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Abstract: We derive the asymptotic bias and variance of the penalized quasilike-

lihood (PQL) estimator of the cluster-level covariate effect in generalized linear

mixed models for group-randomized trials where the number of clusters n is small

and the cluster size m is large. We show that the asymptotic bias is of order

Op(1/m) and the asymptotic variance is of order Op(1/n) + Op{1/(nm)}. The

practical implication of our results is that the PQL method works well in settings

involving small numbers of large clusters which are typical in grouped randomized

trials. We illustrate the results using simulation studies.

Key words and phrases: Asymptotic bias, asymptotic variance, generalized linear

mixed models, Penalized quasilikelihood.

1. Introduction

Group-randomized trials are becoming increasingly popular as a tool for

evaluating the efficacy of behavioral health interventions, particularly those in-

volving providers such as group therapists or primary care physicians, as well as

other natural groupings like schools or neighborhood community centers. These

trials are distinguished by randomizing intact units/groups of individuals (e.g.,

therapy groups, primary care practices, classrooms or neighborhoods) to vari-

ous conditions (e.g., cognitive behavior therapy, depression specialist, method

of teaching, or community-level classes). Such trials are also known as cluster-

randomized trials in other literature (see, for example, Donner and Klar (2000)).

Group-randomized trials are further distinguished by having a small number of

clusters with a large number of observational units within each cluster. The goal

of a typical behavioral intervention study is to compare the rates of various ad-

verse health outcomes or risky lifestyle behaviors between intervention arms. The

general goal is to make cluster-level inference of the efficacy of the intervention.

These types of studies are often interested in modeling outcomes (e.g., number of

risky ‘events’ in the past month, disease status yes/no, etc.) as a function of con-

founding and/or mediating variables, while adjusting for the potential correlation
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of responses from observations within the same cluster. From an analytic per-

spective there are several challenges to appropriately modeling such data, since

it is important to account for the clustered nature of the responses, especially in

settings when there are a few large clusters/groups and the standard asymptotic

results are questionable.

Two popular approaches for modeling clustered data are via population-

averaged (PA) models fitted by generalized estimating equations (GEEs), and

subject-specific models fitted using generalized linear mixed models (GLMMs).

The GEE approach is attractive in that it provides unbiased estimates while prop-

erly adjusting for possible misspecification of the correlation of responses from

the same cluster, but these properties may be doubtful in settings involving small

numbers of large clusters (see, for example, Bellamy et al. (2000) and Mancl and

Leroux (1996)). Generalized linear mixed models account for the within-cluster

correlation by introducing random effects in model specification. Inference in

GLMMs is challenged by the required numerical integration in the likelihood

function. In addition to numerical quadrature and Markov Chain Monte Carlo

techniques for integration, the penalized quasilikelihood (PQL) approach (Bres-

low and Clayton (1993) and Green (1987)) provides an alternative easy approach

to estimating covariate effects in GLMMs. However, various authors have noted

that covariate effects based on the PQL may be asymptotically biased (see, for

example, Neuhaus and Segal (1997), Breslow and Lin (1995) and Lin and Breslow

(1996)). Breslow and Lin (1995) and Lin and Breslow (1996) derived asymptotic

bias expressions for PQL regression coefficient and variance component estima-

tors in settings where there are a large number of small clusters. Their results

are not applicable to group-randomized trial settings where there are a small

number of large clusters.

There have been related asymptotic explorations of the PQL estimators in

the context of small area estimation. Jiang and Lahiri (2001) considered the

asymptotic properties of estimating random effects in settings where the number

of independent observations within clusters gets large, but here we are interested

in the asymptotic bias associated with estimating fixed-effects. Jiang (1999) ex-

amined the asymptotic behavior of PQL-type estimators when both the numbers

of clusters and observations within clusters increase. This result is not directly

applicable to group-randomized trial settings where there is often a small number

of clusters.

In previous work, we explored the bias associated with PQL methods in

group-randomized trial settings via simulation studies and observed good em-

pirical results in estimating covariate effects, especially for large cluster sizes

(Bellamy et al. (2000)). Ten Have and Localio (1999) reported simulation results

showing that PQL performed well with small numbers of large clusters, whereas
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numerical integration did poorly in settings where there are few clusters. Vonesh

et al (2002) investigated the asymptotic distribution of the PQL estimator when

the number of both the number of clusters and the cluster size go to infinity and

showed the PQL estimator performed well in such settings.

