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Abstract: Confidence intervals for the mean value of the response function in gen-
eralized linear models are proposed to improve the accuracy of the approximation
when the distribution of response is nonnormal and the sample size is moderate.
The correction will give the approximation error up to order of o(n−1/2) for the
one-sided case and of o(n−1) for the two-sided case. Monte Carlo studies are given
to compare our results with the classical ones.
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1. Introduction

Consider a generalized linear model (GLM) (McCullagh and Nelder (1989))
specified by univariate independent response variables and the canonical link
function. We assume that yi, i = 1, . . . , n, are independent responses and each
yi has a density of the form

f(yi; θi) = exp{ yiθi − b(θi) + c(yi)}, (1.1)

where b(·) and c(·) are known functions. The expected value of y is linked to a lin-
ear predictor η = z′β by a known monotone function g(·) such that E[y|z] = g(η).
Here z and β are a p-dimensional known covariate and an unknown parameter,
respectively. Under the canonical link, we have η as the natural parameter θ.

The problem of interest is to find a confidence interval for the mean response
for a fixed covariate z. Since g(·) is a known one-to-one function, this is equiv-
alent to finding the confidence interval for the linear predictor η. One method
constructs a two-sided confidence interval around the maximum likelihood esti-
mate η̂ = z′β̂ as

lc = (η̂ − cσ̂, η̂ + cσ̂), (1.2)

where β̂ is the maximum likelihood estimate of β, σ̂2 = z′I−1(β̂)z is the es-
timated asymptotic variance of η̂ and I(β̂) is the Fisher information matrix
evaluated at β̂. The two one-sided confidence intervals are constructed as

lu = (−∞, η̂ + cuσ̂), l` = (η̂ − c`σ̂, +∞). (1.3)
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For a prespecified coverage probability 1 − α, the constants c, cu, and c` are

determined by 1 − α = P (η ∈ lc) = P (η ∈ lu) = P (η ∈ l`).

It is widely accepted that if the response variable is from a normal population

or the sample size is sufficiently large, one can approximate the standardized Wald

statistic Wn = (η̂ − η)/σ̂ by a standard normal variable, hence the constants are

obtained as c = Φ−1(1 − α/2) and cu = c` = Φ−1(1 − α), where Φ−1(1 − α) is

the upper α percentile of the standard normal distribution. The intervals given

in (1.2) and (1.3), with these constants, are usually called Wald intervals in that

they are obtained from the large sample Wald tests for H0 : η = (≥,≤) η0. It is

worth noting that the Wald intervals actually have coverage error of order n−1/2

in the one-sided case, and of order n−1 in the two-sided case. (Hall (1992, p.49))

However, there are many situations where the response variables are non-

normal and only a moderate size sample is available due to practical constraints.

Then coverage probability may no longer be as precise as the desired level. More-

over, when g(η) is a constant function, Brown, Cai and DasGupta (2002, 2003)

show that the Wald intervals have extremely poor performance in both discrete

and continuous cases. Intensive numerical examples and theoretical explanations

are given there to elucidate the striking erratic phenomenon. They recommend

replacing the Wald intervals by score intervals, likelihood ratio intervals and Jef-

frey’s intervals (see the definition given in Brown, Cai and DasGupta (2003))

that show decisive improvement over the Wald intervals. But, in the general

setting (1.1), when the mean value is a nonconstant function of the predictor,

their proposed alternative intervals will not work as simply. The present paper

attempts to fix this problem. We propose some improved confidence intervals

based on the modified Wald statistic after making corrections for both nonnor-

mality and the finiteness of the sample size. A parallel inference problem about

testing under the same framework is discussed by Xu and Gupta (2003).

The main idea of the correction can be summarized as follows. First, we

derive the Edgeworth expansion of the distribution of Wn that contains the skew-

ness and the kurtosis effect from the underlying distribution. Second, a Skorohod

representation is constructed to write Wn in terms of its limiting distribution.

This is then followed by an inverse representation in terms of Wn to approximate

its limiting distribution up to n−1. We call this counterpart of Skorohod repre-

sentation the modified Wald statistic. At last, we define the modified confidence

intervals based on the new pivotal statistic.

