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Abstract: In testing the adequacy of a regression model, the conditional expectation

of the residuals given the observed covariate is often employed to construct lack-of-

fit tests. However, in the errors-in-variables model, the resiudal is biased and cannot

be used directly. In this paper, by correcting for the bias, we suggest lack-of-fit tests

of score type for a general linear errors-in-variables model. The polynomial model is

a special case. The tests are asymptotically chi-squared under the null hypothesis.

The choice of scores involved in the test statistics and the power properties are

investigated. A simulation study shows that the tests perform well. Application

to two data sets is also made. The approach can readily be extended to handle

general parametric models.
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1. Introduction

In many applications of regression analysis, the independent variables may

be observed only with measurement errors. A general linear errors-in-variables

model can be written as
{

Y = α + h(x)τβ + e,

X = x + u,
(1.1)

where E(u) = 0, x and u are independent, E(e|x, u) = 0, and E(e2|x, u) = σ2
e .

In the model, X and Y are observable, x and u are m × 1 random vectors with

m ≥ 1, α and β are 1- and p-dimensional unknown parameters respectively,

h(·) is a known vector function of p dimensions (p ≥ m). During the last two

decades, errors-in-variables models have received much attention in the literature.

Readers can refer to Anderson (1984), Fuller (1987), Stefanski and Carroll (1991),

Carroll, Ruppert and Stefanski (1995), and Cheng and Van Ness (1999), and the

references therein for more details. Clearly, testing the adequacy of these models

is important and relevant.

Consider the null hypothesis

H0 : E[(Y − α − h(x)τβ)|x] = 0 a.s. for some α and β (1.2)
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versus the alternative, with positive probability,

H1 : E[(Y − α − h(x)τ β)|x] 6= 0 a.s. for all α and β.

Interestingly even when x is observable, that is, for ordinary regression models,

the above testing problem received attention only in the late 1980’s. There are

a number of proposals in the literature, for instance Eubank and Spiegelman

(1990), Hall and Hart (1990), Eubank and Hart (1993), Härdle and Mammen

(1993), Müller (1993), Stute (1997), Härdle, Mammen and Müller (1998), Stute,

Gonzalez Manteiga and Quindimil (1998), Stute, Thies and Zhu (1998), Stute

and Zhu (2002), Zhu (2003) and Zhu and Ng (2003), among others. Hart (1997)

is a good reference book in this area, especially for cases with one-dimensional

covariates.

Most of the work in the errors-in-variables context is devoted to estimation

rather than testing. To our knowledge, for linear errors-in-variables models with

h(x) = x, Fuller (1987, pp.25-26) firstly recommended an informal test in terms

of the residual plots; Carroll and Spiegelman (1992) considered the graphical and

numerical diagnostics for nonlinearity and heteroscedasticity; Carroll, Ruppert

and Stefanski (1995) had formal tests for nonlinearity in terms of the conventional

way that parameters in linear models are tested to be zero or not. There are few

works on lack-of-fit testing in the literature.

Due to the measurement errors, the residuals are highly correlated with the

observed independent variables X = x + u. The conditional expectation of the

residuals given the observed X is not centered: that is, even under H0,

E[(Y − α − h(X)τ β)|X] 6= 0.

Fuller (1987, p.23) considered a modification, but the residuals obtained by the

modification are not centered either.

Zhu, Cui and Ng (2004) studied the case h(x) = x and derived a neces-

sary and sufficient condition for the linearity, with respect to X, of the above

conditional expectation of the residual given X. Based on that, lack-of-fit tests

can be constructed. But the normality assumption of the variables is restrictive.

Cheng and Kukush (2004) and Zhu, Song and Cui (2004) independently extended

Zhu, Cui and Ng’s method to handle a polynomial errors-in-variables model and

removed the normality restriction.

In the present article, we aim to develop lack-of-fit tests for model (1.1). The

tests of score type (see, Cook and Weisberg (1982)) are defined. First, we correct

for the bias of the conditional expectation given X of least squared residuals

to derive centered residuals. Second, we use the modified residuals to construct

score test statistics. The test statistics are asymptotically chi-squared under H0.
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In Section 3, we investigate the power of the tests and construction of further

tests. Since the test statistics involve weight functions on scores, we discuss

the choice of weight functions in Sections 3 and 4. A simulation study and the

application to three data sets are reported in Section 4. Section 5 includes some

further discussions, and proofs of our results are put in the Appendix.

2. Construction of Test and Bias Correction

2.1. The estimation of parameters

Assume that x and u have densities f(x, θ1) and g(u, θ2), respectively, where

f(·, θ1) and g(·, θ2) are two given functions, θ1 and θ2 are, respectively, q1− and

q2− dimensional unknown parameters. Write θ = (θ1, θ2) and q = q1 + q2. Then

X has the density F (·, θ) =
∫

f(x, θ1)g(· − x, θ2)dx. Let

H(X, θ) =: Eθ[h(x)|X] =

∫

h(x)f(x, θ1)g(X − x, θ2)dx

F (X, θ)
.

Hence under H0,

E[(Y − α − H(X, θ)τβ)|X] = 0 a.s. (2.1)

The corrected residual ε = (Y − α − H(X, θ)τβ) can be used to construct a test

statistic.

