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Abstract: Group screening is a technique for examining a large number of factors

in order to discover the few factors that have important influences on a measured

response. In two-stage group screening, factors are assigned to groups and new

“grouped factors” are investigated in a first stage experiment by varying all the

factor values within a group simultaneously. The factors within those groups iden-

tified as important are then investigated individually in a second stage experiment.

This paper describes theory and software that allows investigation of group screen-

ing in the presence of unequal-sized groups of factors in the first stage experiment

and different probabilities of the various main effects and interactions being impor-

tant (or active). Examples are given to show how the results can be used in practice

to guide the choice of the number and sizes of the groups and to investigate the

advantages and disadvantages of different group screening strategies.
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1. Introduction

The process of improvement in the quality of manufactured products requires

time-efficient, economical methods of experimentation. A product is of high qual-

ity if it achieves a target mean performance and also exhibits little variation in

the presence of uncontrolled, or uncontrollable, manufacturing and environmen-

tal variability. Factors in an experiment representing uncontrolled sources of

variation in the manufacturing process or in product components are known as

noise factors. The goal of quality improvement experiments is to identify settings

of controllable factors (control factors or design factors) which make the product

performance insensitive to the uncontrolled variability of the noise factors. Such

experimentation has been used with great success in a wide variety of industries

for a moderate number of control and noise factors, for example in environmen-

tal engineering (Brickell and Knox (1992)), the automobile industry (Pignatiello

and Ramberg (1985)), the electronics industry (Kackar and Shoemaker (1986)),
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the food industry (Tuck, Lewis and Cottrell (1993)) and mechanical engineering

(Sexton, Dunsmore, Lewis, Please and Pitts (2000)).

In the early stages of experimentation in manufacturing industries, numer-

ous factors are often proposed as possibly influencing the product performance−

many more factors than can be accommodated by conventional experimental

plans such as classical fractional factorial designs. The technique of group screen-

ing is capable of exploring the effects of a large number of factors including their

interactions. In group screening, the individual factors are placed into groups and

a new “grouped factor” is defined to represent each group. Traditional methods

of group screening (see, for example, Kleijnen (1987) and Du and Hwang (2000))

ignore the possibility of interactions. For product improvement, this can be a

serious disadvantage because the exploration of control×noise interactions is cru-

cial in product improvement (cf., Shoemaker, Tsui and Wu (1991)). In order to

include an examination of control×noise interactions at stage 1, the groups are

set up so that each consists entirely of control factors or entirely of noise fac-

tors. A grouped factor can then be identified as either a grouped control factor

or a grouped noise factor. A first stage experiment is conducted on the grouped

factors and the factors in the groups found to be important are investigated indi-

vidually in a second stage experiment. Two different group screening strategies

were examined by Lewis and Dean (2001) and Dean and Lewis (2002). In one

strategy, only main effects at the first stage were investigated (classical group

screening) whilst, in the second, two-factor interactions as well as main effects

were examined at stage 1 (interaction group screening). The results of these two

papers were restricted to the situation in which equal-sized groups are formed

and it can be assumed that all control factors have the same probability of being

active, as do all the noise factors. The work in the following sections allows con-

siderably wider application of group screening techniques and better use of prior

knowledge elicited from subject specialists by permitting investigation of unequal

group sizes and/or unequal probabilities of the individual factorial effects being

active.

In order to handle this extra complexity, we develop a general framework

different from that given by Lewis and Dean (2001). This new framework is

somewhat simpler conceptually and allows explicit formulae to be developed for

the expected number of effects that need to be examined at stage 2 of the exper-

iment. The results and techniques can easily be applied to the simpler situation

of an experiment with no noise factors.

In Section 2, we define the notation and describe the criteria that we adopt

for assessing screening strategies. In Section 3, we give general theoretical results
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on the expected numbers of effects to be estimated which incorporate unequal

probabilities of active effects and differing group sizes. We discuss application of

these results and issues related to the selection of numbers of groups, group sizes

and screening strategy in Section 4. We give some examples obtained through

software implementation of the theory, as well as an application of simulation

software which enables an assessment to be made of the number of active effects

that may be missed in a given setting.

2. Two-stage Group Screening Strategies

We assume that the responses from a first (second) stage experiment may

be described as Y = τ + ε where τ denotes the vector of effects of each of the

combinations of levels of the grouped (individual) factors that are observed in

the first (second) stage experiment, and ε denotes a random error variable with

mean zero and variance σ2.

We define a quantity ∆ (> 0) to be a sufficiently large difference in the

responses obtained from two distinct treatment combinations to give an economic

advantage when one treatment combination is chosen over the other in the design

of the product. In order to compare the estimated main effects and interactions

(for individual or grouped factors) with ∆, each factorial contrast is scaled so

that its least squares estimator has the same standard deviation as the estimator

of the difference between two treatment effects. In the analysis of the data from

the first stage experiment, the scaled factorial contrasts for the grouped factors

can be compared with ∆ via hypothesis tests, as in equation (2.1) of Lewis and

Dean (2001), and a grouped factorial effect is declared active if the result of the

hypothesis test is significant. Alternative approaches include Bayesian methods

similar to those of Box and Meyer (1986), Chipman, Hamada and Wu (1997)

and Beattie, Fong and Lin (2002).