Indeed, this idea can be traced back to Bartlett (1953). Johnson (1978)

applied the same method to obtain modified t test and the confidence intervals

for asymmetric populations. Abramovitch and Singh (1985) and Konishi (1991)

also considered some general situations with connection to the bootstrap. More

recently, Sun, Loader and McCormick (2000) used this Skorohod construction
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to improve the simultaneous confidence region for the mean response curve un-

der generalized linear models. Our derivation of the Skorohod representation

is similar to theirs in some parts, and differs in that we use the characteristic

function.

The remainder of the paper is organized in the following way. Most details

of the modified Wald intervals will be presented in Section 2. In Section 3,

numerical examples are given to compare our improved confidence intervals with

others. The Appendix contains the details of a proof.

2. Main Results

2.1. Edgeworth expansion of the pivotal statistic

To get at the distribution of the Wald statistic, we first obtain its Edgeworth

expansion up to the order of n−1.

We adopt the notation and follow the same route as did Sun, Loader and

McCormick (2000). Given the density (1.1), the Fisher information matrix can

be expressed as In(β) =
∑n

i=1 b′′(θi)ziz
′

i. Let An = In(β)/n be the rescaled

Fisher information matrix and Bn be the upper Cholesky triangular matrix such

that B′

nBn = An. (Note that An is nonsingular almost surely.) Denote the log-

likelihood function by L(β) =
∑n

i=1 logf(yi| β). We know that β̂ is the solution

of the equation ∂L(β)/∂β = 0, i.e.,
∑n

i=1(yi − b′(θi))zi = 0. Assume that β0

is the true value of β, let θi0 = z′iβ0, and define ψn =
∑n

i=1(yi − b′(θi0))zi/n,

gn(β) =
∑n

i=1[b
′(θi) − b′(θi0)]zi/n. Then β is the solution of ψn = gn(β).

Next, let ui = B′−1
n zi be the normalized covariate and define the normalized

sum of independent vectors by ξ =
∑n

i=1(yi−b′(θi0))ui/
√

n. It is easily seen that

ξ =
√

nB′−1
n ψn and E(ξ) = 0, Cov(ξ) = Ip. Then using the recursive method,

we can expand the normalized MLE β̂ up to Op(n
−1) as

√
nBn(β̂ − β0) = ξ +

1√
n

{
− 1

2n

n∑

i=1

b
(3)
i ui(u

′

iξ)
2
}

+
1

n

{ 1

2n2

n∑

i,j=1

b
(3)
i b

(3)
j ui(u

′

iξ)(u
′

iuj)(u
′

jξ)
2 − 1

6n

n∑

i=1

b
(4)
i ui(u

′

iξ)
3
}

+ op(n
−1).

Meanwhile, for a fixed covariate z, let ν = B ′−1
n z/(

√
nσn) be the normalized

covariate with ‖ ν‖ = 1. Rewrite Wn = [(η̂ − η)/σn] ·(σn/σ̂n), with (η̂ − η)/σn =

〈ν,
√

nBn(β̂ − β0)〉 and σn/σ̂n = [(z′I−1
n z)/(z ′Î−1

n z)]1/2 = (νBnÂ−1
n B′

nν)−1/2.

After some algebra, we finally obtain the expansion of Wn as

Wn = W0 +
1√
n

W1 +
1

n
W2 + op(n

−1), (2.1)
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where W0 = ν ′ξ, and W1 = (1/2n)
∑

i b
(3)
i (u′

iν)2(u′

iξ)(ν
′ξ)−(1/2n)

∑
i b

(3)
i (u′

iν)

(u′

iξ)
2, and

W2 = − 1

4n2

∑

i,j

b
(3)
i b

(3)
j (u′

iν)2(u′

iuj)(u
′

jξ)
2(ν ′ξ)

− 1

2n2

∑

i,j

b
(3)
i b

(3)
j (u′

iν)(u′

jν)(u′

iξ)(u
′

iuj)(u
′

jξ)(ν
′ξ)

+
3

8n2

∑

i,j

b
(3)
i b

(3)
j (u′

iν)2(u′

jν)2(u′

iξ)(u
′

jξ)(ν
′ξ)

− 1

4n2

∑

i,j

b
(3)
i b

(3)
j (u′

iν)(u′

iξ)
2(u′

jν)2(u′

jξ)

+
1

4n

∑

i

b
(4)
i (u′

iν)2(u′

iξ)
2(ν ′ξ)

− 1

6n

∑

i

b
(4)
i (u′

iν)(u′

iξ)
3.

