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Abstract: The advent of complete genetic linkage maps of DNA markers has made

the systematic study of mapping the quantitative trait loci (QTL) in experimental

organisms feasible. In recent years, methodological research on QTL mapping has

been extensively carried out. However, some related statistical problems remain

unsolved. In this article, we consider these problems for the method of interval

mapping proposed by Lander and Botstein (1989). We tackle the intrinsic non-

identifiability of the involved irregular statistical models and establish the consis-

tency of the maximum likelihood estimates of the putative QTL effect and position.

We derive by a non-standard approach the asymptotic distribution of the likelihood

ratio test (LRT) statistic for QTL detection. Our result provides a structure for

the asymptotic distribution which enjoys the invariance property of regular models.

The applications of the results to the determination of threshold values or p-values

of interval mapping for QTL detection are discussed and developed. Simulation

studies are performed to compare the new approach with the existing methods.

The results are presented only for the backcross model but can be extended easily

to the intercross model.

Key words and phrases: Asymptotic distribution, backcross, Gaussian process, iden-

tifiability, likelihood ratio test; mixture model, QTL mapping.

1. Introduction

The variations of many quantitative traits in human, plants and animals can

be attributed mainly to the segregation of genetic factors. Mapping quantitative

trait loci (QTL) is of important scientific and economic value in medical research,

in plant and animal breeding. Since the seminal paper of Lander and Botstein

(1989) on the method of interval mapping, methodological research on QTL

mapping has been extensively carried out in recent years. For instance, Haley

and Knott (1992), Zeng (1993) and Haley, Knott and Elsen (1994) explored

regression methods for QTL mapping; Jansen (1993), Zeng (1994) and Kao, Zeng

and Teasdale (1999) developed variants of interval mapping such as composite

interval mapping and multiple interval mapping.

The statistical models involved in QTL mapping are mixture models, which

are irregular in terms of identifiability. This renders the classical asymptotic
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theory inapplicable and poses great challenges to likelihood-based procedures.

For instance, it is a thorny problem to determine the threshold values of interval

mapping for QTL detection. Some efforts have been made to cope with this

problem. For example, Lander and Botstein (1989, 1994), Feingold, Brown and

Siegmund (1993), Rebai, Goffinet and Mangin (1994) and Dupuis and Siegmund

(1999) considered using certain stochastic processes for the determination of the

threshold values. A stochastic process used in this way is usually considered

as an approximation to an empirical process arising from the statistical test

procedure. However, no serious effort has been made so far to justify the validity

of such approximations. The limiting null distribution of the LRT statistic is

still a mystery. Although ad hoc methods such as those proposed by Rebai et

al. (1994) and Feingold et al. (1993) have been used for determining threshold

values, the rigorous determination of such threshold values remains an unsolved

problem.

In this article, we establish the consistency of the maximum likelihood esti-

mates (MLE) and a novel theorem for the asymptotic distribution of the LRT

statistic for the interval mapping model. The issues we address are of interest

not only in QTL mapping, but also in a more general context of mixture mod-

els in statistics. Our results provide the rigorous basis for the determination of

threshold values of interval mapping for QTL detection. The applications of the

results to the determination of threshold values or p-values are also discussed

and developed. Simulation studies are performed to compare the new approach

with existing methods proposed by Feingold et al. (1993) (FBS) and Rebai et al.

(1994) (RGM). The simulation results demonstrate that our method performs

extremely well in general, and performs better than FBS and RGM when the

latter approaches are applicable. Furthermore, our method is readily applicable

in situations where more than one chromosome is under investigation, while the

FBS and RGM methods are restricted to the case of a single chromosome.

The article is organized as follows. In Section 2, some background for interval

mapping is described. In Section 3, the consistency of the MLE for the inter-

val mapping model is dealt with. In Section 4, the theorem on the asymptotic

distribution of the LRT statistic is presented. In Section 5, the issue of the de-

termination of threshold values for interval mapping is addressed, and simulation

results are reported. The technical details are given in the Appendix.

2. Background for Interval Mapping Models

In QTL mapping for experimental organisms, either a backcross or an inter-

cross is arranged for segregating progenies. For simplicity, we elaborate on the

backcross model in this article. However, the arguments are also applicable to

the intercross model.
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Let A and B be two markers and Q be a putative QTL flanked by A and

B. Let γ, r and s denote, respectively, the recombination fractions between A

and B, between A and Q, and between Q and B, where 0 < γ < 1/2 is known.

Note that γ = r + s − 2rs under the assumption of no interference, and hence

s = (γ− r)/(1− 2r). In the backcross model, the possible genotypes are AA and

Aa at A , BB and Bb at B, and QQ and Qq at Q. Let X be a coding variable for

the genotypes at the two markers: X = 1, 2, 3 or 4 according as the genotypes are

AA/BB,AA/Bb,Aa/BB or Aa/Bb. The genotype of the putative QTL cannot

be observed but can be inferred from the genotypes of the flanking markers.

Given the genotypes of the flanking markers, the conditional probabilities for the

putative QTL to take genotype QQ and Qq, i.e., P (QQ|X = l) and P (Qq|X = l),

are given in Table 1 below. Also given in Table 1 are the probabilities P (X = l)

of the marker genotypes.

Table 1. QTL genotype probabilities.