In “classical group screening”, a grouped control or noise factor is considered

to be active if the grouped factor is found to have an active main effect in the

first stage analysis. An active grouped factor is carried forward to stage 2 of

the experiment where the grouping is dismantled and the main effects of all

factors within the group are examined individually. All control×control and

control×noise interactions among the individual factors involved in the active

groups need to be examined also. In “interaction group screening”, a grouped

control factor is considered to be active if the results of the first stage analysis

indicate that the factor has an active main effect or is involved in an active

interaction. In contrast, a grouped noise factor is considered active only if it is

involved in an active interaction with at least one grouped control factor. At stage
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2, the main effects of individual factors in an active group are examined, together

with the interactions between control factors in the same group. Control×control

and control×noise interactions involving individual factors in different groups are

examined only if their corresponding grouped interactions are deemed active at

the first stage.

We consider individual factors A11, . . . , A1g1 , A21, . . . , A2g2 , . . . , Ab1, . . . , Abgb

with two levels each. The high (low) level of a factor is the value at which the

largest (smallest) response is thought likely to occur. Where curvature in the

response across the range of a factor is anticipated, the value of the factor that

corresponds to the anticipated maximum (minimum) response is used as the high

(low) level of that factor. An important part of planning an experiment is the

elicitation of available knowledge and experience from as many subject specialists

as possible about factors that might be investigated, their likely importance and

appropriate settings for their levels. A web-based software system (GISEL) has

been developed to facilitate this elicitation process, see Dupplaw, Brunson, Vine,

Please, Lewis, Dean, Keane and Tindall (2004). It also incorporates the two sets

of software gsize and gsim described in this paper. All this software is available

at www.maths.soton.ac.uk/staff/Lewis/screen assemble.

We denote the probability that the main effect of the individual factor Aik

is active by q
(c)
ik if Aik is a control factor and by q

(n)
ik if Aik is a noise factor. The

probability that the two-factor interaction between the individual control factor

Aik and individual factor Ajl is active is denoted by q
(cn)
ik,jl when Ajl is a noise

factor, and by q
(cc)
ik,jl when Ajl is a control factor.

The individual factors are divided into b groups in such a way that the ith

group, represented by the grouped factor Bi (i = 1, . . . , b), contains individual

factors Ai1, Ai2, . . . , Aigi
. When all factors in the ith group are at their high (low)

level then grouped factor Bi is at its high (low) level. The relationships between

the factorial contrasts for the grouped factors and the individual factors are given

by Lewis and Dean (2001), Theorem 1. We denote the F grouped control factors

by B
(c)
1 , . . . , B

(c)
F and the N grouped noise factors by B

(n)
1 , . . . , B

(n)
N . The respec-

tive group sizes are denoted by g
(c)
1 , . . . , g

(c)
F , g

(n)
1 , . . . , g

(n)
N , and the total number

of individual control factors and individual noise factors are nC =
∑F

i=1 g
(c)
i and

nN =
∑N

i=1 g
(n)
i , respectively. The probabilities of the grouped main effects being

active are denoted by ρ
(c)
1 , . . . , ρ

(c)
F , ρ

(n)
1 , . . . , ρ

(n)
N .

Suppose that the individual factorial effects are independently active or non-

active, that any non-active effect is zero and that the “high” level of each factor
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produces the higher response. Then, under these simplifying assumptions,

ρ
(c)
i = 1 −

∏

Aik∈B
(c)
i

(1 − q
(c)
ik ), k = 1, . . . , g

(c)
i , 1 ≤ i ≤ F,

with an analogous, formulation for ρ
(n)
j , 1 ≤ j ≤ N . In interaction group screen-

ing (IGS), the probability that grouped control×noise interaction B
(c)
i B

(n)
j is

active is

ρ
(cn)
i,j = 1 −

∏

Aik∈B
(c)
i

∏

Ajl∈B
(n)
j

(1 − q
(cn)
ik,jl),

where k = 1, . . . , g
(c)
i , 1 ≤ i ≤ F , l = 1, . . . , g

(n)
j , 1 ≤ j ≤ N , with corresponding

respective probabilities ρ
(cc)
i,k and ρ

(nn)
j,l of a grouped control×control interaction

B
(c)
i B

(c)
k and noise×noise interaction B

(n)
j B

(n)
l being active (1 ≤ i < k ≤ F ,

1 ≤ j < l ≤ N).