The last summations go through the index set {1, 2, . . . , n} for both i and j.

Remark 2.1. The above expansions of the normalized β̂ and Wn extend the

results of Sun, Loader and McCormick (2000) by including the terms of order

Op(n
−1).

The computations for the first four cumulants of Wn, denoted by κj , j =

1, 2, 3, 4, follow from (2.1). It is found that κj is of order n−(j−2)/2 and may be

expanded as a power series in n−1 (see also Hall (1992, p.46)), i.e.,

κj = n−
j−2
2 (κj,1 + n−1κj,2 + n−2κj,3 + · · · ), j ≥ 1, (2.2)

with κ1,1 = 0, κ2,1 = 1 as desired. We omit the lengthy details and report

the terms which serve as the coefficients in the Edgeworth expansion of the

distribution up to n−1. (Cf., Sun, Loader and McCormick (2000).) They are

κ1, 2 =
1

2
C1 −

1

2
C2,

κ2, 2 = −3C3 +
1

2
C4 +

1

2
C5 +

7

4
C6 −

1

2
C7 −

1

2
C8 + C9,

(2.3)
κ3, 1 = C1,

κ4, 1 = −9C3 + 6C6 + 3C9 + 3C10,
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where

C1 = 1
n

∑
b
(3)
i (u′

iν)3, C3 = 1
n2

∑
b
(3)
i b

(3)
j (u′

iν)2(u′

jν)2(u′

iuj),

C2 = 1
n

∑
b
(3)
i (u′

iν)(u′

iui), C4 = 1
n2

∑
b
(3)
i b

(3)
j (u′

iν)(u′

jν)(u′

iuj)
2,

C8 = 1
n

∑
b
(4)
i (u′

iν)2(u′

iui), C5 = 1
n2

∑
b
(3)
i b

(3)
j (u′

iν)2(u′

iuj)(u
′

juj),

C9 = 1
n

∑
b
(4)
i (u′

iν)4, C6 = C2
1 ,

C10 = 1
n

∑
b′′2i (u′

iν)4, C7 = C1 · C2.

At last we get the Edgeworth expansion of the asymptotic distribution of
Wn:

P (Wn ≤ x) = Φ(x) + n−
1
2 p1(x)φ(x) + n−1p2(x)φ(x) + o(n−1), (2.4)

p1(x) = −[κ1, 2 +
1

6
κ3, 1(x

2 − 1)],

p2(x) = −x
[1

2
(κ2, 2+κ2

1, 2)+
1

24
(κ4, 1 + 4κ1, 2κ3, 1)(x

2−3)

+
1

72
κ2

3, 1(x
4−10x2+15)

]
, (2.5)

where Φ(x) and φ(x) are the standard normal distribution function and density
function, respectively. The details can be found in Hall (1992, Section 2.3).

Rremark 2.2. Strictly speaking, the Edgeworth expansion of the asymptotic
distribution of Wn in (2.4) should include two additional oscillation terms, of
order n−1/2 and n−1, when Wn posesses a lattice distribution. However this
will rarely happen when the function g(η) is nonconstant, even if the response
variable is discrete. Hence we exclude them here. For more discussion on this
issue, see Sun, Loader and McCormick (2000) and Bhattacharya and Rao (1976).

