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Abstract: In this article, we deal with the selection of the linear component and the

nonparametric component in a partially linear model. Our method combines the

leave-one-out cross-validation for the nonparametric component and the leave-nv-

out Monte Carlo Cross Validation (MCCV) for the parametric component. Under

some mild regularity conditions, we show that the estimators are consistent. Al-

though the results are presented for models involving the mean regression function,

we extend them to include the variance function while bandwidth selection is dis-

cussed separately. Numerical examples demonstrate the gain in efficiency using the

proposed selection procedure compared to a fully nonparametric procedure.
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1. Introduction

Linear regressors selection has been the subject of extensive research. The

Akaike information criterion (Akaike (1974), Shibata (1981)), cross-validation

(CV) (Stone (1974), Shao (1993)) and the generalized-cross validation (GCV)

(Craven and Wahba (1979)), are among the most frequently used procedures. See

also Wei (1992) for an overall discussion on the problem of regressors selection in

a linear model and Shao (1997) for an extensive study on the asymptotic behavior

of the generalized-AIC, the CV and GCV criteria.

In parallel with work on parametric fitting, there have been substantial devel-

opments in variable selection in the context of nonparametric regression. These

include cross validation CV (Cheng and Tong (1992, 1993) and Zhang (1991))

and multifold cross validation (Zhang (1993)). Vieu (1994) examines cross valida-

tion with respect to an error measuring function. Tjøstheim and Auestad (1994)

proposed an analog of the Akaike criterion, the Final Prediction Error (FPE)

criterion, while Yang (1999) introduced a penalty term to an Akaike-based cri-

terion. See also Bickel and Zhang (1992) for an extension of CV and FPE to

nonparametric selection of categorical covariates. Yao and Tong (1994) establish

asymptotic results for the cross-validation criterion based on kernel estimation.

Their approach includes time series while Tschernig and Yang (2000) extend these
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results to include nonparametric autoregressive models with heteroskedasticity.
See also Vieu (1995) for a similar idea.

Recently, a new class of models combining linear and nonparametric settings,
has been introduced. The advantage of this new class, partially linear models,
is that the parametric part can be estimated efficiently while the flexibility of
the nonparametric model is retained. Härdle, Liang and Gao (2000) propose
an estimation procedure for both the parametric and nonparametric component
and establish asymptotic properties. Moreover, they address the issue of vari-
able selection for the nonparametric component. Gao and Tong (2004) propose
a simultaneous selection procedure for the parametric and nonparametric com-
ponents.

In this paper, we study a two step selection procedure. In particular, we
first use the leave-one-out cross validation to select the nonparametric regressors,
while at the second step the linear regressors are selected using the leave-nv -out
cross validation. Under some mild conditions and assumption (A1) on the exis-
tence of the true model, we prove that the proposed model selection procedure
is consistent. Moreover, we extend the results derived for the mean regression
function to the case of the variance function. Simulation examples are presented
to illustrate the theoretical findings. It appears that the proposed selection pro-
cedure outperforms a fully nonparametric selection procedure emphasizing the
need of a more flexible method when dealing with partially linear models.

2. Model and Selection of the Nonparametric Component

Let (Yt,Wt) be a strictly stationary process with a scalar Yt and a vector of
predictors Wt. In a partially linear model the regression function is of the form
E(Yt|Wt) = XT

t θ + g(Zt), where Xt = (Wt,i)
T , i ∈ P, Zt = (Wt,i)

T , i ∈ Q,
the linear and the nonlinear regressors. In the context of time series analysis,
Xt and Zt may contain some lagged variables of Yt. We introduce the enlarged
regression model

Yt = E(Yt|Xt,Zt) + εt = XT
t θ + g(Zt) + εt, (1)

where g : R
Q → R is an unknown function, θ = (θ1, . . . , θP )T is a vector of

parameters and εt = Yt − E(Yt|Xt,Zt) is an error term. It is easy to see that
E(εt|Xt,Zt) = 0. If Ut = Yt − XT

t θ, then (1) yields E(Ut|Zt) = g(Zt). We
introduce conditions to ensure the existence of a reduced true model. Define the
variance function from R

k → R

σ2(A) = E[Ut − E(Ut|ZA
t )]2 (2)

with ZA
t = (Zt,i : i ∈ A)T for A = {i1, . . . , ik} ⊆ {1, . . . , Q}.

Definition 1. If there is a subset A0 ≡ {1, . . . , q} of {1, . . . , Q} with |A0| = q ≤
Q for which
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(a) σ2(A0) = σ2(1, . . . , Q), and

(b) for any A = {i1, . . . , ik}⊆ {1, . . . , Q} with k≤q and {i1, . . . , ik} 6= {1, . . . , q},
it holds that σ2(A) > σ2(A0),

then the set Z
A0

t = {Zt,1, . . . , Zt,q} is called the optimal regression subset of the

nonparametric component in (1).