Let p
(c)
i (p

(n)
j ) be the probability that the analysis of the data from the first

stage experiment leads to the main effect of the ith control (jth noise) factor being

declared active, with similar definitions for p
(cn)
i,j , p

(cc)
i,k (1 ≤ i, k ≤ F ; 1 ≤ j ≤ N)

for the interactions. If ∆ is large compared with the error standard deviation

σ, if the non-active effects are close to zero and if the effects neither cancel nor

accumulate within the groups, then no errors of testing would be made and p
(x)
q

would be identical to ρ
(x)
q . Although these ideal conditions cannot be met, p

(x)
q

should be fairly close to ρ
(x)
q under factor sparsity. The theoretical results in

Section 3 are given in terms of p
(x)
q . Simulation studies in terms of ρ

(x)
q under

factor sparsity show that the approximation is good enough for practical purposes

(see also, Lewis and Dean (2001)).

The following practical criteria, which cannot be achieved simultaneously,

are important in designing a group screening experiment and will be discussed

in Sections 3 and 4.

• Target-excess criterion: minimize the probability of exceeding a specified total

number of observations.

• Active effect identification criterion: maximize the probability of detecting

the active individual control main effects, control×noise and control×control

interactions.

• Mean-size criterion: minimize the total number of observations made on aver-

age. This differs from the target-excess criterion because no account is taken

of the standard deviation of the size of the second stage experiment.

• Type I error criterion: minimize the probability of incorrectly identifying

individual factorial effects as active when they are not.



876 A. E. VINE, S. M. LEWIS AND A. M. DEAN

3. Experiment Size

The total size of a two-stage group screening experiment depends on the

plans used at each stage, the number and sizes of the groups of factors at stage

1, and the number of individual factorial effects that have to be estimated at the

second stage. In this section, we formulate the theoretical results needed to ex-

amine both classical and interaction group screening under the target-excess and

mean-size criteria for given group sizes. Prior knowledge from subject specialists

allows formulation of the predictive probability distribution of the number of in-

dividual factorial effects that require estimation at the second stage. We assume

all interactions involving three or more factors are negligibly small.

3.1. Classical group screening

We define I(c) = (δ
(c)
1 , δ

(c)
2 , . . . , δ

(c)
F ) and I(n) = (δ

(n)
1 , δ

(n)
2 , . . . , δ

(n)
N ) to be

random indicator vectors with kth entry equal to 1 when the corresponding

grouped factor B
(c)
k or B

(n)
k is declared active at stage 1, and 0 otherwise. Then,

under classical group screening, the number S
(c)
C of individual control main effects

and the number S
(cc)
C of individual control×control interactions to be investigated

at the second stage are random variables as follows:

S
(c)
C =

F
∑

i=1

g
(c)
i δ

(c)
i and S

(cc)
C =

1

2
S

(c)
C (S

(c)
C − 1) .

The experiment only extends to a second stage when at least one grouped control

factor is declared active and, therefore, the number of individual noise main

effects to be investigated at stage 2 is

S
(n)
C = η

(c)
C

N
∑

j=1

g
(n)
j δ

(n)
j ,

where η
(c)
C = 1 when S

(c)
C ≥ 1 and 0 otherwise. Since noise×noise interactions

are nuisance effects, we adopt the approach of Lewis and Dean (2001) and use

the lower bound S
(n)
C − 1 to represent the number of sets of aliased individual

noise×noise interactions at stage 2 when at least one grouped noise main effect

is declared active at stage 1. Then, the number S
(nn)
C of individual noise×noise

interactions to be studied at the second stage is given by

S
(nn)
C = S

(n)
C − η

(n)
C ,
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where η
(n)
C = 1 when S

(n)
C ≥ 1 and 0 otherwise. Finally, the number S

(cn)
C of

individual control×noise interactions that need to be studied at stage 2 is

S
(cn)
C = S

(c)
C S

(n)
C .

The total number of effects to be estimated (including the mean) at the second

stage under classical group screening can now be expressed as

U
(2)
CGS = S

(c)
C + S

(n)
C + S

(cc)
C + S

(cn)
C + S

(nn)
C + η

(c)
C . (3.1)

It is clear that, for any given experiment under classical group screening, the

total number of effects, U
(2)
CGS, to be estimated at stage 2 is determined by the

realisations of the random index vectors I (c) and I(n) alone. The joint probability

function of I(c) and I(n) is

P (I(c) =I
(c)
t1

, I(n) =I
(n)
t2

)=

F
∏

i=1

(p
(c)
i )

δ
(c)
i:t1 (1− p

(c)
i )

1−δ
(c)
i:t1

N
∏

j=1

(p
(n)
j )

δ
(n)
j:t2 (1− p

(n)
j )

1−δ
(n)
j:t2 ,

where 1 ≤ t1 ≤ 2F , 1 ≤ t2 ≤ 2N , and δ
(c)
i:t1

and δ
(n)
j:t2

are realisations of the random

variables δ
(c)
i and δ

(n)
j , respectively. At the first stage of the experiment, only

main effects are examined and the number of effects examined (together with

the mean) at stage 1 is U
(1)
CGS = 1 + F + N . Hence, for 1 + F + N ≤ s ≤

2 + F + N +
(

nC+1
2

)

+ 2nN + nCnN − η
(n)
C , the probability under classical group

screening that the total number of effects SCGS requiring estimation is s can be

expressed as

P (SCGS = s) =
∑

RCGS

P (I
(c)
t1

, I
(n)
t2

),

where RCGS =
{

(I
(c)
t1

, I
(n)
t2

); U
(2)
CGS = s − (1 + F + N)

}

. We can use (3.1)

to calculate the expected total number of effects to be examined E(SCGS) =

U
(1)
CGS +E(U

(2)
CGS) in terms of the probabilities that the grouped main effects will

be declared active, as follows.