In this paper we explore more rigorously those empirical findings by deriv-

ing expressions for the asymptotic bias and variance associated with estimating

cluster-level covariate effects in a GLMM, using the PQL approach in settings

which have a small number of large clusters such as group-randomized trials. The

paper is organized as follows. In Section 2 we present the GLMM and the PQL

method. In Section 3 we derive an expression for the asymptotic bias in estimat-

ing the cluster-level covariate effects via the PQL and the asymptotic variance of

the PQL estimator. We consider in Section 4 the forms of the bias and variance

expressions for common special cases. We present in Section 5 the results from

a simulation study and close with a discussion in Section 6.

2. The generalized linear mixed model

2.1. Model formulation

Consider data from a study involving n clusters. For simplicity of presen-

tation, we assume there are an equal number of m observations per cluster.

Generalization of our results to unequal cluster size settings are straightforward

and are presented at the end of Section 3. In grouped-randomized trials, n is

often small and m is often large. For the jth observation (j = 1, . . . ,m) in

cluster i (i = 1, · · · , n), we observe a response yij, and a p × 1 vector of cluster-

specific covariates xi. Generalized linear mixed models (GLMMs) provide a

broad class of random effects models to model such clustered data. Conditional

on the cluster-specific unobserved random effects bi, the outcomes yij are assumed

to be independent and follow the exponential family

`i(β; bi) =
m∑

j=1

aij

φ
{yijηij − c(ηij)} + k(yij , φ), (1)

where ηij is a canonical parameter, aij is a known weight, φ is a scale parameter,

and c(·) and k(·) are some known functions. The conditional mean of yij is

µij = E(yij |bi) = c′(ηij) and is related to the covariate vector xi and the random

effect bi through a generalized linear model (Breslow and Lin (1995))

g(µij) = xiβ + bi, (2)

where g(·) is a monotone link function and bi ∼ N(0, θ). We restrict attention

in this paper to canonical link functions which satisfy g(µij) = ηij , var(yij |bi) =
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φa−1
ij v(µij) and g′(µij) = 1/v(µij) (McCullagh and Nelder (1989)). The observed

data likelihood is hence

L(β, θ) =
n∏

i=1

1√
2πθ

∫
exp

{
`i(β; bi) − b2

i /2θ
}

dbi. (3)

2.2. PQL estimation of GLMM

Because the integrated likelihood (3) does not usually have a closed form

expression, Breslow and Clayton (1993) proposed estimation of the regression

coefficients β using the penalized quasilikelihood (PQL) method by applying

the Laplace approximation to the integrated loglikelihood function. The PQL

likelihood can be written as (Breslow and Lin (1995))

`p(β, θ) =
n∑

i=1

(
˜̀
i −

b̃2
i

2θ

)
, (4)

where b̃i satisfies b̃i = θ ∂`i(β, bi)/∂bi|bi=b̃i
and

˜̀
i = `i(β, b̃i) =

m∑

j=1

aij

φ
{yij η̃ij − c(η̃ij)} + k(yij , φ),

where η̃ij = xT
ijβ + b̃i.

In this paper, we assume θ is known and study the asymptotic bias and vari-

ance of the PQL estimator of the regression coefficients β̂ in grouped randomized

trial settings where the number of clusters n is small and fixed and the cluster

size m is large and goes to infinity. We derive the asymptotic bias for the general

GLMM (2) and then consider various special cases, including a random effects

logistic regression model.

3. Asymptotic Bias and Variance of Estimated Cluster-Level PQL Co-

variate Effects

The PQL estimator of β is the solution of the estimating equations obtained

from maximizing (4) with respect to β and simultaneously computing b̃i (i =

1, . . . , n) from
n∑

i=1

m∑

j=1

xi
aij

φ
{yij − µ(xT

i β̂ + b̃i)} = 0, (5)

m∑

j=1

aij

φ
{yij − µ(xT

i β̂ + b̃i)} =
b̃i

θ
, (i = 1, . . . , n), (6)
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where µ(·) = g−1(·).
Our goal is to derive the asymptotic bias of the PQL estimator when n is

small and m goes to infinity. We proceed by deriving an asymptotic expansion

of the PQL estimator β̂, the solution to the estimating equations in (5) and (6),

about its true value β for fixed n and large m. Since the second component of the

estimating equations (6) involves solving n cluster-specific equations, standard

M -estimation theory does not apply (see, for example, Van der Vaart (1998) or

Akritas (1991)).

We first pre-multiply each of the n components of (6) by xi then sum over

the index i and apply (5). This gives the constraint

n∑

i=1

xib̃i = 0, (7)

where b̃i is the value of bi that satisfies both (5) and (6), simultaneously.