Further, let Vt = Yt − g(ZA0

t ) and define the variance function

σ̄2(M) = E[Vt − E(Vt|XM
t )]2 (3)

for any M = {j1, . . . , jr} ⊂ {1, . . . , P}.
Definition 2. If there is a subset M0 ≡ {1, . . . , p} of {1, . . . , P} with |M0| =

p ≤ P for which

(a) σ̄2(M0) = σ̄2(1, . . . , P ), and

(b) for any M = {j1, . . . , jr} ⊆ {1, . . . , P} with r ≤ p and {j1, . . . , jr} 6=
{1, . . . , p}, it holds that σ̄2(M) > σ̄2(M0),

then the set X
M0

t = {Xt,1, . . . , Xt,p} is called the optimal regression subset of the

parametric component in (1).

At this point, we are ready to impose the necessary condition that will ensure

the existence and identifiability of the true model.

A1 We assume that the true model is the model with the optimal nonpara-

metric Z
A0

t = {Zt,1, . . . , Zt,q} and parametric X
M0

t = {Xt,1, . . . , Xt,p} com-

ponents. Further, we assume that there is C > 0 a constant such that

minj∈{1,...,Q}−A0
infα,β E(E(g(ZA0

t )|Zt,j) − α − βZt,j)
2 > C.

It is easy to see that if A1 holds, E(Ut|Zt) = E(Ut|ZA0

t ) almost surely, i.e.,

the optimal subset contains almost all the information on Ut available from Zt.

Further, from Definition 2, E(Vt|Xt) = E(Vt|XM0

t ) almost surely, so we conclude

that some of the linear predictors are insignificant and should be omitted. Note

also that in A1, the nonparametric component of g(ZA0

t ) cannot be explained by

any linear term. Chen and Chen (1991) and Gao and Tong (2004) impose similar

conditions to ensure the identifiability of the model.

Given the existence of the true model as a reduced form of (1), we try

to identify the optimal regressors for both linear and nonlinear components of

the regression function. We propose a two-step selection procedure. The first

step is the selection of the nonparametric component. We use the leave-one-out

cross validation procedure on the residuals, after regressing over the full set of

linear regressors, to estimate the optimal subset. Call θ̂ the parameter estimator

calculated by regressing Yt against all linear regressors, Xt,1, . . . , Xt,P , and let

Ût = Yt − XT
t θ̂ be the residuals. For any A = {i1, . . . , ik} ⊆ {1, . . . , Q} let
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ZA
t = (Zt,i1 , . . . , Zt,ik)T . Take the standard Nadaraya-Watson estimator to be

gn(z) =

n
∑

t=1

wt,A(z)(Yt −XT
t θ), (4)

with wt,A : R
k → R, wt,A(z) = Kh(ZA

t − z)/
∑n

r=1 Kh(ZA
r − z) the weighting

function, and Kh : R
k → R a k-dimensional kernel function. Similar to (4), we

set

ĝn(z) =

n
∑

t=1

wt,A(z)(Yt −XT
t θ̂), (5)

with θ replaced by the estimator θ̂. The leave-one-out estimators are g
(−s)
n (z) =

∑n
t=1,t6=s w

(−s)
t,A (z)(Yt − XT

t θ) and ĝ
(−s)
n (z) =

∑n
t=1,t6=s w

(−s)
t,A (z)(Yt − XT

t θ̂), with

w
(−s)
t,A (z) = Kh(ZA

t − z)/
∑n

r=1,r 6=s Kh(ZA
r − z). Then, for A = {i1, . . . , ik} ⊂

{1, . . . , Q}, the cross validation function is given by

CV (A) =
1

n

n
∑

s=1

{Ûs − ĝ(−s)
n (ZA

t )}2. (6)

Definition 3. The estimator for the optimal regression subset of the nonpara-

metric component is

Â = arg min
A={i1,...,ik}⊆{1,...,Q}

CV (A). (7)

Next we state the assumptions and introduce the notation. Let C > 0 be a

constant that can take different values in different places.

A2 For the least squares estimator θ̂, E ‖ θ̂ − θ ‖2= O(n−1).

A3 The density functions of the random processes Zt and Xt, f and p, are

Lipschitz functions, and the sets B1 = {z : f(z) > 0} and B2 = {z : p(z) >

0} are compact subsets of R
Q and R

P , respectively.

A4 For the strictly stationary process {(Yt,Xt,Zt) : t = 1, 2, . . . } let β(n) =

supk≥1 E{supB∈=∞

k+n
|P (B|=k

1)−P (B)|} where =n
k the sigma-field generated

by {(Yt,Xt,Zt) : k ≤ t ≤ n}. Then β(n) = O(n−(2+δ)/δ) where 0 ≤ δ ≤ 2/5.

In addition, there are positive integers mn and ln = [n/(2mn)] such that

lim supn→∞(1 + 6
√

eβ(mn)1/(1+ln))ln < ∞.

A5 For |A| = k, 1 ≤ k ≤ Q, denote with Kh(u) = K(u/h) the kernel function

where K : R
k → R is a symmetric density function with bounded support

satisfying a Lipschitz condition. Further, for the bandwidth h = n−λ(k), it

holds that 0 < kλ(k) < 1/2 for 1 ≤ k ≤ Q.