Marker Genotype X P (X = l) P (QQ|X = l) P (Qq|X = l)

AA/BB 1 1−γ

2
(1−r)(1−s)

1−γ

rs

1−γ

AA/Bb 2 γ

2
(1−r)s

γ

(1−s)r
γ

Aa/BB 3 γ

2
(1−s)r

γ

(1−r)s
γ

Aa/Bb 4 1−γ

2
rs

1−γ

(1−r)(1−s)
1−γ

For convenience, we set q(l) = P (X = l) and p(l, r) = P (QQ|X = l). Let Y

be the quantitative trait of concern. It is assumed that, given the genotype Qq

of Q, Y follows a normal distribution with mean µ1 and variance σ2, and that,

given the genotype QQ of Q, Y follows a normal distribution with mean µ2 and

the same variance σ2. Thus the joint probability density function (pdf) of Y and

X is given by

f(y, x|θ) = q(x)f(y|x, θ), (1)

where θ = (σ, r, µ1, µ2) and

f(y|x, θ) = {1 − p(x, r)}σ−1φ
{y − µ1

σ

}

+ p(x, r)σ−1φ
{y − µ2

σ

}

. (2)

Here φ(·) denotes the pdf of the standard normal distribution. The parameter

space of θ is Θ = {θ = (σ, r, µ1, µ2): σ > 0, 0 ≤ r ≤ γ, |µ1| ≤ M , |µ2| ≤ M},
where M > 0 is assumed to be finite. The following properties will be useful

later. Since γ < 1/2, we have that for any 0 ≤ r ≤ γ,

p(1, r) + p(2, r) =
(1 − r){γ + s(1 − 2γ)}

γ(1 − γ)
≥ γ + s(1 − 2γ)

γ
≥ 1, (3)
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and equality holds if and only if r = γ. Similarly,

p(1, r) + p(3, r) =
(1 − s){γ + r(1 − 2γ)}

γ(1 − γ)
≥ γ + r(1 − 2γ)

γ
≥ 1 (4)

and equality holds if and only if r = 0.

Let (Yi, Xi), i = 1, . . . , n, be the observed quantitative trait values and the

flanking marker genotypes of a random sample of size n from the backcross pop-

ulation. The joint pdf of (Yi, Xi), i = 1, . . . , n, is given by
∏n

i=1 q(xi)f(yi|xi, θ).

Since q(xi) does not involve any unknown parameters, the log-likelihood function

of θ based on the data (Yi, Xi) can be written as

ln(θ) =

n
∑

i=1

log f(Yi|Xi, θ), (5)

where f(yi|xi, θ) is given by (2).

3. The MLE’s of the QTL Effect and Position

The effect of the putative QTL is represented by the difference µ1 − µ2

and its position is indicated by r, if it exists. In this section, the asymptotic

properties of the MLEs of the QTL effect and position are investigated. Note

that the distribution family (1) is a mixture model which is not identifiable in

the parameter θ. For example, when µ1 = µ2, r can be arbitrary. It has been

pointed out by many authors (see, e.g., Chernoff and Lander (1995) and Chen

and Chen (2001a)) that the loss of identifiability is the main cause of difficulties

with mixture models. Therefore, we first deal with the problem of identifiability.

3.1. Identifiability of the mixture model

Before we proceed, we remark that the identifiability of the distribution

f(y,j|θ) in (1) is equivalent to that of the conditional distribution system f(y|j,θ),
j = 1, . . . , 4. Let Gj = G(µ|j, r, µ1, µ2) = {1 − p(j, r)}I{µ ≥ µ1} + p(j, r)I{µ ≥
µ2}, where I{·} is the indicator function. Then

f(y|j, θ) = f(y|σ,Gj) =

∫

σ−1φ
{y − µ

σ

}

dG(µ|j, r, µ1, µ2), j = 1, . . . , 4. (6)

Let G = {(G(·|1, r, µ1 , µ2), . . . , G(·|4, r, µ1 , µ2)) : 0 ≤ r ≤ γ, |µi| ≤ M, i = 1, 2}.
The parameter space for the new parameterization of the distribution system

f(y|σ,Gj), j = 1, . . . , 4, is Ω = {(σ, g) : σ > 0, g ∈ G}.
Lemma 1. The distribution family (6) is identifiable by the parameter (σ, g) ∈ Ω.

Furthermore, for a fixed r, (σ, µ1, µ2) identifies the model (2); if the constraint

µ1 6= µ2 is imposed, (σ, r, µ1, µ2) identifies the distributions (2).
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The moment generating function method, Teicher (1960), can be used to

prove Lemma 1. For details, see Chen and Chen (2002).

3.2. The consistency of the MLEs

Let θ̂ = (σ̂, r̂, µ̂1, µ̂2) be the MLE of θ at (5). Let Ĝj = G(·|j, r̂, µ̂1, µ̂2) be

the MLE of Gj . The Lévy distance λ of distributions will be used to measure

the discrepancy between two distributions.

Theorem 1.

(a) σ̂ →p σ, as n→ ∞.

(b) λ{Ĝj , G(·|j, r, µ1, µ2)} →p 0, as n→ ∞, j = 1, . . . , 4.

Corollary 1.

(a) µ̂1 →p µ1, and µ̂2 →p µ2, as n→ ∞.

(b) If µ1 6= µ2, r̂ →p r, as n→ ∞.