Equation (6) can be written as

ȳi. − µ(xT
i β̂ + b̃i) =

b̃iφ

māi.θ
, (8)

where ȳi. =
∑m

j=1 aijyij/
∑m

j=1 aij , the cluster-specific weighted average of the

response variable, āi. =
∑m

j=1 aij/m. It follows from (6) that

xT
i β̂ + b̃i = g

(
ȳi. −

b̃iφ

māi.θ

)
. (9)

Pre-multiplying this expression by xi, summing over the index i, and recalling

the constraint (7), it follows that

β̂ =
( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xig
(
ȳi. −

b̃iφ

māi.θ

)
. (10)

Note that b̃i = b̃i(ȳi.,x
T
i β̂, φ/māi.).

We derive the asymptotic bias of β̂ using (10), assuming n is fixed and small

while m goes to infinity. Our asymptotic calculations proceed by performing a

series of Taylor expansions of ȳi. about µi, b̃i about bi, and β̂ about β. A detailed

proof of our result is in the Appendix.

Proposition 1. Assume the number of clusters n is fixed and small and that

the cluster size m goes to infinity. Suppose the variance component θ is known.

Then, the asymptotic bias and variance of the PQL estimators of the regression
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coefficients β̂ are

E(β̂)−β =
φ

m

( n∑

i=1

xix
T
i

)
−1

n∑

i=1

1

āi.
xiAi + Op

( 1

m2

)
, (11)

cov
(
β̂

)
= θ

( n∑

i=1

xix
T
i

)
−1

+
φ

m

( n∑

i=1

xix
T
i

)
−1

B
( n∑

i=1

xix
T
i

)
−1

+Op

( 1

nm2

)
, (12)

where

Ai = Ebi

[1

2
v(µi)g

′′(µi) +
1

θ

{
xT

i

( n∑

i′=1

xi′x
T
i′

)
−1

xi − 1
}

g′(µi)bi

]
,

B =

n∑

i=1

1

āi.
xix

T
i

{
Ebi

[
v(µi)

{
g′(µi)

}2
]
− 2

θ
Ebi

{
g′(µi)b

2
i

}}

+
2

θ
Ebi

{( n∑

i=1

xibi

)( n∑

i=1

1

āi.

xix
T
i g′(µi)

)( n∑

i=1

xix
T
i

)
−1( n∑

i=1

xT
i bi

)}
.

This result indicates that PQL works well for estimating the cluster level

covariate effect in group-randomized trials. It differs from that of Breslow and

Lin (1995), who found the PQL estimator seriously biased for clustered binary

data in conventional longitudinal/clustered data settings with a large number of

clusters of small size.

Proposition 1 further shows that the variance of the PQL estimator of the

cluster-level covariate effect, such as an intervention effect, is of order Op(1/n)+

Op{1/(nm)}, which is of the same order as the maximum likelihood estimator

in this small n, large m situation. This suggests that in group-randomized trials

when n is fixed to be small, as expected, one often needs to have large cluster

size m to achieve sufficient power to detect an intervention effect. Our simula-

tion results in Section 4 further show that the finite sample variance and mean

square error of the PQL estimator are smaller than that of the MLE. In view of

the computational simplicity of PQL, this is encouraging for the use of PQL in

analyzing data from grouped randomized trials.

Extension of Proposition 1 to unbalanced designs where the cluster sizes vary

from cluster to cluster is straightforward. Calculations show that one simply

needs to remove m and replace āi. by to āi.mi in (11) and (12), and replace

Op(m
−2) with Op(min(mi)

−2) and Op((nm2)−1) in (12) with Op[{nmin(mi)
2}−1].

4. Special Cases

We examine the general bias and variance expressions in two common clus-

tered data settings. We first take an identity link function, where expressions
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for the bias and variance associated with estimated cluster-level covariate ef-

fects have closed form solutions, and show that the same bias expressions can

be obtained directly from our general bias and variance expressions. Second, we

consider the clustered data setting with a binary outcome, where one is interested

in the efficacy of, say, an intervention from a group-randomized trial.

4.1. Identity link function

Consider a random effects model with an identity link function g(µ) = µ.

Assume aij = 1. The bias and variance expression for estimating cluster-level

covariates can be obtained from (11) and (12), respectively, noting in this case

that g′(µi) = 1 and g′′(µi) = 0. Thus,

E(β̂ − β) = Op(1/m
2),

cov(β̂) =
(
θ +

φE(v(µi)

m

)( n∑

i=1

xix
T
i

)
−1

+ Op(1/nm2).

The above results apply to both normal and non-normal outcomes when an

identity link is used. If one further assumes that the outcome yij is normally

distributed as yij = xT
i β + bi + eij, where bi ∼ N(0, θ) and eij ∼ N(0, φ), the

above results become

E(β̂ − β) = Op(1/m
2),

cov(β̂) =
(
θ +

φ

m

)( n∑

i=1

xix
T
i

)
−1

+ Op(1/nm2).