A6 For mn defined in A4, lim supn→∞ lnn−λ(k) < ∞ for all 1 ≤ k ≤ Q.
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A7 E|Yt|6 < ∞, E||Xt||6 < ∞, E(Yt|Xt, . . . ,X1,Zt, . . . ,Z1) = E(Yt|Xt,Zt) for
Xt = (Xt,1, . . . , Xt,P )T and Zt = (Zt,1, . . . , Zt,Q)T .

A8 It holds that |g(z1) − g(z2)| ≤ C ‖ z1 − z2 ‖γ where g(z) = E(Ut|ZA
t = z),

with |A| = k, 1 ≤ k ≤ Q, and γ a positive constant.

A9 (k + γ)λ(k) > 1/2 for all 1 ≤ k ≤ Q and for γ in A8.

A10 kλ(k) is a strictly increasing function of k.

Remark 1. The above assumptions are not the weakest possible and may be

altered at the cost of a lengthier proof. Assumption A1 of existence of the
true model is a common assumption in the context of regressor selection, while

A2 is a standard result of the linear regression theory and requires no further
explanation. Further, in A3, we follow Yao and Tong (1994) who point out that

in practice any reasonably stationary data could be considered as bounded and
thus we assume a density with bounded support. This is a technical assumption

which facilitates the proof and can be relaxed by introducing a weight function
in the definition of the cross-validation function. Assumption A4 implies that

we are dealing with absolutely regular processes, while the assumption on the

rate of β(n) and A6 allow us to use the results of Yoshihara (1976) and Roussas
(1988). Assumption A5, A7−A8 need no further explanation, A9 is standard

in nonparametric order determination, while A10 is essential in the proof of
convergence in probability of the CV-estimator.

We now state the main theorem on the consistency of the proposed leave-
one-out cross validation criterion.

Theorem 1. Under assumptions A1−A10, limn→∞ P (Â = A0) = 1.

The proof of Theorem 1 is postponed to Appendix A.

Remark 2. The main terms in the decomposition of the CV-function are those

derived in Yao and Tong (1994) for a fully nonparametric model.

3. Selection of Parametric Component

The second step of the proposed procedure is the selection of the parametric

regressors. For M ⊂ {1, . . . , P} we write

Yt = (XM
t )T θM + g(ZA0

t ) + εt,M , (8)

where XM
t = (Xt,i : i ∈ M)T and εt,M = Yt − E(Yt|XM

t ,ZA0

t ). We denote this
model as MM . To this end, we classify the models MM into two groups:

Category I: at least one nonzero component of θ is not in θM ;

Category II: θM contains all the nonzero components of θ.

In the first category, we have models MM that are incorrect in the sense that

they do not include all the significant regressors. Models in the second category
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include all the significant regressors but may include regressors unrelated to the

response variable. The optimal model M0 is the one in category II with the

smallest dimension. To estimate MM , we substitute g(·) with the nonparamet-

ric estimator gn(ZA0

t ) =
∑n

s=1 ws,A0
(Zq

t )(Ys − XT
s θ), and we find that the least

squares estimator of θM is

θ̂M = (X̃T
MX̃M )−1X̃T

MỸ, (9)

where Ỹt = Yt −
∑n

s=1 ws,A0
(ZA0

t )Ys and X̃M = (X̃M
1 , . . . , X̃M

n )T with X̃M
t =

XM
t − ∑n

s=1 ws,A0
(ZA0

t )XM
s . Then the mean square prediction error for model

MM is given by

MSEn(M) =
1

n
ε̃T ε̃ − 1

n
ε̃TPM ε̃ +

1

n
θT X̃THMX̃θ +

2

n
ε̃THMX̃θ, (10)

where ε̃ = (ε̃1, . . . , ε̃n) with ε̃t = Ỹt − X̃T
t θ, PM = X̃M (X̃T

MX̃M )−1X̃T
M , and

HM = In−PM . Note that by definition, ε̃t = Ỹt−X̃T
t θ = εt−

∑n
s=1 ws,A0

(ZA0

t )εs,

where εt = Yt − XT
t θ and, using Proposition 1 below with p = 1 − qλ(q) where

q = |A0| and r = 6 (see A5, A7), we conclude that maxt |
∑n

s=1 ws,A0
(ZA0

t )εs| =

op(n
qλ(q)−1/2) = op(1). Consequently, the nonparametric term does not affect the

rate of convergence of the mean square prediction error under the assumptions

imposed. Surprising as it may look, a similar conclusion was reached by Speck-

man (1988), who noticed that for a certain choice of bandwidth the parametric

estimator θ̂ remains a
√

n-consistent estimator, see also Härdle, Liang and Gao

(2000). It follows from (10) that the conditional expected mean square error is

given by

EMSEn(M) = σ2
ε̃ − m

n
σ2

ε̃ + Ωn,M a.s., (11)

where σ2
ε̃ = n−1E(ε̃T ε̃) and Ωn,M = n−1θT X̃THMX̃θ. For every M ⊂ {1, . . . , P}

when MM is in category II, it follows that

MSEn(M) =
1

n
ε̃T ε̃ − 1

n
ε̃TPM ε̃ +

2

n
ε̃THMX̃θ + op(1)

and EMSEn(M) = (1 − m/n)σ2
ε̃ (the latter from the fact that in category II

X̃MθM = X̃θ). Now, assume that

B1 For every M ⊂ {1, . . . , P},
(i) E(X̃T

M X̃M ) is a positive definite matrix of order m;

(ii) if MM in category I, lim infn→∞ Ωn,M > 0 in probability.