Remark 2.1. In the following, we point out some H functions of useful mod-

els.

(1) A linear model. If h(x) = x, x ∼ N(0,Σx) and u ∼ N(0,Σu), then H(X, θ) =

A(θ)X with A(θ) = Σx(Σx + Σu)−1. This is considered in Carroll, Ruppert

and Stefanski (1995). Zhu, Cui and Ng (2004) proved that this relation

between h and H is a necessary and sufficient condition for normality of x

and u.

(2) A polynomial model. If h(x) = (x, x2, . . . , xk)τ , x ∼ N(0, σ2
x) and u ∼

N(0, σ2
u), then H(X, θ) = (f1(X), . . . , fk(X))τ , where fj(X) =

∑j
i=1 cijX

i,

cij depends on σ2
x and σ2

u only, 1 ≤ j ≤ k. Refer to Cheng and Schneeweiss

(1998) and Cheng and Van Ness (1999) for more details.

In the formula of H(·, θ), θ1 and θ2 need to be estimated. When either θ1

or θ2 is given, the estimation is easy because we have Xi’s with the distribution

F (·, θ1, θ2) and only θ2 or θ1 as the unknown parameter; the estimator can be

defined by, e.g., maximum likelihood. Under regularity conditions, asymptotic

normality can be achieved. It is clear that if there is no constraints on θ1 and/or

θ2, they are often inestimable because they are unidentifiable unless there are

validation data x̃j. See Sepanski and Lee (1995). Here we assume that θ is

identifiable and that a
√

n consistent estimator θ̂ of θ exists.
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The estimation of α and β has received much attention in the literature.

See Fuller (1987) for linear models; Cheng and Schneeweiss (1998) and Cheng

and Van Ness (1999) for both linear and polynomial models; and Carroll and

Ruppert and Stafanski (1995) for more general nonlinear models. Estimation is

not the focus of this paper and we adopt the least squares estimator for ease of

exposition.

Assume that θ̂ is a
√

n consistent estimator of θ based on the sample {X1, . . .,

Xn}. The least squares estimators of α and β are defined as follows:

β̂ = [SHH(θ̂)]−1SHY (θ̂), α̂ = Y − H(θ̂)τ β̂, (2.2)

where

SHH(θ̂) =
1

n

n
∑

i=1

[H(X, θ̂) − H(θ̂)][H(Xi, θ̂) − H(θ̂)]τ ,

SHY (θ̂) =
1

n

n
∑

i=1

[H(Xi, θ̂) − H(θ̂)](Yi − Y ),

H(θ̂) =
1

n

n
∑

i=1

H(Xi, θ̂), Y =
1

n

n
∑

i=1

Yi.

Under (A1) and (A2) below, we have that, if θ̂ is
√

n-consistent,

β̂−β =
1

n

n
∑

i=1

(

Cov (H(X, θ))
)−1(

[ei+(h(xi)−H(Xi, θ))τβ][H(Xi, θ)−Eh(x)]

−[H(Xi, θ) − Eh(x)](θ̂ − θ)τH ′(Xi, θ)β
)

+ op(1/
√

n)

= Op(1/
√

n). (2.3)

For a proof, see Lemma 2 in the Appendix.

2.2. The construction of tests

We have to consider methods for test construction. With ordinary regression

models, there are several methodologies: the comparison between parametric

and nonparametric fits to detect the alternative (see Eubank and Hart (1993)

and Mammen and Härdle (1993)); the residual-marked empirical process tests

(see Stute (1997) and Stute, Thies and Zhu (1998)); and score-type tests (see

Cook and Weisberg (1982), Stute and Zhu (2005)). The first of these could

be sensitive to the alternative, but suffers the curse of dimensionality due to

the use of nonparametric smoothing; the second does not need nonparametric

smoothing, but is less sensitive to the high frequency alternatives; the third
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is the most easily implemented and the limiting null distribution is tractable,
though the choice of scores is crucial for the power performance. In this paper,
we adopt score-type tests. Each residual is properly weighted by a function of
the covariates. Such an approach has a long tradition in statistics. Typically,
score tests are only analyzed (and optimized) after the direction from which
the alternative tends to the null model has been specified. Classical examples
are linear one- and two-sample rank statistics or rank correlation statistics, see
Behnen and Neuhaus (1989). Also, robust tests focusing on a neighborhood of a
given family of distributions are designed in this spirit. In this sense, our tests
are not new. However, beyond the traditional construction, we investigate the
optimal choice of scores for directional alternatives and we construct maximin
tests when there are several possible departures from the null hypothesis.

To construct score-type tests we note that under H0 of (2.1), for any weight
function w(·, θ, β),

E
(

[Y − α − H(X, θ)τβ]w(X, θ, β)
)

= 0, (2.4)

provided the left hand side is finite.
Suppose that {(X1, Y1), . . . , (Xn, Yn)} is a sample of size n, where Xi =

xi + ui. A test statistic is then defined as follows:

Tn0 =
1

n

n
∑

j=1

[Yj − α̂ − H(Xj , θ̂)τ β̂]w(Xj , θ̂, β̂) =:
1

n

n
∑

j=1

ε̂jw(Xj , θ̂, β̂), (2.5)

where α̂ and β̂ are the estimators of α and β defined in (2.2), and ε̂j = Yj − α̂−
β̂τH(Xj , θ̂) are the observed residuals.