E(SCGS)

= 1+F +N+
1

2
E(S

(c)
C )+2E(S

(n)
C )+

1

2
E([S

(c)
C ]2)+E(S

(c)
C S

(n)
C )+E(η

(c)
C )−E(η

(n)
C )
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= 2+F +N+
1

2

F
∑

i=1

g
(c)
i p

(c)
i +2

[

N
∑

j=1

g
(n)
j p

(n)
j

][

1−

F
∏

i=1

(1 − p
(c)
i )

]

+
1

2

F
∑

i=1

[g
(c)
i ]2p

(c)
i (1 − p

(c)
i ) +

1

2

[

F
∑

i=1

g
(c)
i p

(c)
i

]2
+

[

F
∑

i=1

g
(c)
i p

(c)
i

][

N
∑

j=1

g
(n)
j p

(n)
j

]

−

F
∏

i=1

(1 − p
(c)
i ) −

[

1 −

F
∏

i=1

(1 − p
(c)
i )

][

1 −

N
∏

j=1

(1 − p
(n)
j )

]

.

3.2. Interaction group screening

We define two new random vectors I (cc) = (δ
(cc)
1,2 , . . . , δ

(cc)
F−1,F ) of length cF =

F (F −1)/2 and I (cn) = (δ
(cn)
1,1 , . . . , δ

(cn)
F,N ), of length FN , where δ

(cc)
i,k (δ

(cn)
i,j ) is equal

to 1 if the interaction between grouped control factor B
(c)
i and grouped control

factor B
(c)
k (noise factor B

(n)
j ) is declared active at stage 1, and 0 otherwise.

The number S
(cn)
I of individual control×noise interactions to be examined at the

second stage is

S
(cn)
I =

F
∑

i=1

N
∑

j=1

g
(c)
i g

(n)
j δ

(cn)
i,j .

Since a grouped noise factor is taken forward to the second stage only if it is

found to be involved in at least one control×noise interaction, the number of

individual noise main effects examined at the second stage is

S
(n)
I =

N
∑

j=1

g
(n)
j γ

(n)
j ,

where γ
(n)
j = 1 when

∑F
i=1 δ

(cn)
i,j ≥ 1, and zero otherwise.

In order to count up the number of individual control×control interactions

to be examined at the second stage, we begin by counting the number S
(cc)b
I of

interactions between individual control factors from different groups involved in

active grouped control×control interactions:

S
(cc)b
I =

F−1
∑

i=1

F
∑

k=i+1

g
(c)
i g

(c)
k δ

(cc)
i,k .

Since the main effects of, and the interactions between, all the individual control

factors within the grouped factors taken forward to the stage 2 experiment are to

be examined, we have the following number S
(cc)w
I of individual control×control
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interactions involving factors within the same group and the number S
(c)
I of in-

dividual control main effects to be examined:

S
(cc)w
I =

F
∑

i=1

1

2
g
(c)
i (g

(c)
i − 1)γ

(c)
i and S

(c)
I =

F
∑

i=1

g
(c)
i γ

(c)
i ,

where γ
(c)
i = 1 if the ith grouped control factor is taken forward to the second

stage; that is if
N

∑

j=1

δ
(cn)
i,j +

F
∑

k=1, k 6=i

δ
(cc)
i,k + δ

(c)
i ≥ 1 ,

and zero otherwise. As in Section 3.1, we use the lower bound S
(nn)
I = S

(n)
I −η

(n)
I

for the number of individual noise×noise interactions at the second stage, where

η
(n)
I = 1 when S

(n)
I ≥ 1 and 0 otherwise. Therefore, the total number of effects

to be estimated at the second stage under interaction group screening is

U
(2)
IGS = S

(c)
I + 2S

(n)
I + S

(cn)
I + S

(cc)b
I + S

(cc)w
I + η

(c)
I − η

(n)
I . (3.2)

For any given experiment under interaction group screening, the total number of

effects, U
(2)
IGS , to be estimated at stage 2 is determined by the realisations of the

random index vectors I (c), I(cc) and I(cn). The joint probability function of I (c),

I(cc) and I(cn) is

P (I
(c)
t1

, I
(cc)
t2

, I
(cn)
t3

)

=

F
∏

i=1

(p
(c)
i )

δ
(c)
i:t1 (1 − p

(c)
i )