One can easily show that the terms Op(1/m
2) and Op(1/nm2) vanish. In other

words, the above asymptotic bias and variance results are exact in the normal

case.

4.2. Logit link function and 2 group comparison

Consider the case where one is interested in the efficacy of an intervention in a

group-randomized trial involving a binary outcome. Let g(µk) = logit(µk), where

µk is the probability of a positive response for a randomly selected individual

in the kth group (k = 1, 2), conditional on the value of the individual’s random

effect. Note that while µk depends on b, we suppress this for notational simplicity.

Under this convention, logit(µ1) = β0 + b and logit(µ2) = β0 + β1 + b, where

b ∼ Normal(0, θ). Take xk =

(
1

0

)
for clusters in the control group (k = 1) and

xk =

(
1

1

)
for clusters in the treatment group (k = 2). Denote the number of
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clusters for the control and treatment groups as n1 and n2, respectively, with

n = n1 + n2. Let γ = n2/n (the proportion of clusters in the treatment group or

randomization fraction). Some calculations using (11) show that the asymptotic

bias of the PQL estimator β̂ is

E(β̂) − β =
1

m

(
S1

S2 − S1

)
+ Op(m

−2), (13)

where for j = 1, 2,

Sj = Eb

{ −(1 − 2µj)

2µj(1 − µj)

}
+

( 1

nj

− 1
)
Eb

{ b

µj(1 − µj)

}

The variance expression is complicated and is omitted here.

Equation (13) shows that the bias decreases as the cluster-size increases.

For a fixed cluster-size, the magnitude depends on baseline event rate (reflected

through S1) as well as the true difference in the event rates for treated and

control groups (S2 − S1). The randomization fraction γ, does not influence the

magnitude of bias. The variance in this setting is also a function of the cluster-

size and decreases as the cluster-size increases (for fixed n). Calculations using

(12) show that the variance is influenced by the randomization fraction γ.

5. Simulation Study

We conducted a simulation study to examine the theoretical and empirical

bias and variance of PQL, compared with the MLE, in estimating covariate effects

at the cluster level under the logit link function for settings with small numbers of

large clusters. We generated a common random effect for each of the i = 1, . . . , n

clusters (bi) from a Normal(0, θ) distribution and, conditional on the random

effect, a single Bernoulli random variable was generated from

yij = Bernoulli(µi), where µi =
exp(β0 + β1xi + bi)

1 + exp(β0 + β1xi + bi)
. (14)

In this model, xi is a single cluster-level covariate assumed to follow a Normal(1, 1)

distribution. In our simulation study β0 = 1.5, β1 = −1.2 and θ = 0.5.

For each simulated dataset, we estimated β = (β0, β1)
T using the PQL

estimator via the SAS GLIMMIX macro, as well as the MLE using the SAS

NLMIXED procedure. In both the PQL and NLMIXED approaches, we esti-

mated β assuming θ was fixed and known (θ = 0.5), as well as assuming θ was

unknown. Whereas the PQL approach is based on the Laplace approximation

to the loglikelihood function, NLMIXED approximates the marginal loglikeli-

hood function (3) numerically (e.g., Gaussian quadrature) and finds MLEs for
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the parameters of interest via Newton Raphson. Variance estimates from the
NLMIXED procedure are obtained from the appropriate function of the Hessian
matrix at the final step of Newton Raphson. Simulation results are presented in
the Tables 1 and 2 and Figures 1−3, the summaries are restricted to character-
izing only the results for β1.

Table 1. Simulation study results (from 500 simulated samples) summarizing
estimated cluster-level covariate effects from the logistic-normal model (14)
for θ known. (True population parameters: β = −1.2 and θ = 0.5.)

PQL MLE

avg β̂(SD
β̂
) avgSE

β̂
avgMSE avg β̂(SD

β̂
) avgSE

β̂
avgMSE

6 Clusters

Cluster size=10 -1.351 (0.868) 0.673 1.526 -1.427 (0.915) 0.683 1.723
Cluster size=20 -1.228 (0.596) 0.520 0.710 -1.282 (0.622) 0.525 0.781