The proof of the above results are given in the appendix. Corollary 1 implies

that the MLE of the QTL effect is always consistent and moreover, when the

putative QTL does exist, the MLE of its position is also consistent.

4. Asymptotic Distribution of the LRT Statistic for the Significance

of QTL Effect

In order to test H0 : µ1 = µ2 versus H1 : µ1 6= µ2, i.e., to decide whether or

not the putative QTL really exists in the interval flanked by the two markers, the

likelihood ratio procedure is commonly employed. Let θ̂ and θ̂0 denote the MLEs

of θ under H1 and H0, respectively. Note that, under H0, Yi is independent of Xi

and follows a normal distribution with mean µ and variance σ2. Since the recom-

bination fraction r does not appear under H0, we can take θ̂0 = (σ̂0, γ, µ̂0, µ̂0),

where µ̂0 = Ȳ and σ̂2
0 = n−1

∑

(Yi − Ȳ )2 are the MLEs of µ and σ2 under H0.

The LRT statistic is then given by Tn = 2[ln(θ̂)− ln(θ̂0)]. The null hypothesis H0

is rejected if Tn exceeds a pre-specified threshold value.

It is a major challenge to determine the threshold value. The classical asymp-

totic theory of chi-square approximation does not apply here. There are two

complications in deriving the asymptotic null distribution of the LRT statistic.

One is due to the presence of the structural parameter σ, see comments in Chen

and Chen (2001b and 2003). The other is attributable to the loss of identifia-

bility in the parameter θ under the null hypothesis. The re-parameterization by

(σ,G1, . . . , G4) does not render the ordinary Taylor expansion analysis possible.

A highly technical manipulation in the derivation of the asymptotic null distri-

bution seems inevitable. In the following, we state a theorem which provides an
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asymptotic approximation to the null distribution of the LRT statistic. Its proof

is in the Appendix.

Theorem 2. Under H0, as n → ∞, the LRT statistic Tn is asymptotically

distributed as

sup
0≤r≤γ

[

4
∑

j=1

√

q(j){p(j, r) − 1

2
}Zj/τ(r)

]2
,

where Z1, . . . , Z4 are independent N(0, 1) and τ 2(r) =
∑4

j=1 q(j){p(j, r)−1/2}2 .

It is worthy remarking that the asymptotic null distribution enjoys the in-

variance property of regular models, that is, it is invariant in the distributions

under the composite null hypothesis. However, this invariance property is not

shared by the testing problems under other finite mixture models, see Chen,

Chen and Kalbfleisch (2001).

Denote by U(r) the stochastic process in Theorem 2 over which the supre-

mum is taken. For fixed r, U(r) follows a χ2-distribution with degree of freedom

1. For convenience, we call U a χ2-process. Let Tn(r) be the LRT statistic for

testing H0 against H1 when r is fixed, that is, Tn(r) = 2{ln(θ̂(r))− ln(θ̂0)} where

θ̂(r) is the MLE of θ under H1 when r is treated as fixed. We refer to Tn(r) as

the LRT process. Note that Tn = sup0≤r≤γ Tn(r). Theorem 2 can be re-stated as

sup0≤r≤γ Tn(r) → sup0≤r≤γ U(r). This is a weaker result than the convergence

of the LRT process to the χ2 process. However it justifies that, for the purpose

of determining threshold values for the likelihood ratio test, we can act as if the

LRT process converges to the χ2 process. In our proof of Theorem 2, we employ

a sandwich approach to treat the supremum directly, so that the problem with

the convergence of the LRT process is bypassed.

5. Application to Determination of Thresholds of Interval Mapping

for QTL Detection

In real interval mapping, the whole genome, or the whole of several chromo-

somes, is searched for the detection of QTL. This involves a collection of intervals

on each of which a LRT is conducted. Suppose a total ofm intervals is considered.

Let Tkn denote the LRT statistic for the kth interval and Ln = max1≤k≤m Tkn.

To guard against the overall error of false detection of QTL, a threshold value

cα needs to be found such that P (Ln > cα) ≤ α.

In the case that the intervals are connected and are all located on the same

chromosome, Rebai et al. (1994) proposed using the Davies bound to approxi-

mate cα as cα = c2, with c determined by

α

2
= Φ(−c) +

1

π
exp(

−c2
2

)

m
∑

k=1

arctan
(

√

γk

1 − γk

)

, (7)
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where Φ is the CDF of the standard normal distribution and γk is the interval

length of the kth interval expressed in units of centimorgans (cM). Feingold et

al. (1993) proposed another approximation that determines c by solving

α

2
= 1 − Φ(c) + 2Lcφ(c) exp(−1.166c

√
∆), (8)

where L is the genetic length of the chromosome and ∆ is the average spacing of

the markers, both expressed in units of Morgans.

The result in the previous section provides us with another way to approx-

imate cα. By an extension of Theorem 2 we can obtain that, under the null

hypothesis of no QTL,

Ln → max
1≤k≤m

sup
0≤rk≤γk

[

4
∑

j=1

√

qk(j){pk(j, rk) − 1

2
} Zkj

τk(rk)

]2
,

where Zkj’s are standard normal with

Cov(Zkj, Zlj′) =







0, if k = l,

P (Xk=j,Xl=j′)√
qk(j)ql(j′)

, if k 6= l.