Rremark 2.3. In case a dispersion parameter, call it τ , is included in the original
model, or the density of yi is of the form

f(yi; θi, τ) = exp{ yiθi − b(θi)

τ
+ c(yi, τ)}, (2.6)

(2.4) holds with b′′i , b
(3)
i and b

(4)
i in the coefficients (2.3) replaced by b′′i /τ , b

(3)
i /τ ,

b
(4)
i /τ , respectively. The derivation proceeds in the same way with the above

changes in the corresponding expressions. If τ is unknown, then we replace it by
its consistent estimate.

2.2 Finiteness correction

The work of finding a transformation of Wn which absorbs the effect of
high order cumulants of the population distribution and the finite sample size is
achieved by the following proposition.
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Proposition 2.1. Suppose that the distribution of a random variable W can be

expanded as

P (W ≤ x) = Φ(x) + n−
1
2 p1(x)φ(x) + n−1p2(x)φ(x) + o(n−1), (2.7)

uniformly in x, where p1(x) and p2(x) are polynomials. Then we have

(i) W
d
= Z + n−

1
2 q1(Z) + n−1q2(Z), (2.8)

q1(x) = −p1(x),

q2(x) = −p2(x) + p1(x)p′1(x) − x
2p2

1(x);
(2.9)

(ii) W + n−
1
2 h1(W ) + n−1h2(W )

d
= Z, (2.10)

h1(x) = −q1(x),

h2(x) = −q2(x) + q1(x)q′1(x).
(2.11)

Additionally if we assume that p1(x) is even and p2(x) is odd, then we have

(iii) |W | d
= |Z| − n−1p2(|Z|), (2.12)

|W | + n−1p2(|W |) d
= |Z|. (2.13)

Here Z ∼ N(0, 1) and U
d
= V means |P (U ≤ x)−P (V ≤ x)| = o(n−1) uniformly

in x.

The proof is deferred to the Appendix.

Rremark 2.4. The additional assumption about the types of symmetry of func-

tions p1 and p2 is crucial to get the simple form of the Skorohod representation
in (iii) of Proposition 2.1. Fortunately in most circumstances, these symmetries

apply. (See Hall (1992), Appendix IV, for a counterexample.)

Rremark 2.5. It is easy to verify that the Skorohod representations in (2.8) and

(2.12) can be extended to any order n−k/2 as long as the corresponding expansion
exists. A multi-dimensional generalization has also been studied. (See Xu and

Gupta (2004).)

Now we are ready to construct two new pivotal statistics. Define

W (1)
n = Wn + n−

1
2 p1(Wn) + n−1(p2(Wn) +

Wn

2
p2
1(Wn)), (2.14)

W (2)
n = |Wn| + n−1p2(|Wn|), (2.15)

where p1 and p2 are given in (2.5). By Proposition 2.1 we have W
(1)
n

d
= Z and

W
(2)
n

d
= |Z| with the approximation error of order o(n−1). Then two modified one-

sided confidence intervals and the modified two-sided confidence interval based
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on W
(1)
n and W

(2)
n for η are constructed as l∗u = {η : W

(1)
n ≥ −cu}, l∗` = {η :

W
(1)
n ≤ c`} and l∗c = {η : W

(2)
n ≤ c}. Obviously one can also construct a two-

sided confidence interval from W
(1)
n as l̃c = {η : |W (1)

n | ≤ c}, but this will result

in a coverage error of order n−1 in practice.

Ideally, the coverage probability of modified confidence intervals would be of

order o(n−1) away from the nominal confidence coefficient 1 − α. However, in

practice, p1 and p2 have to be replaced by their estimated versions p̂1 and p̂2, ob-

tained by substituting coefficients by their consistent estimates. In other words,

we use l̂∗u = {η : Ŵ
(1)
n ≥ −cu}, l̂∗` = {η : Ŵ

(1)
n ≤ c`} and l̂∗c = {η : Ŵ

(2)
n ≤ c} in

applications. This might cause changes in the corresponding coverage probabili-

ties. For instance, usually we have p̂j = pj + Op(n
−1/2). By approximating the

roots of W
(1)
n = −cu and W

(2)
n = c, we may find that

l∗u = {η : Wn ≥ −[cu + n−
1
2 s1(cu) + n−1s2(cu)] + o(n−1)},

where s1(x) = p1(x), s2(x) = −p2(x) + p1(x)p′1(x) − (x/2)p2
1(x), and

l∗c = {η : |Wn| ≤ c − n−1p2(c) + o(n−1)}. (2.16)