Cluster size=50 -1.212 (0.487) 0.451 0.474 -1.244 (0.502) 0.453 0.505

Cluster size=100 -1.199 (0.442) 0.404 0.390 -1.218 (0.451) 0.405 0.406

10 Clusters
Cluster size=10 -1.223 (0.431) 0.439 0.372 -1.293 (0.456) 0.446 0.424

Cluster size=20 -1.203 (0.378) 0.359 0.286 -1.255 (0.396) 0.362 0.316

Cluster size=50 -1.194 (0.307) 0.299 0.188 -1.225 (0.317) 0.300 0.202

Cluster size=100 -1.189 (0.284) 0.279 0.161 -1.208 (0.290) 0.279 0.168

20 Clusters
Cluster size=10 -1.137 (0.273) 0.280 0.153 -1.202 (0.289) 0.285 0.167

Cluster size=20 -1.159 (0.234) 0.233 0.111 -1.208 (0.245) 0.236 0.120

Cluster size=50 -1.192 (0.196) 0.201 0.076 -1.223 (0.202) 0.202 0.082

Cluster size=100 -1.185 (0.180) 0.184 0.065 -1.205 (0.184) 0.184 0.068
50 Clusters

Cluster size=10 -1.139 (0.166) 0.170 0.059 -1.204 (0.176) 0.172 0.062

Cluster size=20 -1.168 (0.138) 0.143 0.039 -1.218 (0.145) 0.144 0.042

Cluster size=50 -1.170 (0.115) 0.122 0.027 -1.200 (0.119) 0.123 0.028

Cluster size=100 -1.172 (0.110) 0.113 0.025 -1.191 (0.113) 0.113 0.026

Table 1 has n =6, 10, 20 and 50, clusters of size m=10, 20, 50 and 100,
and takes θ fixed and known, while Table 2 adopts the same settings when θ
is unknown and estimated. Figure 1 compares the empirical biases of the PQL
and MLE estimators of cluster-level covariate effects assuming θ is both fixed
and known as well as for θ unknown; Figures 2 and 3 compare the empirical SEs
and MSEs of β̂ using the MLE and PQL methods, assuming θ is known and
unknown.

We first examine the empirical bias properties of each estimation method.
The results in Tables 1 and 2 and Figure 1 show that in practical group-random-
ized trial settings characterized by a small number clusters with moderate to large
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cluster sizes, the PQL estimate has small bias. In fact, PQL (REML and ML)
generally performed better than the MLE in settings typical of group-randomized
trials (e.g., 6 and 10 clusters in Figure 1), having the largest bias in those group-
randomized settings where θ was fixed and known (top row of Figure 1; 6 and 10
clusters). Also, the empirical PQL bias (REML and ML) was similar (relatively
and in absolute value) to its theoretical approximation (from (11)), especially
in settings with few clusters. Figure 1 also suggests that the bias associated
with PQL (ML and REML) cluster-level covariate effects is negligible in settings
with few clusters, provided those clusters have large enough cluster sizes. Figure
1 and (11) also suggest that, theoretically, the PQL bias should approach the
zero line for large cluster sizes but, practically, only the PQL bias seems to
approximate zero line when there were only six clusters. It may be that the
theoretical estimates are overly optimistic, except in the setting most typical of
group-randomized trials (e.g., a small number of clusters). Finally, the MLE has
the smallest bias in settings where there are large numbers of clusters (20 and
50), as expected.
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Figure 1. Average bias in estimating cluster-level covariate effects from the
logistic mixed model (14) via penalized quasi-likelihood (PQL (REML) and
PQL (ML)) and MLE expression in equation (11) (THEORETICAL) for θ
known (top row) and θ unknown (bottom row).
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Table 2. Simulation study results (from 500 simulated samples) summarizing

estimated cluster-level covariate effects from the logistic-normal model (14)

for unknown θ. (True population parameters: β = −1.2 and θ = 0.5.)

PQL (ML) PQL (REML) MLE

avg avg avg avg avg avg avg avg avg
β̂(SD

β̂
) SE

β̂
MSE β̂(SD

β̂
) SE

β̂
MSE β̂(SD

β̂
) SE

β̂
MSE

6 Clusters
Cluster size=10 -1.359 (0.890) 0.581 1.608 -1.396 (0.942) 0.686 1.813 -1.386 (0.895) 0.625 1.635

Cluster size=20 -1.221 (0.593) 0.414 0.702 -1.238 (0.605) 0.488 0.734 -1.245 (0.605) 0.432 0.897

Cluster size=50 -1.209 (0.492) 0.363 0.483 -1.221 (0.497) 0.437 0.494 -1.223 (0.501) 0.373 0.503

Cluster size=100 -1.193 (0.439) 0.325 0.386 -1.200 (0.442) 0.394 0.390 -1.207 (0.445) 0.331 0.396

10 Clusters
Cluster size=10 -1.237 (0.449) 0.404 0.404 -1.256 (0.460) 0.446 0.425 -1.278 (0.464) 0.435 0.436

Cluster size=20 -1.204 (0.385) 0.316 0.296 -1.217 (0.390) 0.350 0.304 -1.239 (0.398) 0.333 0.318