See Apendix A4. Here, the subscripts k and l indicate the corresponding intervals,

and P (Xk = j,Xl = j′) can be determined from the within and between interval

recombination fractions. The details of the above extension are given in the

appendix. Based on the above extension, the asymptotic null distribution of Ln

can be easily simulated.

In the remainder of this section, we present a simulation study to compare

the three approaches described above, namely our new approach (CC), that of

Rebai et al. (1994) (RGM) and that of Feingold et al. (1993) (FBS).

In the simulation study, we consider (a) a single interval with lengths 2.5cM,

5cM and 10cM, and (b) a chromosome of length 50cM with 5, 10, 20 and 25

equally-spaced intervals. The threshold values with α = 0.05, 0.025 and 0.01

are simulated for the true null distribution of Ln with n = 200, and for the

asymptotic null distribution, and are calculated by using (7) and (8) for the

RGM and FBS approaches, respectively. For the true null distribution, 100,000

replicates are used and, for the asymptotic null distribution, 200,000. The results

with α = 0.05 are presented in Table 2. The results with other α values have the

same features and are not reported here.

The following features manifest themselves in Table 2. (1) In the single in-

terval case, all three approaches provide reasonable approximations to the exact

thresholds, though FBS is least satisfactory. (2) In the multiple interval cases,

when the markers are sparse (fewer intervals used on a chromosome of the same
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length), RGM provides reasonable approximations. The accuracy of the RGM

approximation gets worse as the markers get dense. The results with FBS ap-

proximation are just the opposite. (3) The new approach CC provides accurate

approximations to the exact thresholds and beats the other two in all cases with

but one exception.

Table 2. Simulated thresholds of interval mapping for QTL detection by
the CC, RGM and FBS approaches. Sample size n = 200, m is the number
of intervals and δ is the interval length in units of cM. The numbers in
parentheses are absolute differences between the simulated asymptotic and
exact thresholds.

m δ Exact CC RGM FBS

1 2.5 4.23 4.27 4.29 4.10

(0.04) (0.06) (0.13)

1 5 4.45 4.47 4.45 4.28
(0.02) (0.00) (0.18)

1 10 4.67 4.68 4.65 4.51

(0.01) (0.02) (0.16)

5 10 6.38 6.25 6.44 6.14
(0.13) (0.06) (0.24)

10 5 6.65 6.64 7.02 6.55

(0.01) (0.37) (0.10)

20 2.5 6.73 6.75 7.62 6.88

(0.02) (0.99) (0.15)
25 2 7.04 7.05 7.82 6.97

(0.01) (0.78) 0.07

Besides its superior performance in the above cases, CC can also provide

good approximations when more than one chromosome is under investigation.

Neither the RGM nor the FBS approach can be applied directly when two or

more chromosomes are involved. The formulas (7) and (8) do not distinguish

between the case of a single chromosome and the case of multiple chromosomes,

while the exact threshold values are quite different in these two cases. For ex-

ample, consider the case of five intervals of length 10 cM connected one after

another and located at a single chromosome, and the case of five intervals of

the same length but separately located on five chromosomes. With α = 0.05,

the exact threshold value in the single chromosome case is 6.38 and is 7.70 in

the multiple chromosome case. We end this section by reporting a simulation

study to demonstrate the appropriateness of the CC approach in the multiple

chromosome case. We considered two extreme unlinked settings: five intervals,

each of length 10 cM, located on five chromosomes, and ten intervals, each of

length 5 cM, located on ten chromosomes. In each setting, we simulated the
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exact thresholds of Ln with n = 200, and the asymptotic thresholds by using CC

approach. The results are reported in Table 3.

Table 3. Simulated CC and exact thresholds of interval mapping for QTL

detection on multiple chromosomes. Sample size n = 200.

Five Intervals Ten Intervals

α Exact CC Exact CC

0.01 10.75 10.66 11.78 11.66

0.025 9.00 8.90 10.01 9.95

0.05 7.70 7.59 8.66 8.63

Appendix. Technical details

A1. Proof of Theorem 1

The following lemma is needed in the proof of Theorem 1. It is similar to

(but stronger than) Lemma 1 in Chen and Chen (2001b) and its proof is omitted.

For a proof, see Chen and Chen (2002).

Lemma 2. There are constants 0 < δ < ∆ < ∞ such that limn→∞ P (δ ≤ σ̂ ≤
∆) = 1.

Proof of Theorem 1. The proof is accomplished by using Wald’s (1949) Con-

sistency Theorem. Let σ = σ0 be the true value of σ. By Lemma 2, with-

out loss of generality, we can confine σ to an interval [δ,∆], where δ and ∆

are chosen such that 0 < δ < σ0 < ∆ < ∞. The parameter space of the

model (6) is reduced to Ω̄ = {(σ, g) : σ ∈ [δ,∆], g ∈ G}. Now define a met-

ric on Ω̄ as follows: d((σ1, g1), (σ2, g2)) = |σ1 − σ2| +
∑4

j=1 λ(G1j , G2j), where

gk = (Gk1, Gk2, Gk3, Gk4), k = 1, 2, and λ(·, ·) is the Lévy distance. Note that

the convergence of distribution functions in Lévy distance is equivalent to weak

convergence. Therefore, the convergence in the d-metric on Ω̄ is equivalent to

convergence of the first component in the usual Euclidean metric and the weak

convergence of the remaining four components. Note that Ω̄ is compact with

metric d (see Chen and Chen (2002) for details).