Remark 3. Assumption (i) is necessary for the consistency of θ̂M (see Härdle,

Liang and Gao (2000)). Assumption (ii) is an identifiability condition which is a
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very minimal argument for asymptotic analysis. Gao and Tong (2004) show that

assumption B1(ii) can be replaced by

lim inf
n→∞

1

n
(uθ)T (In − uM (uT

MuM )−1uT
M )(uθ) > 0,

where u = (u1, . . . ,un)T , uM = (u1,M , . . . ,un,M )T , ut = Xt − E(Xt|ZA0

t ) =

(ut,1, . . . , ut,P )T and ut,M = XM
t − E(XM

t |ZA0

t ) = (ut,j : j ∈ M)T . This is an

extension of the partial linear context of the identifiability condition 2.5 in Shao

(1993).

The proposed estimator is based on the leave-nv -out cross validation func-

tion. We split the data into two parts: {(Ỹt, X̃t) : t ∈ N} and {(Ỹt, X̃t) : t ∈ N c},
where N ⊆ {1, . . . , n} and N c is its complement. Hence, if we call nv and

nc the size of N and N c, respectively, then nv + nc = n. Suppose that the

model MM is fitted using the subsample N c, called the construction data,

while the prediction error is calculated using the subsample N , called the val-

idation data. Then the leave-nv -out cross validation function is defined by

CV (M,nv) = 1/nv ‖ ỸN − X̃N,M θ̂Nc,M ‖2. It is understood that the simplest

case would be the leave-one-out cross validation. However, it has been shown

that the leave-one-out cross validation criterion yields asymptotically inconsis-

tent estimators, see Shao (1993). On the other hand, for n large there are too

many possible subsamples and this is computationally inconvenient.

A good compromise is to use the Monte Carlo-CV(nv). We randomly draw

a collection B of b subsets of {1, . . . , n}, each one with size nv, and we choose the

model that minimizes

MCCV (M,nv) =
1

bnv

∑

N∈B

‖ ỸN − X̃N,M θ̂Nc,M ‖2 . (12)

Definition 4. The estimator for the optimal regression subset of the linear

component is

M̂ = arg min
M⊂{1,...,P}

MCCV (M,nv). (13)

Suppose that

B2 As n → ∞, nv/n → 1, nc = n − nv → ∞, and n2/n2
cb → 0.

Theorem 2. Let A1−A10 of Theorem 1 and B1−B2 hold.

(1) If MM in category I, then there exists Rn ≥ 0 such that

MCCV (M,nv) =
1

b

∑

N∈B

ε̃T
N ε̃N + Ωn,M + Rn + op(1),

where ε̃N = ỸN − X̃Nθ.
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(2) If MM in category II, then

MCCV (M,nv) =
1

b

∑

N∈B

ε̃T
N ε̃N +

m

nc
σ2

ε̃ + op(n
−1
c ).

(3) limn→∞ P (M̂M = MM0
) = 1..

The proof of Theorem 2 is based on the following proposition, an extension of

the results of Lemma A.3, Härdle, Liang and Gao (2000), for α-mixing processes.

Proofs are postponed to Appendix A.

Proposition 1. Let {Xi} be a zero mean, strictly stationary, α-mixing random

sequence with t6α(t) → 0. Suppose sup1≤i≤n E|Xi|r < C < ∞ for r > 2, and let

αi,j, i, j = 1, . . . , n, be a sequence of positive numbers such that sup1≤i,j≤n |αi,j| ≤
n−p for some 0 < p < 1. Then max1≤j≤n |

∑n
i=1 αi,jXi| = op(n

−p+1/3+1/r log n).

4. Bandwidth Selection

The cross validation function defined above depends directly on the band-

width. Let h0 be the minimizer of the mean average square error: MASE(h)

= 1/n
∑n

t=1 E(XM0

t

T
θ̂M0

−XT
t θ+ĝ(ZA0

t )−g(ZA0

t ))2. Then using standard results

from the partial linear theory, it is easy to see that h0 = Cn−1/(4+q). Further,

if (Â, ĥ) = arg minA⊆{1,...,Q} minh∈Hn(k) CV (A;h) then ĥ/h0
P→ 1 as n → ∞,

where Hn(k) = [Akn
−1/(4+k)−ck , Bkn

−1/(4+k)+ck ] with constants Ak, Bk > 0,

0 < ck < 1/(8 + 2k) (see Gao and Tong, (2004)). In other words, the CV function

not only identifies the correct dimensionality of the nonparametric function but

it automatically adjusts the bandwidth to have the optimal rate h ∼ n−1/(4+q).

To prove consistency of the CV-estimator we assumed a bandwidth of rate

n−λ(k) with kλ(k) < 1/2. For a bandwidth of this order, the nonparametric

component does not affect the rate of convergence of the parametric estimator.