By Proposition 3.1 of Hall (1992, p.102), we find that

P (η ∈ l̂∗u) = 1 − α + n−1bαφ(cu) + o(n−1), (2.17)

where bα = [(1/2)(C9 − C8) + (1/6)(c2
u − 1)C9]cu. The first order correction

yields an extra term −n−1s2(cu) on the RHS of (2.17). Further inspection shows

that the magnitude of bα is generally small. (Furthmore, note that C9 ≤ C8 ≤
(1/n)

∑
b
(4)
i (u′

iui)
2 and the last quantity of the inequality is a certain version

of kurtosis of the normalized vector ξ.) It can also be seen from the simulation

in the next section that the second order correction is superior to the first order

correction in most cases. On the other hand, we have

P (η ∈ l̂∗c) = 1 − α + o(n−1), (2.18)

ensuring that the modified two-sided confidence interval behaves well.

Consider assessing the confidence intervals by their expected length. Let

us just focus on the two-sided case. From (2.16) we can see that the expected

length of the modified two-sided confidence interval l∗c is 2[c − n−1p2(c)] E(σ̂),

compared to 2cE(σ̂) for the Wald interval lc in (1.2). Unfortunately we cannot

be sure that p2(c) stays positive or, equivalently, that the modified confidence

interval has a shorter expected length, although it seems that in most cases it

does. Neither can we guarantee that the modified Wald interval has the shortest

expected length among all confidence intervals of the same size, especially when
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Wn has a skewed distribution. Further investigation is needed. Nevertheless
the proposed confidence intervals satisfy the precision requirement, the primary
objective of this paper.

3. Simulations and Application

In this section, we present the Monte Carlo investigation of three examples to
demonstrate the performance of our proposed confidence intervals in comparison
with existing methods. This is followed by an application to data.

Example 3.1. [Gamma response] Assume that yi, i = 1, . . . , n, are distributed
according to Gamma(ν, µi) with densities

1

Γ(ν)
(

ν

µi
)νyν−1

i exp{− ν

µi
yi},

where the dispersion parameter a(τ) = ν−1 is assumed to be 0.5 (so that the
skewness of yi is

√
2). The canonical link function is the reciprocal function

associated with a linear predictor given by µ = η−1 = (5 + 2z)−1. We compare
the coverage probabilities of the two one-sided confidence intervals (lu vs l∗u) and
two two-sided confidence intervals (lc vs l∗c) at prescribed confidence coefficients.

The Monte Carlo study proceeds as follows.
1. Choose a sequence of values of the covariates randomly. (Make sure that each

µi is positive, here we let zi be Uniform(0,1).) Generate one observation from
Gamma(ν, µi) for each µi.

2. Use Newton-Raphson or the iterative weighted least square method to obtain
the MLE β̂.

3. Choose a number randomly from (0, 1) as the covariate z. Compute Wn, W
(1)
n ,

W
(2)
n and the estimated version Ŵ

(1)
n , Ŵ

(2)
n from the assumed model and the

sample, respectively.
4. Repeat 1∼3 sufficiently many times to obtain the empirical coefficient of the

confidence intervals. (Here we set the simulation size to be 10,000.)

The results are displayed in Figure 3.1, where the symbols ‘o’, ‘+’, ‘∗’ indi-
cate, respectively, the coverage probabilities of confidence intervals constructed
from Wn, W

(1)
n , Ŵ

(1)
n in the one-sided case, and from |Wn|, W

(2)
n , Ŵ

(2)
n in the

two-sided case. Some discussion follows Example 3.3.