Denote a point (σ, g) ∈ Ω̄ by ω and let f(y, x;ω) be the joint pdf of (Yi, Xi).

Let ω0 = (σ0, g0) be the true value of ω. Following Wald (1949), for any ω and for

any positive value ρ let f(y, x;ω, ρ) be the supremum of f(y, x;ω ′) with respect

to ω′ when d(ω, ω′) ≤ ρ. For any positive τ , let ψ(y, x; τ) be the supremum of

f(y, x;ω′) with respect to ω′ when d(ω0, ω
′) > τ . Let f ∗(y, x;ω, ρ) = f(y, x;ω, ρ)

when f(y, x;ω, ρ) > 1, and 1 otherwise. Similarly, let ψ∗(y, x; τ) = ψ(y, x; τ)

when ψ(y, x; τ) > 1, and 1 otherwise. It can be seen that the following Wald

conditions hold (see Chen and Chen (2002)):(i) E{log(f ∗(Y,X;ω, ρ)} < ∞ and
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E{log(ψ∗(Y,X; τ)} <∞, and (ii) if limk→∞ d(ωk, ω)=0, then limk→∞ f(y, x;ωk)

= f(y, x;ω).

Other conditions of Wald’s Consistency Theorem are either trivial or have

already been established, such as identifiability (Lemma 1) and compactness of

Ω̄. Then the MLE (σ̂, Ĝ1, Ĝ2, Ĝ3, Ĝ4) is consistent with respect to the metric d

and the proof is completed.

A2. Proof of Corollary 1

By part (b) of Theorem 1 we have that, for any G-continuous function h (here

by a G-continuous function we mean a function which is continuous at µ = µ1 and

µ = µ2), the MLE of
∫

h(µ)dG(µ|j, r, µ1 , µ2) = {1 − p(j, r)}h(µ1) + p(j, r)h(µ2)

is consistent, i.e.,

{1 − p(x, r̂)}h(µ̂1) + p(x, r̂)h(µ̂2) → {1 − p(x, r)}h(µ1) + p(x, r)h(µ2), (9)

in probability, for j = 1, . . . , 4. The above convergence, together with the fact

that p(1, r̂) + p(4, r̂) = 1, yields that for any G-continuous function h,

h(µ̂1) + h(µ̂2) → h(µ1) + h(µ2), (10)

in probability.

Now consider the case µ1 = µ2 = µ0 (say) and the case µ1 6= µ2 separately. In

the first case, let h(µ) = (µ−µ0)
2 in (10). It follows that (µ̂1−µ0)

2+(µ̂2−µ0)
2 →

0 in probability, and hence µ̂1 and µ̂2 are consistent.

In the case µ1 6= µ2, consider two situations: r = γ and r < γ. When r = γ,

s = 0 and p(1, r) = p(3, r) = 1. Taking h(µ) = (µ − µ2)
2 in (9) yields that for

j = 1 and 3, {1−p(j, r̂)}(µ̂1−µ2)
2 +p(j, r̂)(µ̂2−µ2)

2 → {1−p(j, r)}(µ1 −µ2)
2 +

p(j, r)(µ2 −µ2)
2 = 0. Hence {p(1, r̂)+ p(3, r̂)}(µ̂2 −µ2)

2 → 0, which implies that

µ̂2 → µ2 since p(1, r̂) + p(3, r̂) ≥ 1 according to (4). Then, by taking h(µ) = µ,

the consistency of µ̂2 together with (10) implies the consistency of µ̂1. In this

case it is seen from (9) that p(1, r̂) → 1 and p(3, r̂) → 1, implying r̂ → γ.

When r < γ, to fix the point assume µ1 > µ2. Let µ̄ = (µ1 + µ2)/2. Since

Ĝj(µ̄) → G(µ̄|j, r, µ1, µ2) = p(j, r) for all j,

Ĝ1(µ̄) + Ĝ2(µ̄) → p(1, r) + p(2, r) ≡ α, say. (11)

Note that Ĝ1(µ̄) + Ĝ2(µ̄) assumes only four possible values: p(1, r̂) + p(2, r̂) if

µ̄ < µ̂1 and µ̄ ≥ µ̂2; 2 − {p(1, r̂) + p(2, r̂)} if µ̄ ≥ µ̂1 and µ̄ < µ̂2; 2 if µ̄ ≥ µ̂1

and µ̄ ≥ µ̂2; 0 if µ̄ < µ̂1 and µ̄ < µ̂2. But, according to (3), p(1, r̂) + p(2, r̂) ≥ 1,

2 − {p(1, r̂) + p(2, r̂)} ≤ 1, and 1 < α < 2 when r < γ. Therefore, (11) implies

that, with probability approaching one, Ĝ1(µ̄)+ Ĝ2(µ̄) = p(1, r̂)+ p(2, r̂). Hence

µ̄ < µ̂1 and µ̄ ≥ µ̂2 with probability approaching one. It thus follows that for any
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boundedG-continuous function h, (2−α)h(µ̂1)+αh(µ̂2) → (2−α)h(µ1)+αh(µ2)

in probability. Let h(µ) = µI(µ ≤ µ̄). Then h(µ) is G-continuous and bounded

since only |µ| ≤ M is relevant. Then (2 − α)h(µ̂1) + αh(µ̂2) = αµ̂2 → αµ2 in

probability, i.e., µ̂2 is consistent. Similarly, µ̂1 is consistent. These results in turn

imply that p(1, r̂) → p(1, r) and so r̂ → r. The corollary is proved.