Cluster size=50 -1.191 (0.308) 0.264 0.190 -1.199 (0.311) 0.294 0.193 -1.216 (0.315) 0.273 0.198

Cluster size=100 -1.186 (0.282) 0.245 0.160 -1.191 (0.284) 0.272 0.161 -1.202 (0.287) 0.249 0.164

20 Clusters
Cluster size=10 -1.144 (0.284) 0.262 0.164 -1.152 (0.286) 0.275 0.166 -1.193 (0.297) 0.282 0.177

Cluster size=20 -1.158 (0.236) 0.215 0.113 -1.164 (0.237) 0.226 0.114 -1.199 (0.245) 0.227 0.120

Cluster size=50 -1.191 (0.196) 0.187 0.077 -1.195 (0.197) 0.196 0.078 -1.219 (0.202) 0.193 0.082

Cluster size=100 -1.183 (0.181) 0.170 0.066 -1.186 (0.181) 0.179 0.066 -1.202 (0.185) 0.173 0.068

50 Clusters
Cluster size=10 -1.143 (0.170) 0.161 0.061 -1.147 (0.171) 0.164 0.061 -1.200 (0.181) 0.175 0.065

Cluster size=20 -1.169 (0.139) 0.136 0.039 -1.172 (0.139) 0.139 0.040 -1.216 (0.145) 0.144 0.042

Cluster size=50 -1.169 (0.115) 0.117 0.028 -1.170 (0.116) 0.120 0.028 -1.198 (0.119) 0.121 0.028

Cluster size=100 -1.170 (0.111) 0.108 0.025 -1.172 (0.111) 0.111 0.025 -1.189 (0.113) 0.111 0.026
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Figure 2. Comparison of empirical SEs for estimated cluster-level covari-

ate effects from the logistic mixed model (14) via penalized quasi-likelihood

(PQL) and the MLE assuming θ is known and unknown.
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Tables 1 and 2 also contain the average estimated mean square error (MSE)

for each method of estimation. The PQL MSE is smaller than the MLE MSE in

each simulation setting considered. In settings where θ was assumed to be known,

the average MSE difference between PQL and MLE was larger in settings with

few clusters and negligible in settings with many clusters. Regardless of the

number of clusters, the MSE for each of the three estimation methods decreased

as the cluster size increased. We observed similar results in settings where θ was

estimated. Specifically, Table 2 suggests that the MSE associated with each of

the three estimation methods are similar when θ is unknown and that, in general,

PQL (ML) has modestly superior MSE properties when compared to the other

methods.
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Figure 3. Comparison of MSEs for estimated cluster-level covariate effects
from the logistic mixed model (14) via penalized quasi-likelihood (PQL) and

the MLE assuming θ is known and unknown.

Figures 2 and 3 characterize the empirical standard errors and MSEs asso-

ciated with estimating cluster-level covariate effects using PQL and MLE. The

results also show that SE efficiency and MSE efficiency of all three methods was

indistinguishable when θ was assumed fixed and known or when θ was estimated.

However, the PQL estimates show a slight improvement in SEs and MSEs over

the MLEs.

We also compared the computing resources required for the PQL approach

versus the MLE using the SAS NLMIXED procedure to see if there were big

differences. Although NLMIXED had comparable results (average parameter

estimates, estimated standard errors, etc.), we found the procedure to be more
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computationally intensive, greatly increasing the total computing time for model-

ing the same datasets, when compared to fitting equivalent PQL models. For ex-

ample, the CPU for modeling a single simulated dataset with 10 clusters and 100

responses per cluster was approximately five times greater using the NLMIXED

procedure than the PQL approach (NLMIXED = 15.64 seconds and PQL =

3.47 seconds). This additional CPU time is likely due to the Newton Raphson

algorithm, which involves inverting a matrix whose dimension depends on the

number of independent responses within clusters. Because of this matrix inver-

sion step, the method may be unstable if the matrix to be inverted is singular, or

computationally intensive if the matrix is large. One may want to consider the

trade-off in CPU time and bias in estimating covariate effects of interest associ-

ated with fitting the more computationally intense random effects models, using

the NLMIXED procedure versus using the PQL approach.

6. Discussion

The PQL approach has been shown to produce biased estimates of covariate

effects in clustered data settings with small numbers of observations per cluster or

in settings with large variance components. Our early empirical results show that

this bias may be small compared to MLEs in common group-randomized settings

(small numbers of large clusters). In this paper, we have shown theoretically and

in a simulation study that the bias in estimating cluster-level covariate effects

using the PQL method is inversely proportional to the cluster-size. This result

has important implications, especially in the context of community-based and/or

group-randomized studies which typically have small numbers of large clusters.