Example 3.2. [Poisson response] Assume the response variable of the GLM
is Poisson with a log-quadratic link function, i.e., log E[y] = −1 + 4x − 6x2,
x ∈ (0, 1). The simulation is carried out in a similar fashion as Example 3.1.
We show the comparison of coverage probabilities for two types of confidence
intervals in Figure 3.2. We also examine the global distributions of the pivotal
statistic Wn and the new pivotal statistic W

(1)
n after the finiteness correction by

the sample relative frequency distributions, see Figure 3.3.
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Figure 3.3. Comparison of the sample distributions of Wn and W
(1)
n of a

Poisson log-quadratic regression model.

Another comparison between the first order correction (up to n−1/2) and the

second order correction (up to n−1) for the one-sided case is shown in Figure 3.4,

where we plot the coverage probabilities of confidence intervals constructed by

{η : Wn + n−1/2p̂1(Wn) ≥ −cu} and by l̂∗u = {η : Ŵ
(1)
n ≥ −cu}.
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Example 3.3 [Bernoulli response] Consider a Bernoulli random variable with

a logit-linear link function specified by logit E[y] = −1.5 + 3x, x ∈ (0, 1). On

observing independent 0–1 responses yi, i = 1, 2, . . . , n, and associated covariates

xi, we compare the coverage probabilities of one-sided and two-sided confidence

intervals for a randomly selected linear predictor. The results are shown in

Figure 3.5, with the sample size ranging from 20 to 150 (with step 10) and 150

to 500 (with step 25).
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To summarize the overall performance of the proposed confidence intervals

from the Monte Carlo study, the improvement over the classical method is sig-

nificant. To be more specific, in the one-sided cases of Gamma and Poisson

responses, the correction to the skewness (Figure 3.3) and second order correc-

tion to the kurtosis and second effect of skewness (Figure 3.4) are self-evident. In

the two-sided case, the correction for the Bernoulli response is quite remarkable

when n ≤ 150 (Figure 3.5), although we expect a minor change in the precision

since the correction made is of the order of n−1. On the other hand, large sample

theory shows its domination in both cases as the sample size gets large enough.

Another point we want to make is that the confidence intervals from the new

pivotal statistics with estimated coefficients are almost indistinguishable from

those of the true model, as we can see from Figure 3.1, Figure 3.2 and Figure 3.5
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that W
(1)
n and Ŵ

(1)
n , or W

(2)
n and Ŵ

(2)
n , or ‘+’ and ‘∗’ are close. This endorses

the observations about the coverage probabilities (2.17) and (2.18) at the end of
Section 2.

Finally we recommend to practitioners the following situations in which to
apply the correction to the three different models (Table 3.1). With large sample
size, say 300 or over, one may just use the first order correction to avoid extra
calculation while still maintaining the claimed significance level.

Table 3.1. Recommended situations.

Model Sample size Type

Gamma ≤ 50 one-sided

Poisson ≤ 100 one & two-sided

Bernoulli ≤ 150 two-sided

We close this section by applying our method to data.

Table 3.2. Potato flour dilution.

Dilution Spore growth Proportion

(g/100ml) No. of Plates No. of Positve of positive plates

1/128 5 0 0.0
1/64 5 0 0.0

1/32 5 2 0.4

1/16 5 2 0.4

1/8 5 3 0.6

1/4 5 4 0.8
1/2 5 5 1.0

1 5 5 1.0

2 5 5 1.0

4 5 5 1.0

Example 3.4 [Potato flour dilutions] A data set from Fisher and Yates (1963)
records the growth of spores in ten dilutions of a suspension of a potato flour
(Table 3.2). For each level of dilution, five plates are tested for positive growth.
There are reasons to model this number (the response variable) by a binomial
distribution associated with a logit-linear regression (McCulloch and Searle (2001,
p.144)). To be more specific, let yi, i = 1, 2, . . . , 10, be the number of plates with
positive growth, and xi be the logarithm of the dilution in the corresponding
level; we then assume that





yi ∼ indep. Binomial (5, pi) ,

E[ yi] = 5 pi = 5 1
1+e−(β0+β1xi)

.
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We apply the proposed method to construct pointwise 95% confidence in-

tervals for the positive growth proportion. It is seen in Figure 3.6 that the

proposed confidence intervals (dot-dash lines) are narrower than those from the

naive method (dotted lines). In other words, the confidence intervals by the

second method could be rather conservative in this case.
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of the proportions of positive plates.