A3. Proof of Theorem 2

Suppose the null distribution of the quantitative trait is N(µ0, σ
2
0). Without

loss of generality, take µ0 = 0 and σ0 = 1, since otherwise we can consider

transformed data Ỹi = (Yi − µ0)/σ0 and the re-parameterization µ̃1 = (µ1 −
µ0)/σ0, µ̃2 = (µ2 − µ0)/σ0, and σ̃ = σ/σ0 that does not affect the position

parameter r. Furthermore, we take |σ− 1| ≤ δ where 0 < δ < 1, since in light of

Theorem 1, σ̂ → 1 in probability under the null hypothesis.

Write Tn = 2[ln(θ̂) − ln(θ0)] − 2[ln(θ̂0) − ln(θ0)] = Tn1 − Tn2, say, where

θ0 = (1, γ, 0, 0). First we establish asymptotic approximations to Tn1 and Tn2:

Tn1 =
(
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+ sup
0≤r≤γ

{∑ Vi(r)}2

∑

V 2
i (r)

+ op(1), (12)

Tn2 = n(Ȳ )2 + (
1

2n
)(

n
∑

i=1

Ui)
2 + op(1), (13)

where Ui = Y 2
i − 1 and Vi(r) = {p(Xi, r) − 1/2}Yi. Note that Ep(Xi, r) =

1/2. Hereafter, by op(1) and Op(1) we mean convergent to zero in probability

uniformly in θ and bounded in probability uniformly in θ, respectively. Since

(12) and (13) imply

Tn = sup
0≤r≤γ

{∑Vi(r)}2

∑

V 2
i (r)

+ op(1),

the theorem follows.

Equation (13) is trivial by a standard analysis. To justify (12), let Rn(θ) =

2{ln(θ) − ln(θ0)}, so Tn1 = Rn(θ̂). Write Rn(θ) = 2
∑n

i=1 log{1 + δi(θ)}, where

δi(θ) = {1 − p(Xi, r)}
[

σ−1φ{Yi − µ1

σ
}/φ(Yi) − 1

]

+p(Xi, r)

[

σ−1φ{Yi − µ2

σ
}/φ(Yi) − 1

]

.

We first obtain asymptotic bounds for Rn(θ). Let

R̄n(θ) =

n
∑

i=1

{2δi(θ) − δ2i (θ) +
2

3
δ3i (θ)}. (14)
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Then for any θ, Rn(θ) ≤ R̄n(θ). Note that

∂δi(θ)

∂σ

∣

∣

∣

∣

θ=θ0

= Ui,
∂δi(θ)

∂µ1

∣

∣

∣

∣

θ=θ0

= {1 − p(Xi, r)}Yi,
∂δi(θ)

∂µ2

∣

∣

∣

∣

θ=θ0

= p(Xi, r)Yi,

where Ui = Y 2
i − 1 as defined before. Expanding δi(θ) at θ0 gives

δi(θ) = (σ − 1)Ui + µ1{1 − p(Xi, r)}Yi + µ2p(Xi, r)Yi + εi(θ). (15)

where εi(θ) = (σ−1){Ui(σ)−Ui}+µ1{1−P (Xi, r)}{Yi(σ, µ1)−Yi}+µ2P (Xi, r)

{Yi(σ, µ2) − Yi}, with Ui(σ) = (σ − 1)−1{σ−1φ(Yi/σ)/φ(Yi) − 1} and Yi(σ, µ) =

µ−1[σ−1φ{(Yi −µ)/σ} − σ−1φ(Yi/σ)]/φ(Yi). Re-group the leading terms of δi(θ)

in (15) as a linear combination of uncorrelated random variables as follows:

δi(θ) = a1(θ)Ui + a2(θ)Yi + a3(θ)Vi(r) + εi(θ), (16)

where Vi(r) = {p(Xi, r) − 1/2}Yi as before, a1(θ) = σ − 1, a2(θ) = (µ1 + µ2)/2,

and a3(θ) = µ2 − µ1.

Note that under the null hypothesis, for any r, EUi =EYi =EVi(r)=E{UiYi}
= E{UiVi(r)} =E{YiVi(r)} = 0. Let

Ln(a1(θ), a2(θ), a3(θ); r) = a1(θ)
n

∑

i=1

Ui + a2(θ)
n

∑

i=1

Yi + a3(θ)
n

∑

i=1

Vi(r), (17)

Qn(a1(θ), a2(θ), a3(θ); r) = a2
1(θ)

n
∑

i=1

U2
i +a2

2(θ)

n
∑

i=1

Y 2
i +a2

3(θ)

n
∑

i=1

V 2
i (r). (18)

Write u(θ) = a2
1(θ) + a2

2(θ) + a2
3(θ) and v(θ) = max{|a1(θ)|, |a2(θ)|, |a3(θ)|}.

Lemma 3. Assume the distribution under the null hypothesis.

(i) For k = 1, 2 and 3,

n
∑

i=1

δk
i (θ) = ak

1(θ)

n
∑

i=1

Uk
i + ak

2(θ)

n
∑

i=1

Y k
i + ak

3(θ)

n
∑

i=1

V k
i (r) + nOp{u(θ)v(θ)}.