Let η(X, θ, β) = w(X, θ, β) − E(w(X, θ, β)). Under H0 and conditions (A1)
and (A2) below, when a Taylor expansion is applied, we find

Tn0 =
1

n

n
∑

j=1

{Yj − H(Xj , θ)τβ}η(Xj , θ, β) + op(1/
√

n). (2.6)

The details of the proof are in the Appendix. Note that the first term of Tn0 is a
sum of i.i.d. randon variables. It is easily proved that, together with E(e|x, u) = 0
and Y − H(X, θ)τβ = e + (h(x) − H(X, θ))τβ, the variance of this sum is

A2 = E{[σ2
e + βτ Cov (h(x)|X)β]η2(X, θ, β)},

where Cov (h(x)|X) is the conditional variance of h(x) given X. Hence, applying
the Central Limit Theorem and (2.6), we have

√
nTn0

d−→ N(0, A2). (2.7)

Assumptions. We assume that the function H(·, θ) and w(·) satisfy the follow-
ing conditions.



1054 LIXING ZHU AND HENGJIAN CUI

(A1) H ′(X, θ)=:∂H(X, θ)/∂θ (q×p matrix) and w′(X, θ, β)=∂w(X, θ, β)/∂(θ, β)

are continuous with respect to θ, β and X, and

E[sup
θ∈B

(‖H(X, θ)‖ + ‖H ′(X, θ)β‖ + |w(X, θ, β)| + ‖w′(X, θ, β)‖)2] < +∞,

where B is an open neighborhood of θ and ‖ · ‖ is the Euclidean norm.

(A2) Cov [H(X, θ)] is a p×p positive definite matrix, Cov [H(X, θ), w(X, θ, β)] =

0 and Cov [H ′(X, θ)β,w(X, θ, β)] = 0.

Remark 2.2. Condition (A1) assumes the smoothness of the functions and the

finiteness of moments, there are almost necessary for the asymptotic normality

of the relevant statistics. The condition Cov [H(X, θ), w(X, θ, β)] = 0 of (A2)

assumes the design of a weight function orthogonal to H(·, θ). The rationale is

as follows. Note that α + H(·, θ)τβ is the conditional expectation of Y given X

and a linear projection of Y onto a space spanned by H(·, θ). Therefore only the

part of a departure from H0 that is orthogonal to H(·, θ) can be detected. The

weight function w(·) only needs to be selected in the class of functions which are

orthogonal to H(·, θ). The condition that Cov [H ′(X, θ)β,w(X, θ, β)] = 0 is not

necessary and can be removed at the cost of a limiting variance depends on the

distribution of X.

Since the Tn0 are not scale-invariant, we define standardized test statistics

with the quadratic form

T 2
n =:

(

√
nTn0

An

)2
=

n

A2
n

[ 1

n

n
∑

j=1

(

Yj − α̂ − H(Xj , θ̂)
τ β̂

)

w(Xj , θ̂, β̂)
]2

, (2.8)

where A2
n is a normalizing constant and usually a consistent estimator of the

asymptotic variance A2 of
√

nTn0, such as A2
n = (1/n)

∑n
j=1 η2

j ε̂
2
j .

The T 2
n are score tests that can be motivated directly as the squares of sums

of weighted residuals due to the regression of w(Xj , θ̂, β̂) on the ε̂j. Heuristically,

the residuals ε̂j should be uncorrelated with the weights if the model is correctly

fitted, T 2
n should be large if H0 is false.

3. Power Study and Further Construction of Tests

In this section we study the asymptotic null distribution and the power prop-

erties of T 2
n , and we construct maximin tests for cases where there are several

possible alternative models. Here we give a brief description of the asymptotic

behavior of the test statistics, the details of the proof can be found in the Ap-

pendix. Since A2
n is a consistent estimator of A2 with A = A(σ2

e , θ, β) and

T 2
n = ((1/

√
n)[

∑n
j=1 ε̂jw(Xj , θ̂, β̂)]/An)2, we have the following result by (2.7).
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Theorem 1. Assume (A1) and (A2). Then under H0, we have

T 2
n

d−→ χ2
1, (3.1)

where χ2
1 is the chi-squared distribution with 1 degree of freedom.

We now discuss the power properties. Consider a sequence of models

H1n : Yjn = α + h(xj)
τβ + Cns(xj) + ej , Xj = xj + uj, (3.2)

for j = 1, . . . , n, with some arbitrary function s(·).
Theorem 2. Assume (A1) and (A2), and E[s2(x)] < +∞. Then under H1n, we

have that if nγCn → a, 0 ≤ γ < 1/2,

T 2
n

d−→ ∞, (3.3)

and if n1/2Cn → 1

T 2
n

d−→ χ2
1(C

2), (3.4)

where χ2
1(C

2) is a non-central chi-squared random variable with 1 degree of free-

dom and non-centrality parameter C2, with C = Cov (s(x), w(X, θ, β))/A.