1−δ
(c)
i:t1

F−1
∏

i=1

F
∏

k=i+1

(p
(cc)
i,k )

δ
(cc)
i,k:t2 (1 − p

(cc)
i,k )

1−δ
(cc)
i,k:t2

×
F

∏

i=1

N
∏

j=1

(p
(cn)
i,j )

δ
(cn)
i,j:t3 (1 − p

(cn)
i,j )

1−δ
(cn)
i,j:t3 ,

where 1 ≤ t1 ≤ 2F , 1 ≤ t2 ≤ 2cF , 1 ≤ t3 ≤ 2FN and δ
(c)
i:t1

, δ
(cc)
i,k:t2

and δ
(cn)
i,j:t3

are realisations of the random variables δ
(c)
i , δ

(cc)
i,k and δ

(cn)
i,j , respectively. At the

first stage of the experiment, the number of effects examined (together with the

mean) is

U
(1)
IGS = 1 + F + N + cF + FN + (N − ζ) = 2N + cF+1 + FN + (1 − ζ),

where ζ = 0 if N = 0 and 1 otherwise. Hence, for 2N + cF+1 + FN + (1 − ζ) ≤

s ≤ 2+2N + cF+1 +FN − ζ + cnC+1 +2nN +nCnN −η
(n)
I , the probability under
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interaction group screening that the total number of effects requiring estimation

is equal to s can be expressed as

P (SIGS = s) =
∑

RIGS

P (I
(c)
t1

, I
(cc)
t2

, I
(cn)
t3

),

where RIGS = {(I
(c)
t1

, I
(cc)
t2

, I
(cn)
t3

); U
(2)
IGS = s− (2N + cF+1 + FN) + (1− ζ)}. We

can use (3.2) to calculate the expected total number of effects to be examined

in terms of the probabilities that the various grouped factorial effects will be

declared active, as follows.

E(SIGS) = U
(1)
IGS + E(U

(2)
IGS)

= 2N + cF+1 + FN + E(S
(cn)
I ) + 2E(S

(n)
I ) + E(S

(cc)b
I ) + [E(S

(cc)w
I ) + E(S

(c)
I )]

+E(η
(c)
I ) − E(η

(n)
I )

= 2N + cF+1 + FN +

F
∑

i=1

N
∑

j=1

g
(c)
i g

(n)
j p

(cn)
i,j + 2

[

N
∑

j=1

g
(n)
j

][

1−

F
∏

i=1

(1 − p
(cn)
i,j )

]

+
F−1
∑

i=1

F
∑

k=i+1

g
(c)
i g

(c)
k p

(cc)
i,k

+

F
∑

i=1

[g
(c)
i

g
(c)
i +1

2
]
[

1−

N
∏

j=1

(1−p
(cn)
i,j )

F
∏

k=1, k 6=i

(1−p
(cc)
i,k )(1 − p

(c)
i )

]

−

F
∏

i=1

N
∏

j=1

F
∏

k=1, k 6=i

[

(1 − p
(cn)
i,j )(1 − p

(cc)
i,k )(1 − p

(c)
i )

]

+

F
∏

i=1

N
∏

j=1

(1 − p
(cn)
i,j ).

4. Application of the Theory

The results of Section 3 can be used to explore the effect on SCGS and SIGS

of different choices of group sizes, and the two group screening strategies, for

different probabilities of the individual main effects and interactions being active.

Software gsize, within the web based system GISEL, has been written to make

an exploration feasible by calculating the probability distribution, expected value

and standard deviation of each of SCGS and SIGS, together with the probability

that each of these exceeds a user-specified target. Thus, the software enables a

choice to be made for a particular investigation under the mean-size and target-

excess criteria described in Section 2.

4.1. Comparison of screening strategies

The following example illustrates the use of GISEL in comparing the CGS

and IGS strategies.
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Example 4.1. Suppose that there are 17 individual control factors in five groups

of sizes 2, 4, 4, 3 and 4, with probabilities of individual main effects being ac-

tive thought to be (0.6, 0.7), (0.1, 0.1, 0.1, 0.08), (0.05, 0.05, 0.01, 0.02), (0.005,

0.005, 0.005) and (0.005, 0.005, 0.005, 0.005). Suppose there are also six individ-

ual noise factors in three groups of sizes 1, 2 and 3 with probabilities of active

individual main effects thought to be (0.5), (0.3, 0.4) and (0.01, 0.01, 0.02). Sup-

pose that the value assigned to the probability of an individual control×noise or

control×control interaction being active is made dependent on the corresponding

main effects probabilities of the factors involved, according to the summary in

Table 1.

Table 1. Probabilities of individual interactions being active in terms of the

probabilities of the corresponding individual main effects being active.