The above condition may look strong, but in practice the rate of the bandwidth is

as important as its constant, especially for large n. The numerical examples given

in Section 6, with the bandwidth chosen as the minimizer of the CV-function,

support this remark. Using a similar argument, Yao and Tong (1994) suggested

that the more relevant data-driven bandwidths do not depart in principle from

the bandwidth assumptions. They also allowed some minor modifications to

ensure, for instance, the monotonicity of kλ(k) when necessary. In practice,

the cross validation function is calculated over a certain range of bandwidths,

choosing for bandwidth estimate the value at which the function attains the

minimum. A reasonable choice of the bandwidth range, suggested by Fan, Yao

and Cai (2003), is h = σ C 1.2r, for r = 0, . . . , 15, where σ is an estimator of the

standard deviation of the error term and C a constant depending on the selected
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kernel (for example, C = 0.2 for the Epanichnikov kernel and C = 1.2 for the

Gaussian kernel).

5. Further Discussion

The model considered so far is a mean regression model. However, with

some modifications to the assumptions, the results can be extended to include

modelling of the variance function. In particular, a second order partial linear

model can be defined as

Yt = σtεt, σ2
t = XT

t θ + g(Zt), (14)

with Yt scalar, Xt = (Xt,1, . . . , Xt,P )T , Xt,j ≥ 0, and Zt = (Zt,1, . . . , Zt,Q)T .

Further, g(·) ≥ 0 and the error process εt is independent of {Xs,Zs, s ≤ t},
satisfying E(εt) = 0 and E(ε2

t ) = 1. Note that if Xt,i = Y 2
t−i, (14) is a partial

linear, in respect to Y 2
t , ARCH model, also called a semiparametric ARCH model.

Re-arranging (14) yields Y 2
t = σ2

t ε
2
t = σ2

t +σ2
t (ε

2
t −1) ≡ σ2

t +σ2
t ξt with ξt = ε2

t −1.

Obviously, E(ξt) = 0, so E(σ2
t ξt|Xt,Zt) = σ2

t E(ξt) = 0. Hence, it follows that

E(Y 2
t |Xt,Zt) = σ2

t = XT
t θ + g(Zt), (15)

which is in the form of (1). Our main concern here is that the error term is

heteroskedastic. However, Härdle, Liang and Gao (2000) have already shown

that under some assumptions on initial estimates of σ2
t , the weighted-LS esti-

mator of θ is
√

n-consistent and asymptotically normally distributed. Based on

that, we introduce weights in the proposed selection procedure. In particular,

we first regress Y 2
t on all the candidate parametric regressors Xt,j and use the

weighted leave-one-out CV criterion to find the optimal nonparametric regressors

set. Then we apply the weighted leave-nv -out cross validation to exclude, if nec-

essary, the insignificant parametric regressors. The weights are based on some

initial estimates of the variance. Consistency of the optimal subsets estimators

will depend on the convergence rate of the initial variance estimates.

6. Numerical Applications

Two simulated examples involving regression models and one of variance

modelling are presented. We use the multivariate kernel K(u) =
∏k

i=1 K(ui),

where K(·) is the Epanichnikov kernel. The selected kernel satisfies assumption

A5 on the kernel function. Bandwidth is found by minimizing the cross validation

criterion in grid points h = 0.2, 1.2aσ for a = 1, . . . , 15, where σ is the sample

standard deviation. It turns out that the resulting bandwidth estimator does

not depart significantly from assumptions A5, A9−A10. Further, if we choose

b = n and nv = n − nc with nc = [n3/4] the largest integer part of n3/4, then B2
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holds. The simulations show that, using the above bandwidth estimator, the CV

criterion identifies the correct model.

Example 1. We generate a time series data set from the model Yt = 0.5Yt−1 −
0.35Yt−2 − 0.75 exp(−Y 2

t−3) + 0.85(1 + Y 2
t−4)

−1 + εt, with εt following a uni-

form distribution in [−1, 1]. Note that the error distribution has bounded sup-

port, hence there is no need for introducing a weighting function in the CV-

function. Let the candidate linear components be M1 = {1}, M2 = {2} and

M0 = {1, 2} the true one. Let θ = (θ1, θ2)
T , ut,1 =Yt−1 − E(Yt−1|Yt−3, Yt−4) and

ut,2 = Yt−2 − E(Yt−2|Yt−3, Yt−4), ut = (ut,1, ut,2)
T , ut,M1

= ut,1, ut,M2
= ut,2,

u = (u1, . . . , un) and uMi = (u1,Mi , . . . , un,Mi), for i = 1, 2. It holds that

lim infn→∞ n−1(uθ)T (In−uMi(u
T
Mi

uMi)
−1uT

Mi
)(uθ) = (θ3−i

∑n
t=3 u2

t,1

∑n
t=3 u2

t,2−
(
∑n

t=3 ut,1ut,2)
2)/

∑n
t=3 u2

t,i > 0 with probability one, because P (ut,1 = ut,2) = 0

see Remark 3 for B1(ii). It is easy to see that A3 is met, while the generated pro-

cess satisfies A4, A7. Note that A8 holds for g(y, x) = −0.75e−y2

+0.85/(1+x2).