This result means that T 2
n has asymptotic power 1 for global alternatives

(γ = 0) and for local alternatives distinct from the null at rate n−γ with 0 <

γ < 1/2 . It can also detect alternatives converging to the null at rate n−1/2,

the possibly fastest rate for lack-of-fit testing. Actually, for computation of the

power at alternatives distinct from the null at the rate n−1/2, we can determine

the asymptotic p-values from the chi-squared distribution. The asymptotic power

of T 2
n is 2 − Φ(λα/2 − C) − Φ(λα/2 + C) for Φ(·) being the standard normal

distribution function, where λα/2 is the α/2 quantile of the standard normal

distribution. This is a monotone function of |C|. Thus we should select the

weight function w(·) which makes C2 as large as possible. The lemma in the

Appendix shows that the optimal choice of the weight function w is λw0 where

λ is an arbitrary positive constant and

w0(X, θ, β) = {P1(X) − Bτ
12B

−1
22 P2(X)}/B0(X), (3.5)

where B0(X) = σ2
e +βτ Cov [h(x)|X]β; P1(X), P2(X), B12 and B22 can be found

in Lemma 1 in the Appendix, they depend on B0(X), B1(X) = E(s(x)|X) and

B2(X) = (Hτ (X, θ), βτ (H ′(X, θ))τ )τ . Looking at B22 in Lemma 1, we see that

it is positive semi-definite. Let B−1
22 be its Moore generalized inverse. We assume

that B22 is non-singular. Non-singularity is satisfied when the components of
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B2−E(B2) are almost surely linearly independent. Furthermore, for the optimal

choice of weights, the non-centrality parameter becomes

sup
Ew(X,θ)=0

Cov[B2(X),w(X,θ,β)]=0

Cw = Cw0 = E[w2
0(X, θ, β)B0(X)].

For simplicity, we can take λ = 1.

Note that w0(·, θ, β) involves the alternative s(·). For directional alternatives,

that is, if s(·) is a known function, w0(·, θ, β) is estimable, hence it can be used as

a weight function. Furthermore, a regression is the projection of the response Y

onto the space spanned by H(·) for all X. Therefore, when we consider a testing

problem, departures we can detect are within the space perpendicular to the pro-

jection space of Y onto X. From this observation, we can assume that departures

s(·) are orthogonal to H(·). In this case, the weight function w0 = P1/B0, where

P1(X) = E(s(x)|X)−E(s(x))−E[(E(s(x)|X)−E(s(x)))/B0 ]/E(B−1
0 ), because

B12 = 0. Moreover, when B0(X) is a constant function, the formula reduces fur-

ther to w0 = (E(s(x)|X) − E(s(x)))/B0. From this analysis, we can see that in

some cases, an optimal weight can be selected as the centered regression function

E(s(x)|X)−E(s(x)) of s(·) onto the space spanned by H(·) for all X. However,

when s(·) is unknown, we cannot estimate w0(·, θ, β) consistently. Therefore, it

is not practical. We should choose w(X, θ, β), at the very least, to have non-

zero correlation with the function s(x), so that the tests have non-trivial power.

Residual plots should be informative for searching a weight function, we discuss

this issue in the next section.

Note that the above tests are powerful for directional alternatives. We now

study an important extension of (3.2). Let s1, . . . , sd be any finite number of

known functions, where d ≥ 1. The si are possible departure functions and

comprise a possible dependence of Y on X other than projection. For example,

some of the s-functions may be quadratic forms, and others may look to possible

interactions between coordinates of X.

Consider the sequence of models: for 1 ≤ i ≤ n,

Yin = α + h(xi)
τβ + Cn

d
∑

j=1

ζjsj(xi) + ei, Xi = xi + ui, (3.6)

where ζ1, . . . , ζd ∈ R are unknown parameters. The null model is H0 : ζ1 = · · · =

ζd = 0. By calibration, (3.6) can be rewritten as

Yin = α + H(Xi, θ)τβ + Cn

d
∑

j=1

ζjE(sj(xi)|Xi) + εi, Xi = xi + ui,
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where E(ε|X) = 0. Assume that the E(sj(x)|X)’s are uncorrelated with H(Xi, θ)

and that the conditional variance of h(·) given X is a constant. As described

above, optimal weights can be selected as Wj(X, θ) = E(sj(x)|X)−E(s(x)), j =

1, . . . , d, each corresponding to E(sj(x)|X). In the following we derive maximin

tests for H0 versus ||ζ|| ≥ c, where || · || is a proper norm and ζ τ = (ζ1, . . . , ζd).

The following setup provides a maximin-test. For this, similar to those of (2.6) we

consider the score-statistics T̂ j
n0 and Anj pertaining to Wj(X, θ) = E(sj(x)|X)−

E(s(x)), j = 1, . . . , d. We choose the weight functions Wj because the sj are just

the departures from the hypothetical regression function. Such weight functions

are natural choices and can enhance power performance, although other weight

functions are also possible. Let Aj be the population version of Anj . Put T̂n =

(T̂ 1
n0/An1, . . . , T̂

d
n0/And)

τ . Following the proof of Theorem 2, we can show that

under (3.6), when nγCn → a with 0 ≤ γ < 1/2, then Tn → ∞ as n → ∞; when

n1/2Cn → 1,

√
nT̂n → Σ(1)







ζ1
...