Main effects ≤ 0.05 0.08, 0.1 ≥ 0.3
probabilities

≤ 0.05 0.0001 0.001 0.01
0.08, 0.1 0.001 - 0.1

≥ 0.3 0.01 0.1 0.2

Figures 1 and 2 show graphs available from GISEL for this example. They

indicate that classical group screening (CGS) performs better than interaction

group screening (IGS) under both the mean-size and target-excess criteria. How-

ever, the CGS strategy often has much worse performance under the active effects

identification criterion, as illustrated in Section 4.4. This is typical relative be-

haviour for the majority of experiments we have considered.

(a) CGS (b) IGS

Figure 1. The probability distribution for the total number S of effects

requiring estimation under (a) CGS and (b) IGS.
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Figure 2. The probability of exceeding a target number of runs u under CGS
and IGS.

4.2. Assignment of probabilities

Choices for the probabilities of effects being active may be guided by infor-
mation elicited from subject experts. In practice, these experts are usually more
able to assess the probability that a main effect is active than that of an inter-
action. One way of assigning interaction probabilities is to use an assumption
such as effect heredity or relaxed weak heredity, see Hamada and Wu (1992) and
Chipman (1996). Relaxed weak heredity assumes that (i) the individual main
effects of the factors in the experiment are active or inactive independently of
each other, (ii) that, conditional on the status of the main effects of the fac-
tors, the interactions are active or inactive independently of each other, and (iii)
the probability of an interaction being active depends only on the status of the
main effects of the factors involved in the interaction. These assumptions lead
to the assignment of the conditional probability that an interaction between two
individual control factors, Aik and Ajl, say, is active:

P
(

ζ
(cc)
ik,jl = 1| ζ

(c)
ik = s, ζ

(c)
jl = t

)

= w
(cc)
st , s, t = 0, 1 , (4.1)

where ζ
(c)
ik is an indicator function that takes value 1 when the main effect of Aik is

active and 0 otherwise, and ζ
(cc)
ik,jl is a similar indicator function for the interaction

between Aik and Ajl. The unconditional probability q
(cc)
ik,jl is, therefore,

P
(

ζ
(cc)
ik,jl=1

)

=

1
∑

s=0

1
∑

t=0

P
(

ζ
(cc)
ik,jl=1|ζ

(c)
ik =s, ζ

(c)
jl = t

)

P
(

ζ
(c)
ik = s

)

P
(

ζ
(c)
jl = t

)

= w
(cc)
00 (1 − q

(c)
ik )(1 − q

(c)
jl ) + w

(cc)
01 (1 − q

(c)
ik )q

(c)
jl + w

(cc)
10 q

(c)
ik (1 − q

(c)
jl )

+w
(cc)
11 q

(c)
ik q

(c)
jl , (4.2)
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where w
(cc)
st is defined in (4.1). We can write a similar formulation for P (ζ

(cn)
ik,jl =

1).

The conditional probabilities w
(..)
ij for control×control and control×noise in-

teractions need to be specified. For any proposed values for w
(..)
ij , it is important

to check that the unconditional probabilities are in agreement with factor spar-

sity. It should be noted that the degree of effect sparsity depends on the choice

of ∆. Larger values of ∆ result in fewer effects being labelled as important and

this, in turn, translates into smaller values of the conditional probabilities. The

software system GISEL has a facility that allows the user to assign interaction

probabilities via (4.1) and (4.2) and then to explore different choices for the

conditional probabilities.

4.3. Formation of groups

The degree to which the number of effects to be estimated is affected by (a)

the number of groups formed, (b) the selected group sizes and (c) the similarity

in assigned probabilities of main effects within the groups, is problem dependent.

This issue can be investigated using the theory and software as illustrated in the

following example.

Example 4.2. Suppose there are six individual control factors with probabilities

of active main effects thought to be 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8, and six indi-

vidual noise factors with main effect probabilities 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.

(A factor whose main effect is assigned probability 0.0 of being active may still

be involved in an active interaction). In this example, we selected values of the

conditional probabilities in line with factor sparsity in a screening experiment,

namely, ω
(cc)
00 = 0.005, ω

(cc)
01 = ω

(cc)
10 = 0.125, and ω

(cc)
11 = 0.25, with corre-

sponding values for the ω
(cn)
ij . The unconditional probabilities were calculated

through (4.2).

A variety of different groupings into F = 1, 2, 3, 4 or 5 groups of control

factors and N = 1, 2 or 3 groups of noise factors were considered. Without loss

of generality, the control (noise) factors were ordered in increasing values of q
(c)
ik

(q
(n)
ik ) and labelled 1 to 6 (7 to 12).