Following the remark about bandwidth selection, we conclude that all of the

assumptions are satisfied. We first regress Yt against all Yt−j , for j = 1, 2, 3, 4.

Then using the residuals Ût we calculate the leave-one-out cross validation. The

first three columns of Table 1 contain the probabilities of selection for each candi-

date component calculated from 80 iterations. Apparently, {Yt−3, Yt−4} has the

highest probability of selection even in a small sample size of n = 50 observations,

with the omitted combinations having probability zero. Moreover, increasing the

sample size yields even higher probability of selection, e.g., for a sample of size

n = 300, the probability of selecting the correct regressors increased to 0.7625.

In the second step, using {Yt−3, Yt−4} as the nonparametric component, we cal-

culate the leave-nv -out CV. The results are presented in Table 2. The parametric

component is identified from the MCCV and the probability of selecting the true

regressors increases to 0.975 for n = 300.

Table 1. Probabilities of selection based on the leave-one-out CV calculated

in 80 iterations for Example 1.

Two-Step CV Fully Nonparametric

subset n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

{Yt−1} 0.1375 0.1125 0.0875 0.075 0.0375 0.0125

{Yt−2} 0.025 0.0125 0.0125 0.0625 0.025 0.00

{Yt−1, Yt−2} 0.1875 0.1375 0.0625 0.2125 0.2625 0.2375

{Yt−1, Yt−2, Yt−3} 0.075 0.0625 0.0 0.2375 0.25 0.2625

{Yt−1, Yt−2, Yt−3, Yt−4} 0.0875 0.05 0.05 0.3 0.375 0.475

{Yt−2, Yt−3} 0.0125 0.0 0.0 0.0125 0.0 0.0

{Yt−1, Yt−3} 0.025 0.025 0.025 0.025 0.0125 0.0125

{Yt−3, Yt−4} 0.45 0.6 0.7625 0.075 0.0375 0.0
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Table 2. Probabilities of selection based on the MCCV calculated in 80
iterations with Yt−3, Yt−4 for nonparametric regressors for Example 1.

subset n = 50 n = 100 n = 300

{Yt−1} 0.2875 0.2375 0.025

{Yt−2} 0.1375 0.05 0.0

{Yt−1, Yt−2} 0.575 0.7125 0.975

Furthermore, in the last three columns of Table 1, we present the results
using a fully nonparametric cross validation selection procedure. It is clear that
the fully parametric selection method fails to distinguish the linear term from
the nonparametric component, while the convergence rate appears significantly
slower. It seems that the linear term dominates the nonparametric component
and this is why {Yt−1, Yt−2} and {Yt−1, Yt−2, Yt−3} have high probabilities of se-
lection even when the sample size is increased. The latter illustrates the impor-
tance of choosing a combined selection method instead of a fully nonparametric
one when working with a semiparametric model.

Example 2. We generate data from the model Yt = 0.35Yt−1 − 0.15Yt−2 +
0.5Xt/(1 + X2

t ) + et, Xt = 0.3Xt−1 + 0.2Xt−2 + εt, with et ∼ U [−0.25, 0.25]
and εt ∼ U [−0.5, 0.5]. We proceed by regressing Yt against the candidate linear
regressors Yt−i, i = 1, 2, 3, to calculate the residuals Ut. Note here that we include
Yt−3 as a regressor, although it does not appear in the true model. This is to
show that the procedure works even when insignificant regressors are used in the
calculation of the residuals. The results of the leave-one-out CV are reported in
Table 3. Table 4 contains the results for the MCCV, using Xt the nonparametric

Table 3. Probabilities of selection based on the leave-one-out CV calculated
in 80 iterations for Example 2.

Regressors subset n = 50 n = 120 n = 300

{Xt} 0.4625 0.575 0.7875

{Xt−1} 0.35 0.225 0.15

{Xt, Xt−1} 0.1875 0.2 0.0625

Table 4. Probabilities of selection based on the MCCV calculated in 80
iterations with Xt for nonparametric regressor for Example 2.

Parametric Regressors subset n = 50 n = 120 n = 300

{Yt−1} 0.25 0.225 0.125

{Yt−2} 0.0625 0.025 0.0

{Yt−3} 0.025 0.0 0.0

{Yt−1, Yt−2} 0.4375 0.575 0.8375

{Yt−1, Yt−3} 0.15 0.1125 0.025

{Yt−2, Yt−3} 0.0 0.0 0.0

{Yt−1, Yt−2, Yt−3} 0.075 0.0625 0.0125
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regressor. The nonparametric component is identified with probability 0.7875 for

n = 300, while the MCCV distinguishes the insignificant linear regressors which

are excluded from the model.

Table 5. Probabilities of selection calculated in 80 iterations for Example 3.