ζd






+ Nd(0,Σ(2)). (3.7)

Here, Σ(k) = (σ
(k)
ij )1≤i,j≤d, k = 1, 2, with σ

(1)
ij = E{[Wi(X, θ)][Wj(X, θ)]}/Aj

and σ
(2)
ij = E{(Y −α−H(X, θ)τβ)2[Wi(X, θ)][Wj(X, θ)]}/(AiAj), and Nd denotes

a normal distribution on Rd. Distributional characteristics of (3.6) only appear

through the (estimable) covariance matrices.

We may now use existing maximin-theory to obtain optimal tests for H0.

See, e.g., Strasser (1985, Theorem 30.2). For this, define Σ
(k)
n = (σ

(k)
ijn)1≤i,j≤d,

k = 1, 2, through

σ
(2)
ijn =

1

n

n
∑

l=1

{(Yl−α̂−β̂τ H(Xl,θ̂))
2 [Wi(Xl,θ̂)−(W̄i(X,θ̂))][Wj(Xl,θ̂)−(W̄j(X,θ̂))]}

(AniAnj)
.

Theorem 3. For a given significance level 0 < α < 1, and γ = 1/2, the test

t = 1
{T̂ τ

n (Σ
(2)
n )−1T̂n≥cα}

is a maximin α-test for H0 versus H1. Here H1 is (3.6)

with ζ such that ζTΣ(1)(Σ(2))−1Σ(1)ζ ≥ a for any user-specified value a > 0, cα

is the (1 − α)-quantile of the chi-square random variable χ2
d with d degrees of

freedom. The asymptotic maximin power is given by P (χ2
d(a) ≥ cα), where a is

the noncentrality parameter.

Since the dimension d is arbitrary, Theorem 3 covers most examples of inter-

est. For those who prefer omnibus tests we would consider a process-based test to

handle a nonparametric class of alternatives. See Stute and Zhu (2002, 2005) for

a relevant discussion where there are no measurement errors in covariates. Stute,
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Thies and Zhu’s (1998) method may be useful when the covariate is univariate.

In the multivariate covariable case the process method is still valid, but the lim-

iting distribution is no longer distribution-free and a resampling approximation

is needed, see Stute, Gonzalez Manteiga and Quindimil (1998). This problem

deserves further study.

4. Simulations and Examples

4.1. Simulations

We consider the model

y = 1 + x + 2x2 + cx3 + e, X = x + u, (4.1)

where x ∼ N(0, σ2
x), u ∼ N(0, σ2

u), e ∼ N(0, 0.5), h(x) = (x, x2)τ , θ = σ2
x. That

is, c = 0 corresponds to the null hypothesis. The function H and its derivative

can be specified as

H(X, θ) = E(h(x)|X) =
( σ2

x

σ2
x + σ2

u

)[

X,
σ2

xX
2

σ2
x + σ2

u

+ σ2
u

]τ
,

H ′(X, θ) =
( σ2

u

(σ2
x + σ2

u)2

)[

X,
2σ2

xX2

σ2
x + σ2

u

+ σ2
u

]

.

In the simulation, we took σ2
x = 1, σ2

u = 0.35 and n = 50. As can be seen, the

residual plots are informative in detecting alternatives. Therefore, we first tried

to choose a weight function based on the plots.
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Figure 1. Simulated data with σu = 0.35 in model (4.1): (a). The plot of

the data Xj versus the residuals with c = 0; (b). The plot of the data Xj

versus the residuals with c = 2.
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From Figure 1 (a), we chose a cubic function of X as the weight function

w(X, θ, β). This means that w(X, θ, β) could be taken as the third Hermite poly-

nomial w1(X, θ, β) = (X/
√

σ2
x + σ2

u)3−3X/
√

σ2
x + σ2

u. Then E(w1) = E(Xw1) =

E(X2w1) = 0 and assumption (A2) is satisfied. We also use the optimal weight

function w0(X, θ, β) = {P1(X) −Bτ
12B

−1
22 P2(X)}B−1

0 (X). By simple calculation,

we find

B1(X) = E(x3|X)=σ6
1X

3+3σ2
1σ

2
2X, Cov [h(x)|X]=σ2

2

(

1 2σ2
1X

2σ2
1X 2σ2

2 + 4σ4
1X

2

)

,

B0(X) = 0.5+σ2
2 +8σ4

2 +8σ2
1σ

2
2X +16σ4

1σ
2
2X

2, w0(X, θ, β) =

3
∑

j=0

djX
j/B0(X),

where σ2
1 = σ2

x/(σ2
x + σ2

u), σ2
2 = σ2

xσ
2
u/(σ2

x + σ2
u),

d0 = [Bτ
12B

−1
22 E(B2/B0) − E(B1/B0)]/E(B−1

0 ) − σ2
uσ2

1B
τ
12B

−1
22 l2

d1 = σ2
1 [3σ

2
2 − Bτ

12B
−1
22 l1], d2 = σ4

1B
τ
12B

−1
22 l2, d3 = σ6

1,

B22 = E[B2B
τ
2/B0] − E[B2/B0]E[Bτ

2/B0]/E[B−1
0 ],

B12 = E[B1B2/B0] − E[B1/B0]E[B2/B0]/E[B−1
0 ]