Appendix.

Proof of Proposition 2.1 (i) Let D be the differential operator. It is known

that the Hermite polynomials Hj(x), j = 0, 1, 2, . . ., defined by −Hj(x)φ(x) =

(−D)j+1Φ(x), form an orthogonal basis with respect to the weight function

φ(x). Then there exist polynomials r1(x) and r2(x), having a factor x, such

that pj(x)φ(x) = rj(−D)Φ(x), j = 1, 2. Hence the characteristic function of W

can be written as

CW (t) =

∫
eitxdP (W ≤ x)

=

∫
eitxdΦ(x)+n−

1
2

∫
eitxd{r1(−D)Φ(x)}+n−1

∫
eitxd{r2(−D)Φ(x)}+o(n−1).
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Observing that
∫

eitxd{rj(−D)Φ(x)} = rj(it)e
−t2/2, we find

CW (t) = e−
t2

2 [ 1 + n−
1
2 r1(it) + n−1r2(it)] + o(n−1). (A.1)

On the other hand, assume that there are polynomials q1(·) and q2(·) such

that W
d
= Z + n−1/2q1(Z) + n−1q2(Z). Then we can write

CW (t) =

∫
eitzdΦ(z) +

1√
n

∫
eitzit · q1(z)φ(z)dz

+
1

n

∫
eitz

[
it · q2(z) +

(it)2

2
q2
1(z)

]
φ(z)dz + o(n−1). (A.2)

Likewise, there exist polynomials r∗j (x), j = 1, 2, 3, having a factor x such that
qj(z)φ(z) = r∗j (−D)Φ(z), j = 1, 2, q2

1(z)φ(z) = r∗3(−D)Φ(z). Note that for such
polynomials r∗j , integration by parts yields

∫
eitzit r∗j (−D)Φ(z)dz = −

∫
eitzd{r∗j (−D)Φ(z)}.

Therefore the RHS of (A.2) equals

e−
t2

2 +
1√
n

[
−

∫
eitzd{r∗1(−D)Φ(z)}

]

+
1

n

[
−

∫
eitzd{r∗2(−D)Φ(z)} − it

2

∫
eitzd{r∗3(−D)Φ(z)}

]
+ o(n−1)

= e−
t2

2
{
1 − n−

1
2 r∗1(it) − n−1[ r∗2(it) +

it

2
r∗3(it)]

}
+ o(n−1). (A.3)

Comparing the coefficients of n−1/2 and n−1 in (A.1) and (A.3), we get
{

r1(x) = −r∗1(x),

r2(x) = −r∗2(x) − x
2 r∗3(x).

(A.4)

Then

p1(x)φ(x) = r1(−D)Φ(x) = −r∗1(−D)Φ(x) = −q1(x)φ(x),

p2(x)φ(x) = r2(−D)Φ(x) =
[
− r∗2(−D) +

D

2
r∗3(−D)

]
Φ(x) (A.5)

=
[
− q2(x) + q1(x)q′1(x) − x

2
q2
1(x)

]
φ(x).

Finally (2.9) follows, after solving for q1(x) and q2(x) by p1(x) and p2(x) in (A.5).
(ii) To show (2.10), simply substitute W from the RHS of (2.8), and use a

Taylor expansion. We get

W + n−
1
2 h1(W ) + n−1h2(W )

d
= Z + n−

1
2 [q1(Z) + h1(Z)] + n−1[q2(Z) + h′

1(Z)q1(Z) + h2(Z)].
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Then (2.11) immediately implies (2.10).

In fact it is easy to verify that (2.8) and (2.10) are equivalent if and only if

(2.11) holds.

(iii) From the additional assumption, we first have P (|W | ≤ x) = (2Φ(x) −
1) + 2n−1p2(x)φ(x) + o(n−1). Then along the same argument as in the proof of

(i) we obtain the desired representations. The details are omitted.
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