Two-step CV Fully Nonparametric

subset n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

{Yt−1} 0.125 0.1375 0.075 0.1375 0.125 0.1375

{Yt−2} 0.3375 0.4375 0.65 0.1875 0.2 0.1375

{Yt−3} 0.0875 0.075 0.0625 0.0625 0.0375 0.0

{Yt−1, Yt−2} 0.15 0.1125 0.075 0.2625 0.325 0.4125

{Yt−1, Yt−3} 0.0875 0.0875 0.0625 0.1375 0.0875 0.0875

{Yt−2, Yt−3} 0.1 0.0625 0.0125 0.0375 0.0375 0.0125

{Yt−1, Yt−2, Yt−3} 0.1125 0.0875 0.0625 0.175 0.1875 0.2125

Table 6. Probabilities of selection based on the MCCV calculated in 80
iterations with Xt for nonparametric regressor for Example 3.

Parametric Regressors subset n = 50 n = 100 n = 300

{Yt−1} 0.5375 0.7125 0.7875

{Yt−3} 0.3 0.1875 0.1375

{Yt−1, Yt−3} 0.1625 0.1 0.075

Example 3. The data is a heteroscedastic time series generated from Yt = σtεt,

with σ2
t = (0.45Y 2

t−1 + 1.1 sin(Y 2
t−2) exp(−0.85Yt−2))+, where εt is the sum of

35 independent random variables each uniformly distributed on [−0.05, 0.05].

According to the Central Limit Theorem, the resulting process is well approxi-

mated by a normal one when in fact the support of the error density is bounded,

[−1.75, 1.75]. Note also that the assumption of an error process variance equal

to 1 is satisfied. Since we deal with heteroskedastic data, it is suggested that we

use the weighted least squares to calculate the residuals Ut. We calculate the

predicted values and their standard errors from a simple linear regression of Y 2
t

on Y 2
t−j for j = 1, 2, 3. Using the weighted least squares, we calculate the residu-

als along with their standard deviation. Then Ut are the standardized residuals.

This is equivalent to introducing weights in the leave-one-out cross validation

function as required by the heteroscedasticity of the error term.

The probabilities of selection for all the possible combinations of nonpara-

metric regressors calculated with 80 iteration are presented in Table 5 while Table

6 contains the probabilities of selection for the linear regressors assuming that

Y 2
t−2 has been identified and included as a nonlinear regressor. Both the non-

parametric and parametric regressors are identified successfully with probability
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0.65 for the CV and 0.7875 for MCCV, for sample size n = 300. In Table 5, we

present the probabilities using a fully nonparametric method. Although the op-

timal set is correctly identified, the convergence rate is much slower compared to

the rate achieved by using a combined procedure indicating the need to employ

a more flexible selection procedure that takes into account the linear, in respect

to the squared Yt, component of the underlying model.

Appendix

Lemma 1. Under A2−A9,

(a) for any A = {i1, . . . , ik}, 1 ≤ k ≤ q = |A0|, CV (A)
P→ σ2(A), σ2(A) as in

(2);

(b) if for some A = {i1, . . . , ik}, E(Ut|ZA
t ) = E(Ut|Zt) a.s., then

CV (A) =
1

n

n
∑

s=1

ε2
s +

1

nhk
E(ε2

t /f(ZA
t ))

∫

K2(u)du + op(n
−1h−k).

Lemma 2. If A2−A9 hold, then for any A = {i1, . . . , ik}, 1 ≤ k ≤ q, it follows

that

(a) n−1
∑n

s=1 εA
s {g(ZA

s ) − ĝ
(−s)
n (ZA

s )} P→ 0,

(b) n−1
∑n

s=1{g(ZA
s ) − ĝ

(−s)
n (ZA

s )}2 P→ 0.

Lemma 3. Suppose A2−A9 hold and that, for some A = {i1, . . . , ik},

E(Yt|Xt,Z
A
t ) = E(Yt|Xt,Zt) a.s. (16)

(a) n−1
∑n

s=1 εA
s {g(ZA

s ) − ĝ
(−s)
n (ZA

s )} = op(n
−1h−k),

(b) n−1
∑n

s=1{g(ZA
s ) − ĝ

(−s)
n (ZA

s )}2 = n−1h−kµ + op(n
−1h−k) with

µ = E(ε2
t /f(ZA

t ))
∫

K2(u)du.

Lemma 1 plays a key role in the proof of Theorem 1 while Lemmas 2 and 3

imply Lemma 1. All proofs here can be found in a technical report (Avramidis

(2003)).

Proof of Theorem 1. For any A = {i1, . . . , ik} ⊂ {1, . . . , Q} with 1 ≤ k ≤
Q, if σ2(A) > σ2(1, . . . , Q) = σ2(A0), then from Lemma 1(a) it follows that

P (CV (A0) < CV (A)) → 1. Alternatively, if σ2(A) = σ2(1, . . . , Q) = σ2(A0),

then (16) in Lemma 3 holds. Note also that by definition |A| = k > q = |A0|.
Hence, from A10,

hq/hk = nkλ(k)−qλ(q) → ∞ as n → ∞. (17)
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Thus Lemma 1(b), along with (17), yields P (CV (A)−CV (A0)>0)=P (
∫

K2(u)du

{(hq/hk)E(ε2
t /f(ZA

t )) − E(ε2
t /f(ZA0

t ))} + op(h
q−k) > 0) → 1 ⇒ P (Â = A0) → 1

as n → ∞.