The results obtained from GISEL are summarized in Table 2. In the table

(a1, . . ., an1 ; b1, . . . , bn2) denotes groups of control factors with sizes a1, . . . , an1

and groups of noise factors with sizes b1, . . . , bn2 , where the grouping is imposed

on the factors in the order 1, 2, 3, 4, 5, 6; 7, 8, 9, 10, 11, 12 for “Similar” (groups

containing factors with similar probabilities of an active main effect) and 1, 6,

2, 5, 3, 4; 7, 12, 8, 11, 9, 10 for “Dissimilar” (groups containing factors with

dissimilar probabilities of an active main effect).
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Table 2. Best and worst values for the number of groups and group sizes
for Example 4.2 for similar and dissimilar probabilities of individual main
effects being active. (∗ excluding (6; 1, 5))

Strategy

Criterion IGS CGS

Similar Dissimilar Similar Dissimilar

max E(S) 72.98 72.73 71.65 71.65

(6; 5,1) (6; 6) (6; 6) (6; 6)

min E(S) 60.02 60.90 39.74 44.97

(2,2,2; 2,2,2) (2,2,2; 2,2,2) (1,1,1,1,2; 2,1,3) (1,1,1,2,1; 1,3,2)

max P (S > 65) 0.99 0.99 0.99 0.99
(6; 6) (6; 6) (6; 6) (6; 6)

min P (S > 65) 0.30 0.35 0.01 0.03

(2,2,2; 2,4) (2,2,2; 2,4) (1,1,1,1,2; 2,4)∗ (1,1,1,1,2; 1,4,1)∗

For interaction group screening, the best group sizes in terms of minimizing
E(SIGS), as required by the mean-size criterion, are (2, 2, 2; 2, 2, 2), which corre-
spond to groupings of factors with the following active main effect probabilities:

Similar (0.3, 0.4) (0.5, 0.6) (0.7, 0.8); (0.0, 0.2) (0.4, 0.6) (0.8, 0.1)

Dissimilar (0.3, 1.0) (0.4, 0.8) (0.5, 0.6); (0.0, 1.0) (0.2, 0.8) (0.4, 0.6)

The grouping together of factors with dissimilar main effects probabilities
leads to virtually the same value of E(SIGS) as that obtained by grouping to-
gether similar probabilities (see Table 2). For the target excess criterion, with
target 65, these same group sizes (2,2,2; 2,2,2) give probabilities which are very
close to those for the best grouping (2,2,2; 2,4). For this example under IGS,
this grouping is a good choice, with freedom to allocate factors to groups in the
most convenient way.

For classical group screening, there are small differences in the best group-
ings, for minimising P (S > 65), as can be seen from Table 2. A better grouping
(6; 1, 5), for minimising P (S > 65), was excluded because the probability distri-
bution of SCGS for this grouping had 99.5% of the probability concentrated at
s = 65 and the remainder at s = 4. Large groups were uniformly poor choices
for both interaction and classical group screening, in line with other examples we
have examined.

4.4. Cancellation and amalgamation

A study, such as that in Section 4.3, which identifies a small number of
promising groupings should be followed by a comparison of the groupings and
associated strategies under the active effect identification criterion and the Type
I error criterion. This is important because, when directions of effects are un-
known or are unable to be lined up in the same way within a group, a small
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possibility exists that effects may cancel, resulting in one or more active effects

not being identified. On the other hand, when the directions of effects are lined

up correctly, there is a small possibility of non-active effects amalgamating to

produce a spuriously active grouped effect.

Assessment of different strategies to avoid cancellation or amalgamation can

be made by simulation (Dean and Lewis (2002)). The software gsim described by

these authors has been extended to accommodate unequal-sized groups and the

important practical case where the control (noise) factors are divided into two

sets such that the main effects of the factors in one set are thought extremely

likely to be active but there is less information about the factors in the other

set. The extremely likely active factors are assumed by gsim within GISEL to

have main effects whose directions are known. The user can specify that the

directions of any number of other main effects (should they be non-zero) are also

known. The user can investigate a range of possible proportions of unknown main

effects and interactions being active. In approximately the proportions specified,

active main effects and two-factor interactions are randomly drawn by gsim from

a normal distribution with user-specified mean and standard deviation. The

non-active main effects and two-factor interactions are randomly drawn from a

normal distribution having mean zero and standard deviation ∆/3, where the

user specifies ∆ as the change in the response that is regarded as substantial (for

more details see Dean and Lewis (2002)). All higher order interactions are set

to 0. Random errors are generated from a normal distribution with mean zero

and user-specified standard deviation. The user also specifies the required overall

significance level and size of the simulation. The software has the facility to read

a design for the first stage of experimentation automatically from the table of

Russell, Lewis and Dean (2004).

From the simulation studies that we have run, the theoretical results based on

the formulae in Section 3 appear to give reasonable approximations to the results

that might be expected in practice. Thus, one can select suitable group sizes and

grouping strategy using the theoretical results and then examine in depth the

apparent best settings via simulation using gsim, as illustrated in Example 4.3.

For a particular grouping, CGS typically performs better than IGS under

the mean-size and target-excess criteria. This is usually because CGS performs

poorly under the active effect identification criterion and hence has a small num-

ber of effects requiring estimation at stage 2.

Example 4.3. Consider an experiment with 15 individual control factors and

4 individual noise factors. Suppose that the main effects of 7 individual control

factors are thought very likely to be active and are assigned probability 1.0. The

main effects of the remaining 8 individual control factors are assigned probability

0.2 of being active. There is little information about the 4 individual noise factors
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and their main effects are assigned probability 0.3 of being active. The probabil-

ities that individual control×noise, control×control and noise×noise interactions

are active are set to 0.07, 0.05 and 0.3 respectively.