(ii) The quadratic form n−1Qn(x1, x2, x3; r) converges to the positive definite

form 2x2
1 + x2

2 + τ2(r)x2
3 almost surely and uniformly in 0 ≤ r ≤ γ, where

τ2(r) = V ar{p(X; r)} as defined in Theorem 2,

(iii)
∑

δ3i (θ)/
∑

δ2i (θ) = Op{v(θ)}.
In light of Lemma 3, and by (14), (16), (17) and (18), we have

R̄n(θ) = 2Ln(a1(θ), a2(θ), a3(θ); r) −Qn(a1(θ), a2(θ), a3(θ); r)[1 +Op{v(θ)}].
(19)
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Note that for any x1, x2, x3 and r ∈ [0, γ],

2Ln(x1, x2, x2; r) −Qn(x1, x2, x3; r) ≤
(
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+
{∑Vi(r)}2

∑

V 2
i (r)

,

and equality holds when

x1 =

∑

Ui
∑

U2
i

, x2 =

∑

Yi
∑

Y 2
i

, x3 =

∑

Vi(r)
∑

V 2
i (r)

. (20)

Let θ̃(r) = (σ̃, r, µ̃1, µ̃2) be the solution to the equations aj(θ) = x̃j , j = 1, 2, 3,

with the x̃j ’s given by the values in (20). Then (19) implies that

R̄n(θ̃(r)) =
(
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+
{∑Vi(r)}2

∑

V 2
i (r)

+Op{v(θ̃(r))}, (21)

and for any θ, R̄n(θ) ≤ (
∑

Ui)2
∑

U2

i

+ (
∑

Yi)2
∑

Y 2

i

+ (
∑

Vi(r))2
∑

V 2

i
(r)

+Op{v(θ)}. In particular,

Rn(θ̂) ≤ R̄n(θ̂) ≤ (
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+
{∑ Vi(r̂)}2

∑

V 2
i (r̂)

+Op{v(θ̂)}

≤ (
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+ sup
0≤r≤γ

{∑Vi(r)}2

∑

V 2
i (r)

+Op{v(θ̂)}.

According to Theorem 1 and Corollary 1, v(θ̂) = op(1). Thus,

Rn(θ̂) ≤ R̄n(θ̂) ≤ (
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+ sup
0≤r≤γ

{∑ Vi(r)}2

∑

V 2
i (r)

+ op(1). (22)

Next we show that the upper bound as given above is attainable. Let θ̃(r) be

defined as before. Considering a Taylor expansion of log(1 + t) for t = δi(θ̃(r)),

we have

Rn(θ̃(r)) = 2

n
∑

i=1

log{1 + δi(θ̃(r))} = R̄n(θ̃(r))− 1

4

n
∑

i=1

{δ4i (θ̃(r))/(1 + ηi)
4}, (23)

where |ηi| < |δi(θ̃(r))|. We show the remainder in (23) is negligible. Since

x̃j = Op(n
−1/2) uniformly in r, θ̃(r) − θ0(r) = Op(n

−1/2) uniformly in r, where

θ0(r) = (1, r, 0, 0). Thus, for a generic constant C,

sup
0≤r≤γ

max
1≤i≤n

{δ4i (θ̃(r))} ≤ C
∑

l+s=4

|σ̃−1|l(|µ̃1|+|µ̃2|)s sup
σ,µ

max
1≤i≤n

{|Ui(σ)|l|Yi(σ, µ)|s}

≤ Op(n
−2)op(n

1

2 ) = op(n
− 3

2 ),
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where the last inequality follows from

|Ui(σ)|l|Yi(σ, µ)|s≤ [|Yi(σ, µ)|+|Ui(σ)|]4≤C max
1≤i≤n

[1+|Yi|2]4 exp{C|Yi|}=op(n
1/2).

See Serfling (1980, p.91). This implies that
∑n

i=1 sup0≤r≤γ δ
4
i (θ̃(r)) = op(n

−1/2).

Since sup0≤r≤γ max1≤i≤n{|ηi|} ≤ sup0≤r≤γ max1≤i≤n{|δi(θ̃(r))|} = op(n
−3/8), it

is immediate that (1/4)
∑n

i=1{δ4i (θ̃(r))/(1 + ηi)
4} = op(1), and hence, by (23),

Rn(θ̂) ≥ sup
0≤r≤γ

Rn(θ̃(r)) = sup
0≤r≤γ

R̄n(θ̃(r)) + op(1). (24)

Since θ̃(r) − θ0(r) = Op(n
−1/2), v(θ̃(r)) = op(1) uniformly in r. It is thus seen

from (21) that

sup
0≤r≤γ

R̄n(θ̃(r)) =
(
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+ sup
0≤r≤γ

{
∑

Vi(r)}2

∑

V 2
i (r)

+ op(1).

So (24) implies

Rn(θ̂) ≥ (
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+ sup
0≤r≤γ

{
∑

Vi(r)}2

∑

V 2
i (r)

+ op(1). (25)

Combining (22) and (25) yields

Rn(θ̂) =
(
∑

Ui)
2

∑

U2
i

+
(
∑

Yi)
2

∑

Y 2
i

+ sup
0≤r≤γ

{
∑

Vi(r)}2

∑

V 2
i (r)

+ op(1).