Proof of Proposition 1. Define X
′

i = XiI(|Xi| ≤ n1/r) and X
′′

i = Xi − X
′

i .

Note that sup1≤i≤n |αi,jX
′

i | < Cn−pn1/r ≡ M . The exponential-type inequality

in Theorem 1.3 in Bosq (1998), with ε = n−p−2/3+1/r log n and q = n2/3, yields

P (max1≤j≤n |
∑n

i=1 αi,j(X
′

i −EX
′

i)| > nε) ≤ ∑n
j=1 P (|∑n

i=1 αi,j(X
′

i −E(X
′

i))| >

nε) ≤ 4n exp(−(ε2q)/(8v2(q))) + 22n1+2/3(1 + (4M/ε)1/2α([n1/3/2]), where α(k)

is the mixing coefficient and v2(q) ≤ 8n−2/3{max0≤t≤n E(αi,j(X
′

i − EX
′

i ))
2 +

8M2
∑[n2/3]+1

k=1 α(k)} + Mε/2. Note that v2(q) ≤ CM 2n−2/3 + (1/2)Mε ≤
Cn−2p+2/r−2/3. Thus, we have that

P
(

max
1≤j≤n

|
n

∑

i=1

αi,j(X
′

i − EX
′

i)| > nε
)

≤ 4n exp
(

−Cn−2p−2+4/3+2/r log2 n

n−2p−2/3+2/r

)

+22n5/3(1+
4Cn−p+1/r

n−p−2/3+1/r log n
)1/2α([

n1/3

2
])

≤ n1−log n + C2n
2α(n1/3) → 0

since t6α(t) → 0 when t → ∞. Then the Borel-Cantelli Lemma yields

max
1≤j≤n

|
n

∑

i=1

αi,j(X
′

i − EX
′

i)| = op(n
−p+1/r+1/3 log n). (18)

Further note that Hölder’s inequality, with m,l such that 1/m ≤ 1/3 and 1/m +

1/l = 1, yields max1≤j≤n |
∑n

i=1 αi,j(X
′′

i −EX
′′

i )| ≤ max1≤j≤n(
∑n

i=1 |αi,j |m)1/m(
∑n

i=1

|X ′′

i −EX
′′

i |l)1/l ≤ Cn−p+1/m(
∑n

i=1 |X
′′

i −EX
′′

i |l)1/l. The Ergodic Theorem yields

1

n

n
∑

i=1

(

|X ′′

i − EX
′′

i |l − E|X ′′

i − EX
′′

i |l
)

a.s.→ 0. (19)

Note that X
′′

i = Xi−X
′

i = Xi−XiI(|Xi|≤n1/r)=XiI(|Xi| ≥ n1/r) and E|X ′′

i |l
= E(|Xi|lI(|Xi| ≥ n1/r)) ≤ (E|Xi|r)l/r(E(I(|Xi| ≥ n1/r)))1−l/r = (E|Xi|r)l/r

(P (|Xi| ≥ n1/r))1−l/r ≤ (E|Xi|r)l/r(E|Xi|r/n)1−l/r, the latter from the Markov

inequality. Thus we have E|X ′′

i |l ≤ E|Xi|rnl/r−1. Hence, from E|X ′′

i − EX
′′

i |l ≤
CE|X ′′

i |l ≤ CE|Xi|rnl/r−1 ≤ Cnl/r−1, along with (19), we prove that
∑n

i=1 |X
′′

i −
EX

′′

i |l ≤ Cnl/r a.s.. Hence

max
1≤j≤n

|
n

∑

i=1

αi,j(X
′′

i − EX
′′

i )| ≤ Cn−p+1/m+1/r = op(n
−p+1/3+1/r log n), (20)

and the Lemma follows from (18) and (20).
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Proof of Theorem 2. The proof is based on Theorem 2 in Shao (1993). Also,

similar results for the partial linear model can be found in Theorem 2.2 of Gao

and Tong (2004). Hence we only present an outline of the proof and, in particular,

we show that conditions in Theorem 2 Shao (1993) hold. Indeed condition 2.5,

3.12 and 3.22 have been introduced in B1 and B2. Hence, it remains to show

that

max
N∈B

‖ 1

nv

∑

t∈N

X̃tX̃
T
t − 1

nc

∑

t∈Nc

X̃tX̃
T
t ‖= op(1), (21)

X̃T X̃ = Op(n), (X̃T X̃−1 = Op(n
−1), and lim

n→∞
max pt,M = 0 (22)

for all M , where pt,M is the tth diagonal element of PM . Lemma 4 establishes

(21) and (22).

Lemma 4. Under Assumptions A4−A5 and A7,

(a) X̃T X̃ = Op(n), (X̃T X̃)−1 = Op(n
−1),

(b) limn→∞ max pt,M = 0 for all M ⊂ {1, . . . , P}, and

(c) maxN∈B ‖ 1
nv

∑

t∈N X̃tX̃
T
t − 1

nc

∑

t∈Nc X̃tX̃
T
t ‖= op(1).
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