A systematic study of all possible groupings with group sizes of two or more,

via gsize, showed that E(SIGS) ranged from 113 to 175, with P(SIGS > 120)

ranging from 0.27 to 0.98. Equally sized groups tended to give rise to the smaller

values of E(SIGS) and corresponding standard deviation sd(SIGS). We have

seen the same pattern in other examples. In this particular example, the small-

est group sizes amongst those considered are the best under the mean-size and

target-excess criteria, but this is not necessarily true in general. The best of the

groupings are listed in Table 3 and any that are viable for practical application

can be examined under the active effect identification criterion via gsim. Below

we give the results of an investigation of the fourth listed grouping in Table 3

with the value of ∆ set to 10.0, the overall Bonferroni significance level to 0.1,

and the error distribution variance to 4.0. One possible way of reducing the

expected number of effects to be estimated is to hold the levels of the factors in

the likely active sets fixed during the experiment since their effects are assumed

to be already known. For the current example, E(SIGS) would then drop to 49

under the last listed grouping. This reduces the expected resource required but,

of course, carries the risk of overlooking interactions between the likely active

factors and the other factors screened out at the first stage.

Table 3. Investigation of different control group sizes for interaction group

screening. Noise factors are in two groups of size 2.

7 v. likely 8 less likely

indiv con. indiv con. E(S) sd(S) P (S > 120) P (S > 150) P (S > 180)

gps sizes gps sizes

2 2,5 3 2,3,3 125.79 18.76 0.62 0.09 0.00
2 2,5 4 2,2,2,2 120.85 16.42 0.52 0.04 0.00

2 3,4 3 2,2,4 124.45 18.56 0.60 0.08 0.00
2 3,4 3 2,3,3 122.18 18.23 0.54 0.06 0.00

2 3,4 4 2,2,2,2 117.41 15.84 0.43 0.02 0.00

3 2,2,3 2 4,4 124.89 18.44 0.61 0.08 0.00

3 2,2,3 3 2,2,4 117.85 15.72 0.44 0.02 0.00

3 2,2,3 3 2,3,3 115.69 15.34 0.38 0.01 0.00

3 2,2,3 4 2,2,2,2 112.97 13.00 0.27 0.00 0.00

A first stage design used in the simulation was read by gsim from the table

of Russell, Lewis and Dean (2004) and had 32 observations. Labelling the five

grouped control factors as A,B, C,D, E and the grouped noise factors as P ,

Q, this design aliased the following pairs of two factor interactions: (AB,CD),
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(AC,BD) and (AD,BC). The probabilities q
(c)
i,j , q

(n)
i,j , q

(cc)
ik,jl, q

(cn)
ik,jl and q

(nn)
ik,jl were

set at 0.2, 0.3, 0.05, 0.07 and 0.3, respectively, as above, with the probabilities

of active main effects of the seven extremely likely active factors set to 1.0. We

note that the simulation software creates actual scenarios, and the closest propor-

tions of active effects that can be achieved are 0.25, 0.25, 0.0476, 0.0666, 0.333,

representing two active control main effects out of eight, one active noise main

effect, five, four, and two active control×control, control×noise and noise×noise

interactions, respectively.

Table 4 shows part of the output from the simulation using the fourth listed

grouping in Table 3. The numbers in Table 4 are calculated over 500 data

simulations for each of 1,000 effect simulations. Not surprisingly, as the tails of

the active effect distribution move away from ∆(= 10), it can be seen that a lower

proportion of active effects is missed. It is also clear that a higher proportion of

individual interactions tends to be missed by CGS than by IGS as has happened

for most of the other examples that we have investigated.

If the probabilities of factorial effects being active are all set to zero, gsim

can also be used to assess the probability of selecting effects as active when they

are not (the Type I error criterion), see Dean and Lewis (2002) for an example.

Table 4. Simulation results for the proportions of active individual control

main effects (cme), noise main effects (nme), control×control interactions
(cxc) and control×noise interactions (cxn) that fail to be detected under

interaction and classical group screening.

Active effect Proportion missed Ave. size

distribution cme nme cxc cxn for stage 2
N(30, 9) 0.00 0.02 0.20 0.17 91

Interaction N(30,16) 0.00 0.02 0.22 0.20 88

group N(40,16) 0.00 0.00 0.16 0.13 96

screening N(50,16) 0.00 0.00 0.15 0.11 97
N(50,25) 0.00 0.00 0.14 0.11 98

N(30, 9) 0.04 0.06 0.44 0.64 94
Classical N(30,16) 0.04 0.09 0.44 0.67 93

group N(40,16) 0.02 0.00 0.41 0.63 99

screening N(50,16) 0.02 0.00 0.43 0.62 100

N(50,25) 0.03 0.00 0.42 0.62 99
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