and l1 = (1, 0)τ , l2 = (0, 1)τ . We replace σ2
x by its estimator σ̂2

x = (1/n)
∑n

i=1(Xi

−X)2 − σ2
u in practice. Looking at the form of the optimal weight function w0,

we realize that it is rather complicated, but it is essentially a ratio of a third

to a second order polynomial. Therefore, we also consider a weight function w2

which is a ratio of second and third order polynomials that satisfies conditions

(A.1) and (A.2):

w2(X, θ, β) =

(

X√
σ2

x+σ2
u

)3
− dX√

σ2
x+σ2

u

1 +
(

X√
σ2

x+σ2
u

)2 ,

d =
E

{(

X√
σ2

x+σ2
u

)4
/
[

1 +
(

X√
σ2

x+σ2
u

)2]}

E
{(

X√
σ2

x+σ2
u

)2
/
[

1 +
(

X√
σ2

x+σ2
u

)2]} .

The power functions against c with this choice w0, w1, w2 are presented in

Figure 2 ( the number of replication = 500). The tests maintain the significance

level well, and when the departure to the hypothetical model is not significant,

that is, c is small, the tests still have an encouraging power performance. As

is expected, the tests with optimal weight function fare best. But, as we know,

the form of the test with optimal weight is complicated and the computational
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burden is heavy. In contrast, we find that the power of the test with w2 is only

slightly lower than that with w0. The performance of the test with w1 is also

encouraging, given that it was chosen simply by checking residual plots.
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Figure 2. Simulated power functions against the values c. The solid line is
with w0, dot-dash line with w1 and dot line with w2.

For the sake of simplicity, using residual plots to search a proper weight can

be useful. In the following examples, we adopt this approach.

4.2. Examples

Example 1. The data are the depths and locations of n = 43 earthquakes occur-

ring near the Tonga trench between January 1965 and January 1966 (see Fuller

(1987, pp. 214 and 289)). The variable X1 is the perpendicular distance in hun-

dreds of kilometers from a line that is approximately parallel to the Tonga trench.

The variable X2 is the distance in hundreds of kilometers from an arbitrary line

perpendicular to the Tonga trench. The variable Y is the depth of the earth-

quake in hundreds of kilometers. The distribution of (X1, X2) is assumed to be

normal. Under the plate model, the depths of the earthquakes will increase with

distance from the trench and a plot of the data shows this to be the case. The

location of the earthquakes is subject to error. Our intention is to check whether

the plate model is a linear model or not. We assume that the variance matrix of

measurement error u is known as Σu = 0.01I2, which is the same as Fuller’s, and

p = 2. Figure 3 shows the plots of the response Y against β̂τX/std(β̂τX), the

residual against X1/std(X1), the residual against X2/std(X2), and the weight

function w(X) against X1/std(X1) respectively. Looking at Figure 3(a), a linear

relationship seems visible. Thus we state as the null hypothesis that the un-

derlying model is linear. However, the residual plot for the individual covariate

x1 shows as a quadratic. We chose the second Hermite polynomial as a weight



A GENERAL LINEAR ERRORS-IN-VARIABLES MODEL 1061

function: w1(X) = ((X1 − µ1)/std(X1))
2 − 1 with µ1 = E(X1). When the nor-

mality assumption holds, this weight function satisfies (A1) and (A2). According

to the plots (a) and (b) in Figure 3, this is also a reasonable selection. We find

T 2
n = 13.1059 and a p-value of 0.00029, so the linear model is not tenable. In

fact, Fuller (1987) took a working model quadratic in x1, and linear in x2.
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Figure 3. (a). The plot of the data β̂τX/std(β̂τX) versus the response Y ;

(b). The plot of the data X1/std(X1) versus the residuals; (c). The plot of

the data X2/std(X2) versus the residuals.

Example 2. The data are houses liquidated by Saving and Loans in the Califor-

nia area, as functions of the number (x1) of rooms, the number (x2) of bedrooms,

the number (x3) of bathrooms, total living area x4 in hundreds of square feet,

and age (x5) of the house. There are 99 observations collected by the Resolution

Trust Corporation (R.T.C.) during the period of 1990-1992. The response vari-

able Y is the logarithm of the appraised value in thousands of dollars (see He and

Ng (1999)). Here the observed age (X5 = x5 + u5) of house is subject to mea-

surement error because of survey reasons. Write the observed vector X = x + u,

where x and u are multinormal and independent with p = 5, the mean and var-

covariance matrix of measurement error u are assumed to be known as 0 and
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Σu = diag(0, 0, 0, 0, 25), respectively. We still use the notation X to denote the

centralization of X ( i.e., X − mean(X) ) in the following.

Figure 4 shows the plots of the response Y against β̂τX/std(β̂τX), the resid-

ual against β̂τX/std(β̂τX), the residual against X5/std(X5), and w1(X) against

X5/std(X5), respectively. When we look at Figure 4 (a), a linear model seems

tenable. Thus, the null model is also assumed to be linear. However, Figure 4 (c)

provides evidence of nonlinearity. We tried a second order Hermite polynomial

first: w1(X) = (X5/std(X5))
2−1. As before, when normality is true, this weight

function satisfies (A1) and (A2). We find T 2
n = 5.852 and a p-value of 0.015.