Thus (12) is established, and (12) and (13) lead to

Tn = sup
0≤r≤γ

{
∑

Vi(r)}2

∑

V 2
i (r)

+ op(1). (26)

Note that, uniformly in r, n−1
∑

V 2
i (r) → τ2(r), and the process n−1/2

∑

Vi(r)

approaches weakly the process
∑4

j=1

√

q(j){p(j, r)− 1/2}Zj . Theorem 2 is then

contingent on Lemma 3.

Proof of Lemma 3. First we see that

sup
0≤r≤γ

n−1/2|
n

∑

i=1

YiVi(r)| = Op(1), (27)

sup
0≤r≤γ

n−1/2|
n

∑

i=1

UiVi(r)| = Op(1), (28)

from the tightness of the processes n−1/2
∑

YiVi(r) and n−1/2
∑

UiVi(r). (For a

proof of the tightness, see Chen and Chen (2002).)
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Next we show that, for non-negative integers a, b, c, and d such that 0 ≤
a+ b+ c+ d ≤ 2,

n
∑

i=1

ε1+a
i (θ){a1(θ)Ui}b{a2(θ)Yi}c{a3(θ)Vi(r)}d = nOp{u(θ)v(θ)}, (29)

and that, for b+ c+ d ≤ 3, with at least two of b, c, d being not 0,

n
∑

i=1

{a1(θ)Ui}b{a2(θ)Yi}c{a3(θ)Vi(r)}d = nOp{u(θ)v(θ)}. (30)

By the tightness (Chen and Chen (2001b)) of the derivative process n−1/2
∑

{Ui(σ) − Ui}/(σ − 1), for |σ − 1| ≤ δ, sup|σ−1|≤δ{|
∑n

i=1{Ui(σ) − Ui}/(σ −
1)|} = Op(n

1/2). Similar approximations can be obtained for the derivative

processes of n−1/2
∑

Yi(σ, µ). Therefore,
∑n

i=1 εi(θ) =
√
nOp[(σ − 1)2 + |(σ −

1)µ1|+ |(σ− 1)µ2|+ |µ1|2 + |µ2|2]. By Cauchy-Schwards inequality, |(σ− 1)µk| ≤
a2

1(θ) + |µ2
k| for k = 1 and 2, and |µ1|2 + |µ2|2 ≤ C(a2

2(θ) + a2
3(θ)) for a con-

stant C. Thus,
∑

εi(θ) = n1/2Op{u(θ)} which, of course, can also be writ-

ten as nOp{u(θ)v(θ)}. Other combinations in (29) are easily seen to be of

the order required. For example, by the Uniform Strong Law of Large Num-

bers, n−1 sup|σ−1|≤δ

∑n
i=1 |{Ui(σ) − Ui}/(σ − 1)|k = Op(1), and similarly for

the process Yi(σ, µ) and others. Thus,
∑n

i=1 ε
2
i (θ) =nOp{|a1(θ)|3+|a2(θ)|3 +

|a3(θ)|3} = nOp{u(θ)v(θ)}, and |∑n
i=1 εi(θ)a1(θ)Ui| ≤ |a1(θ)|

∑n
i=1 |εi(θ)Ui| =

|a1(θ)| Op{nu(θ)} ≤ nOp{u(θ)v(θ)}. The summations in (30) can be shown sim-

ilarly, but (27) and (28) may also be used in case of b+ c+ d = 2. Part (i) of the

lemma then follows from (27), (28), (29) and (30).

In part (ii), the uniform convergence follows from the Uniform Strong Law

of Large Numbers, and the positive-definiteness of the limit quadratic form is

guaranteed by the assumption γ < 1/2.

By parts (i) and (ii), we have

|
∑

δ3i (θ)|
∑

δ2i (θ)
≤ v(θ)Op{n−1

n
∑

i=1

{|Ui|3 + |Yi|3 + |Vi(r)|3}} = Op(v(θ)),

which implies part (iii). Lemma 3 is thus proved and hence the proof of Theorem

2 is complete.

A4. Extension of Theorem 2 to Multiple Interval Case

The argument in the proof of Theorem 2 can be carried out for each of the
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m intervals. In the proof, we essentially show, see (26), that

Tkn = sup
0≤rk≤γk

{
∑n

i=1

(

pk(Xki, rk) − 1
2

)

Yi

}2

∑n
i=1

{

pk(Xki, rk) − 1
2

}2
Y 2

i

+ oP (1)

= sup
0≤rk≤γk

{

4
∑

j=1

√

qk(j)(pk(j, rk)− 1

2
)

1
√

nqk(j)

n
∑

i=1

YiI(Xki = j)
}2

τ2
k (rk)

+ oP (1).

Let Unkj = {nqk(j)}−1/2
∑n

i=1 YiI{Xki = j}. Then by the Multivariate Central

Limit Theorem, {Unkj} → {Zkj}, jointly in distribution as n → ∞, where Zkj

are normal variables with means 0, variances 1 and covariances Cov(Zkj, Zlj′) =

Cov(Unkj, Unlj′). It is easy to see that when k = l the covariances are zero, and

that when k 6= l, the covariances are given by

Cov(Unkj, Unlj′) =
Cov(YiI{Xki = j}, YiI{Xli = j′})

√

qk(j)ql(j′)
=
P (Xki = j,Xli = j′)

√

qk(j)ql(j′)
.
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