window is 10, the radius of the grain is
0.5 and the initial time interval is [−2, 0]. In the figure, the cross points
are those in the initial pattern, the cross-circle points are those in the final
perfect sample.

Figure 4. A perfect sample from an attractive area-interaction point process.

For the repulsive area-interaction point process, we let λ = 1, γ = e−2 =
0.135, the length of the window W be 10, the radius of the grain be 0.5, and
the initial time interval be [−2, 0]. We run the repulsive program on the above
setting and get the results shown in Figure 5.

Note that we use the same initial Poisson point pattern in the observed
windowW for both examples. From Figure 4 and Figure 5 we see that the union
of grains of the final sample from the attractive area-interaction point process
covers less area of the window W than that from the repulsive area-interactive
point process. Especially, it is worth mention that the attractive point process
tends to accept those points which are close together, while the repulsive point
process tends to reject them. This is as expected.
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Perfect sample from a repulsive area-interaction point process with λ = 1,

γ = e−2 = 0.135, the length of the window is 10, the radius of the grain is

0.5, and the initial time interval is [−2, 0]. In the figure, the cross points

are those in the initial pattern, the cross-circle points are those in the final

perfect sample.

Figure 5. A perfect sample from a repulsive area-interaction point process.

6. Conclusions and Comments

We have presented a non-monotone CFTP method. We applied the new

method to a general birth-death process and to attractive/repulsive area-inter-

action point processes.

If the uncertainty at any time t can be expressed by the difference between

maximum and minimum states according to some monotone structure, then the

method presented in this paper is similar to the corresponding monotone CFTP

method which has been shown through area-interaction point processes. How-

ever, if there exists no monotone structure, the method presented in this paper

will work. Moreover, the new method needs less computer memory since only

one chain needs to be run.

Finally we point out that it is possible to construct a dominated non-mono-

tone CFTP algorithm for conditional Boolean models (Kendall and Thönnes

(1999)) and for correlated Poisson random variables conditioned to be positive

(Cai and Kendall (2002)).
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