The results presented here suggest that the bias in estimating covariate effects

at the cluster-level via PQL can be minimized to an extent in settings where

the number of independent clusters may be small and/or fixed (e.g., number of

census block-groups in a school district of interest) by sampling more subjects

within clusters. We have also shown that the variance associated with these

estimates is inversely proportional to the total number of clusters. Additionally,

the variance is a function of both the between and within subject variability

as well as the cluster size. We have found in our simulation study that the

MSEs of the PQL estimates are slightly smaller than the MLE counterparts

in practical group-randomized trial settings. We have presented main results

both theoretically and from simulation studies for equal cluster-sizes, but have

generalized our results unequal cluster size settings at the end of Section 3.

An alternative method is to estimate the regression coefficients using a two-

stage method. Although the two-stage method is simple, it has major limitations:

one would not be able to perform a two-stage analysis for cluster-level covariates,

the main interest in the current paper; inference in two-stage analysis is difficult
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since one has to account for variability in estimation of both stages. Fitzmaurice,

Laird and Ware (2004) note that their discussion of the two-stage random effects

model formulation is for pedagogical purposes, and caution readers that such a

formulation, although helpful conceptually, introduces extraneous and sometimes

impractical model restrictions.

We have focused on studying the asymptotic bias of the regression coeffi-

cients of cluster-level covariates in group-randomized trial settings with a small

number of clusters and large cluster sizes. We assumed the variance component θ

known in our calculations. In practice the variance component is often unknown.

The theoretical results for quantifying the bias of covariate effects when θ is un-

known is beyond the scope of this paper, and is of significant interest for future

research. Our simulation study results suggest that in typical group-randomized

trial settings, the practical implication of assuming θ is known and fixed vs set-

tings where θ is estimated are negligible, even in settings with small numbers of

clusters, given a reasonable cluster size (e.g., cluster size ≥ 20). Although we

have not presented theoretical arguments exploring a relaxation of this assump-

tion, our simulation studies may give some practical insight on how the results

might compare in settings where θ is unknown.

Another area of future research is to study the asymptotic bias of the re-

gression coefficients of subject-level covariates in settings with a small number

of clusters and large cluster sizes. This would require developing a different

asymptotic analytic technique.
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Appendix 1. Proof of Proposition 1

We can write b̃i as b̃i = h(ȳi.,x
T
i β, φ, θ, 1/m), where h(·) is the solution to

(9). Then the PQL estimator β̂ can be written as

β̂ =
( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xig

{
ȳi. − h(ȳi.,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

}
.
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We first expand ȳi. in h(·) about µi as

β̂ =
( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xi

[
g
{

µi − h(µi,x
T
i β̂, φ, θ, 1/m)

φ

māi.θ

}

+(ȳi. − µi)g
′

(
µi − h(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

)

×
(
1 − h′

µi
(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

)

+
(ȳi. − µi)

2

2!

{
g′

(
µi − h(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

)

×
(
− h′′

µiµi
(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

)

+
(
1−h′

µi
(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

)2
g′′

(
µi−h(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ

)}]

+Op(1/m
2),

where h′

µi
(·) = ∂h(·)/∂µi and h”µiµi

(·) = ∂h(·)/∂µiµi. A further expansion of

g(·) about g(µi) gives

β̂ =
( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xi

{
g(µi) − h(µi,x

T
i β̂, φ, θ, 1/m)

φ

māi.θ
g′(µi)

+(ȳi. − µi)
[
g′(µi) −

φ

māi.θ

{
h(µi,x

T
i β̂, φ, θ, 1/m)g′′(µi)

+g′(µi)h
′

µi
(µi,x

T
i β̂, φ, θ, 1/m)

}]

+
(ȳi. − µi)

2

2

[
g′′(µi) −

φ

māi.θ

{
h(µi,x

T
i β̂, φ, θ, 1/m)g′′′(µi)

+g′(µi)h
′′

µiµi
(µi,x

T
i β̂, φ, θ, 1/m) + 2g′′(µi)h

′

µi
(µi,x

T
i β̂, φ, θ, 1/m)

}]}

+Op(1/m
2).