Linearity was rejected for other choices as well. We do not report these results

here.
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Figure 4. (a). The plot of the data β̂τX/std(β̂τX) versus the response Y ;

(b). The plot of the data X5/std(X5) versus the residuals; (c). The plot of

the data β̂τ
nX/std(β̂τ

nX) versus the residuals.

From the above study, quadratic departure of x5 from a linear model may be

considered, although it is not obvious. Therefore, we test a more general linear

model, namely

E(Y |x) = α + h(x)τ β, X = x + u, (4.1)
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where h(x) = (xτ , x2
5)

τ . That is, x5 is an order-two polynomial. We chose

a cubic Hermite polynomial as the weight function w2(X) = (X5/std(X5))
3 −

3(X5/std(X5)). This weight function satisfies (A1) and (A2) under normality of

X. Here T 2
n = 1.84 and the p-value is equal to 0.175, insufficient to reject (4.1).

5. Conclusion

In this paper, we study lack-of-fit tests of score type for a general linear

errors-in-variables model. Due to measurement errors, we have to consider bias

correction of the residuals when constructing the tests. As is well known, score

tests benefit from appropriate weights for power performance. We discuss in

detail how to define an optimal weight for directional alternatives, and suggest

empirical ways such as the use of residual plots to select weights. For general

alternatives, maximin-tests are defined to handle the cases where we have several

possible candidates of alternatives. Our approach can readily be extended to

handle model checking for general parametric models as long as the parameters

can be well estimated with asymptotic normality. We will study this in the

further research.

Appendix

Lemma 1. Assume that B0(X) > 0 and E[B0(X)+B2
1(X)+‖B2(X)‖2] < +∞.

Then

max
Ew(X,θ,β)=0

Cov[B2(X),w(X,θ,β)]=0

{E[B1(X)w(X, θ, β)]}2

E[B0(X)w2(X, θ, β)]
= E[w2

0(X, θ, β)B0(X)],

where w0(X, θ, β) = {P1(X) − Bτ
12B

−1
22 P2(X)}/B0(X) with Pl =: Bl − EBl −

E[(Bl − E(Bl))/B0]/E[B−1
0 ], l = 1, 2, B22 = E{P2(B2 − EB2)

τ/B0}, B12 =

E{P1(B2 −EB2)/B0}, where B0, B1 are scalars and B2 is a column vector, pro-

vided B22 is invertible.

Proof. Let B∗(X) = P1(X)−Bτ
12B

−1
22 P2(X). It is easy to see that E[B1(X)w(X,

θ, β)]=E[B∗(X)w(X, θ, β)], because Ew(X, θ, β)=0 and Cov [B2(X), w(X, θ, β)]

= 0. By the Cauchy-Schwarz inequality, we have

{E[B1(X)w(X, θ, β)]}2

E[B0(X)w2(X, θ, β)]
=

{E[B∗(X)w(X, θ, β)]}2

E[B0(X)w2(X, θ, β)]
≤ E

(B∗2(X)

B0(X)

)

.

Note that E(Pl/B0) = 0, l = 1, 2, and Cov (B−1
0 P1, B2) = Bτ

12B
−1
22 Cov (B−1

0 P2,

B2). Hence E[B∗/B0] = 0 and Cov [B∗/B0, B2] = 0. Then when we choose

w0 = B∗/B0, equality holds in the above inequality. In other words, W0 is a

maximizer. The proof is finished.
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Lemma 2. Under (A1), (A2) and θ̂ − θ = Op(1/
√

n), β̂ − β = Op(1/
√

n).

Proof. Invoking E[supθ∈B ‖H(X, θ)‖2] < +∞, the continuity of H(X, θ) at θ,

‖θ̂ − θ‖ = Op(1/
√

n), and the Weak Law of Large Numbers, we can show that

SHH(θ̂) − Cov [H(X, θ)] = op(1), and

SHY (θ̂) − SHH(θ̂)β =
1

n

n
∑

i=1

[H(Xi, θ̂) − H(θ̂)][Yi − H(Xi, θ̂)τβ]

=
1

n

n
∑

i=1

[H(Xi, θ̂) − H(θ̂)]{[h(xi) − H(Xi, θ̂)]τβ + ei}.

Using a Taylor expansion for H(Xi, ·) around θ, we get

SHY (θ̂) − SHH(θ̂)β =
1

n

n
∑

i=1

[H(Xi, θ) − H(θ)[ei + (h(xi) − H(Xi, θ))τβ]]

− 1

n

n
∑

i=1

[H(Xi, θ) − H(θ)](θ̂ − θ)τ (H ′(Xi, θ))β

+
1

n

n
∑

i=1

[H ′(Xi, θ) − H
′
(θ)]τ (θ̂ − θ)

(

ei + [h(xi) − H(Xi, θ)]τβ
)

+ op(
1√
n

).

Furthermore, noting that E
(

(h(x) − H(X, θ))|X
)

= 0, we have

E{[H ′(Xi, θ) − H
′
(θ)]

(

e + [h(x) − H(X, θ)]τβ]
)

= 0.

The last sum is op(1/
√

n) and, replacing H(θ) by Eh(x), we have

β̂ − β = S−1
HH(θ̂)[SHY (θ̂) − SHH(θ̂)β]

=
1

n

n
∑

i=1

Cov [H(X, θ)]−1

{

[H(Xi, θ) − Eh(x)][ei + (h(xi) − H(Xi, θ))τβ]

−[H(Xi, θ) − Eh(x)](θ̂ − θ)τH ′(Xi, θ)β

}

+ op(
1√
n

)

= Op(
1√
n

). (A.1)

The proof is finished.

Proof of Theorem 1. Based on the description in Section 2 and (2.3), we only

need to prove (2.6). The conclusion of Theorem 1 is then implied by the Central

Limit Theorem.
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Deal with (2.6). Note that

ε̂jw(Xj , θ̂, β̂) =
(

Yj − α̂ − H(Xj , θ̂)
τ β̂

)

w(Xj , θ̂, β̂)

=
(

Yj − Y − [H(Xj , θ̂) − H(θ̂)]τ β̂
)

w(Xj , θ̂, β̂)

=
(

ej−e + [h(xj) − h − (H(Xj , θ)−H(θ))]τβ
)

w(Xj , θ̂, β̂)

−[H(Xj , θ̂) − H(θ̂)]τ (β̂ − β)w(Xj , θ̂, β̂)

−[H(Xj , θ̂) − H(θ̂) − (H(Xj , θ) − H(θ))]τβw(Xj , θ̂, β̂)

=: I
(1)
jn − I

(2)
jn − I

(3)
jn . (A.2)

By E[supθ∈B ‖w(X, θ, β)‖2 ] < +∞, E[(h(xj) − H(Xj , θ))|Xj ] = 0 and the

continuity of w′(X, θ) at θ, invoking a Taylor expansion for both H and w at θ

and β, we have

1

n

n
∑

j=1

I
(1)
jn =

1

n

n
∑

j=1

(

ej − e + [h(xj) − h − (H(Xj , θ) − H(θ)]τβ
)

w(Xj , θ̂, β̂)

=
1

n

n
∑

j=1

[ej + (h(xj) − H(Xj , θ))τβ][w(Xj , θ, β) − Ew(X, θ, β)]

+op(
1√
n

). (A.3)

For I
(2)
jn , by using the root-n consistency of β̂−β in Lemma 2 and (A.2), it follows

that

1

n

n
∑

j=1

I
(2)
jn =

1

n

n
∑

j=1

[H(Xj , θ̂) − H(θ̂)]τ (β̂ − β)w(Xj , θ̂, β̂)

=
(

Cov [H(X, θ), w(X, θ, β)] + op(1)
)τ

Op(
1√
n

) = op(
1√
n

). (A.4)

Applying the Mean Value Theorem, E[supθ∈B ‖βτH ′(X, θ)w(X, θ, β)‖] < +∞
and ECov[H ′(X, θ)β,w(X, θ, β)] = 0, it follows from ‖θ̂ − θ‖ = Op(1/

√
n) that

1

n

n
∑

j=1

I
(3)
jn = op(

1√
n

). (A.5)

From (6.2)−(6.5), we obtain (2.6). Since A2
n is a consistent estimator of A2,

T 2
n is asymptotically distributed as χ2

1, which completes the proof.
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Proof of Theorem 2. By arguments like those used to prove Lemma 2, we find

that, under H1n,

β̂ − β = S−1
HH(θ̂)[SHY (θ̂) − SHH(θ̂)β]

=
1

n

n
∑

i=1

Cov [H(X, θ)]−1
(

[H(Xi, θ) − Eh(x)][ei + (h(xi) − H(Xi, θ))τβ]

−[H(Xi, θ) − Eh(x)](θ̂ − θ)τH ′(Xi, θ)β
)

+
Cn

n

n
∑

i=1

Cov [H(X, θ)]−1
(

[s(xi) − s][H(Xi, θ) − Eh(x)]
)

+ op(
1√
n

). (A.6)

Now

ε̂jw(Xj , θ̂, β̂) = (Yj − α̂ − H(Xj , θ̂)
τ β̂)w(Xj , θ̂, β̂)

=: I
(1)
jn − I

(2)
jn − I

(3)
jn + I

(4)
jn + op(

1√
n

), (A.7)

where I
(4)
jn = −Cn(H(Xj , θ̂)−H(Xj , θ̂))τw(Xj , θ̂, β̂)((1/n)

∑n
i=1 Cov [H(X, θ)]−1

([s(xi) − s][H(Xi, θ)−Eh(x)])) + Cn(s(xj)− s)w(Xj , θ̂, β̂). By the conditions of

Theorem 2, we obtain that

( 1

Cn
√

n

) 1√
n

n
∑

j=1

I
(4)
jn = Cov [s(x), w(X, θ)] + op(1). (A.8)

In other words, (1/
√

n)
∑n

j=1 I
(4)
jn converges in probability to infinity at rate

n1/2−γ for 0 ≤ γ < 1/2, and to a constant when γ = 1/2. The proof is concluded

from (6.7), (6.8), and the proof of Theorem 1.
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