If we expand β̂ in h(·) about β and use the fact that g(µi) = xT
i β+bi, some

calculations give

β̂ =
( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xi(x
T
i β + di) + Op(1/m

2) + Op(β̂−β)2− φ

mθ
K(β̂−β),

where

di =
[
bi−

φ

māi.θ
g′(µi)hi(·) + (ȳi.−µi)

[
g′(µi)−

φ

māi.θ
{g′′(µi)hi(·)+g′(µi)h

′

µi
(·)}

]

+
1

2
(ȳi.−µi)

2
[
g′′(µi)−

φ

māi.θ
{g′′′(µi)hi(·)+g′(µi)h

′′

µiµi
(·)+2g′′(µi)h

′

µi
(·)}

]
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and (·) denotes (µi,x
T
i β, φ, θ, 1/m), K is the p × p matrix

K =
( n∑

i=1

xix
T
i

)
−1

n∑

i=1

1

āi.

xic
T
i ,

ci = g′(µi)h
′

iβ(·) + (ȳi. − µi)
{
g′(µi)h

′′

iµiβ
(·) + g′′(µi)h

′

iβ(·)
}

+
1

2
(ȳi. − µi)

2
{
h′

iβ(·)g′′′(µi) + h′′′

iµiµiβ
(·)g′(µi) + 2h′′

iµiβ
(·)g′′(µi)

}
,

and h′

iβ(·) h′′

iµiβ
(·) and h′′′

iµiµiβ
(·) denote the derivatives of hi(·), h′

µi
(·) and h′′

µiµi
(·)

with respect to β. Using g(µi) = xT
i β + bi and collecting β̂ − β terms,

β̂ − β =
(
I +

φ

mθ
K

)
−1( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xidi + Op(1/m
2)

=
(
I − φ

mθ
K

)( n∑

i=1

xix
T
i

)
−1

n∑

i=1

xidi + Op(1/m
2)

=
( n∑

i=1

xix
T
i

)
−1( n∑

i=1

xidi

)

− φ

mθ

( n∑

i=1

xix
T
i

)
−1( n∑

i=1

1

āi.
xic

T
i

)( n∑

i=1

xix
T
i

)
−1( n∑

i=1

xidi

)
+Op(1/m

2),

where I is the p × p identity matrix.

Now examine hi(·)=h(µi,x
T
i β, θ, 1/m) and hiβ(·)=∂h(µi,x

T
i β, θ, 1/m)/∂β.

We show in Appendix 2 that hi(µi,x
T
i β, θ, 1/m) = bi+Op(1/m), and in Appendix

3 that hiβ(µi,x
T
i β, θ, 1/m) = −xT

i + Op(1/m). Replacing hi(·) by bi in di and

h′

iβ(·) by −xT
i in cT

i , noticing E{g′(µi)bi′} = E{g′(µi)bi} if i = i′ and 0 otherwise,

and keeping the terms of order Op(1/m), some calculations give the bias and

variance expressions in (11) and (12).

Appendix 2. Proof of hi(µi,x
T
i β, φ, θ, 1/m) = bi + Op(1/m)

By definition, h(µi,x
T
i β, θ, 1/m) is the solution for b̃i of the equation,

µi − g−1(xT
i β + b̃i) =

b̃iφ

māi.θ

µi − µ(xT
i β + b̃i) =

b̃iφ

māi.θ
, (15)

where µ(xT
i β+b̃i) = g−1(xT

i β+b̃i). Expanding the left side of the above equation
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in a first order Taylor series about bi, we get

µi − µ(xT
i β + b̃i) ≈ µi −

{
µ(xT

i β + bi) + (b̃i − bi)µ
′(xT

i β + bi)
}

=
b̃iφ

māi.θ

µi − µi − (b̃i − bi)µ
′(xT

i β + bi) =
b̃iφ

māi.θ
.

Solving for b̃i,

b̃i = bi

( µ′(xT
i β + bi)

µ′(xT
i β + bi) + φ

māi.θ

)
.

For large m, one can easily show b̃i = bi + Op(1/m).

Appendix 3. Proof of h′

iβ(µi,x
T
i β, φ, θ, 1/m) = −xT

i + Op(1/m).

By definition,

µi − g−1(xT
i β + b̃i) = µi − µ(xT

i β + b̃i) =
b̃iφ

māi.θ
. (16)

Taking derivatives of (16) wrt β,

−
(
xT

i + h′

β(µi,x
T
i β, θ, 1/m)

)
µ′

β(xT
i β + b̃i) =

h′

β(µi,x
T
i β, φ, θ, 1/m)

mθ

h′

iβ(µi,x
T
i β, ′, φ, θ, 1/m) = −xT

i

( µ′

β(xT
i β + b̃i)

φ
māi.θ

+ µ′

β
(xT

i β + b̃i)

)
.

As m gets large, h′

iβ(µi,x
T
i β, φ, θ, 1/m) = −xT

i + Op(1/m).
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