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Abstract: Regression calibration is an easy way to improve estimation in errors-in-

variables models. This method replaces missing covariates with estimates that are

more accurate than surrogates. One might expect better estimation using response

variables together with surrogates to estimate or predict missing values. However,

the introducing of response variables generates bias in the estimating function.

In this article, we use response variables to calibrate the missing covariates and

provide an estimation method for the regression parameters in linear models. When

errors in variables are small, we show that regression calibration using response

variables outperforms the conventional regression calibration. A small simulation

study comparing the performances of these methods in finite sample is provided.

Key words and phrases: Errors in variables, missing data, regression calibration,

response variables.

1. Introduction

In applied problems, researchers are often interested in the relationships

between response variables and covariates. In many situations, however, the

true covariates are expensive to collect, hard to measure, and available only in

limited supply. If a surrogate W of the true covariate is collected for each subject,

then we can partition the sample into two subsamples, one with true covariates

(the validation data set) and the other with surrogates only (the primary data

set)—that is, the subset in which the true covariates are missing. If one ignores

the missing values and proceeds, it is called the complete data analysis. Under

certain conditions, the factor causing data to be missing can be ignored (Rubin

(1976)), and a complete case analysis is a valid one. Clearly such an analysis

wastes information contained in the primary data set. An easy way to make

use of the information in a data set with missing values is Regression Calibration

(RC)—a kind of imputation which estimates the missing covariates first, replaces

missing values with their estimates, then proceed with analysis as if there were

no missing values. Estimations with such “replacements” have been widely used;

see, for example, Carroll and Stefanski (1990) for quasi-likelihood estimation,

Liang and Liu (1991) for generalized linear models, and Lee and Sepanski (1995)
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for linear and nonlinear errors-in-variables models. The method of RC is simple

and potentially applicable to any regression model, provided the approximation

is sufficiently accurate (Carroll, Rupper and Stefanski (1995, Chap.3)).

In this article, we consider the simple errors-in-variables model

Y = β0 + β1X + ε∗, W = X + δ∗,

where W is the surrogate of X, δ∗ is the error in measuring X, and ε∗ is the error

in measuring β0 +β1X. For any missing X, the conventional RC replaces X with

E(X | W ) or an estimate of it. This procedure can be justified by observing that

E(Y | W ) = β0 +β1E(X | W ), which is also a regression function with the same

parameters β0 and β1. Doing so, however, requires distribution assumptions to

find the form of E(X | W ), and it is unclear how much additional efficiency is

gained. In later sections, we propose using response variables together with surro-

gates to improve estimation of missing values, and we develop an approximation

method based on small errors to calculate the efficiency of different estimators.

In Section 2, we motivate and propose the estimating functions. Section 3

contains a theoretical comparison of the proposed method with conventional RC

and complete case analysis. A simulation study is provided in Section 4. In

Section 5, we discuss the possible extension of RC with response variables to

more general models. The appendix sketches proofs of the theorems in Section 2.

2. Regression Calibration using Response Variables

Rewrite the model in the previous section by letting ε∗ = σ1ε and δ∗ = σ2δ,

where σ1 and σ2 are such that E(ε2) = 1 and E(δ2) = 1. Then

Y = β0 + β1X + σ1ε, W = X + σ2δ. (2.1)

Assume that X has mean µ and variance σ2
x, that X, ε and δ are independently

distributed with finite fourth moments, and that both ε and δ have mean 0.

Normality is not needed here, but E(ε3) = 0 is assumed for technical reasons.

We divide the observations into two sets, V and P . Set V consists of obser-

vations (Y,X,W ) and set P contains (Y,W ) only. Thus, (Yi,Wi, Xi) is observed

if i ∈ V , and (Yi,Wi) is observed if i ∈ P . Let NP denote the size of P and NV

the size of V ; the total sample size is then N = NP + NV . The probability that

an observation is missing is assumed constant.

The conventional RC consists of two steps. First, the validation data is used

to estimate the regression function of X on W , which may be accomplished by

solving
∑

i∈V

(Xi − γ0 − γ1Wi)(
1

Wi
) = 0
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for γ0 and γ1. Let γ̂0 and γ̂1 be the solutions and let mi = γ̂0 + γ̂1Wi. Second,
replace the missing Xi with mi and proceed as if there were no measurement
errors. That is, solve

∑

i∈V

(Yi − β0 − β1Xi)(
1

Xi
) +

∑

i∈P

(Yi − β0 − β1mi)(
1

mi
) = 0

for β0 and β1, if least squares estimation is adopted.

2.1. The estimating procedure

Our procedure uses the best linear predictor Hi of Xi, where Hi = a+bWi +
cYi minimizes E(Xi −Hi)

2. It is easy to show that (a, b, c) satisfies the equation

E







1 W Y

W W 2 WY

Y WY Y 2













a

b

c






= E







X

WX

XY






. (2.2)

When replacing the unobserved Xi with Hi, we are led to the estimating equation

∑

i∈V

(Yi − β0 − β1Xi)(
1

Xi
) +

∑

i∈P

(Yi − β0 − β1Hi)(
1

Hi
) = 0 (2.3)

for β0 and β1, provided (a, b, c) is known. However, the left-hand side of (2.3) is
a biased estimating function because Hi is correlated with Yi − β0 − β1Hi. To
remove the bias, we observe that

E[
∑

i∈V

(Yi − β0 − β1Xi)(
1

Xi
) +

∑

i∈P

(Yi − β0 − β1Hi)(
1

Hi
)]

= NP β1E[(Xi − Hi)(
1

Hi
)] + NPE[εi(

1

Hi
)].

The first term on the right-hand side is 0 since (Xi−Hi) is orthogonal to Hi, and
the last term is NP (0, cσ2

1)
′

. We then subtract it from the original estimating
function to obtain

∑

i∈V

(Yi − β0 − β1Xi)(
1

Xi
) +

∑

i∈P

[(Yi − β0 − β1Hi)(
1

Hi
) − (

0

cσ2
1
)]. (2.4)

An algorithm that iteratively estimates (a, b, c) and σ2
1 and utilizes (2.4) to esti-

mate β0 and β1 is described as follows.
1. Use the validation data set to estimate the regression coefficients of X on

(W,Y ). Obtain estimates of the best linear predictor Hi for each missing Xi.
2. Use the validation data to compute the least squares estimates of β0, β1 and

σ2
1 as the initial estimates.
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3. Use the current estimate of σ2
1 to solve (2.4) with respect to β0 and β1; de-

rive new estimates of β0 and β1; then compute the residuals and update the

estimate of σ2
1.

4. Repeat Step 3 until the estimates of σ2
1 converge.

This algorithm is equivalent to solving

∑

i∈V
[(Yi − β0 − β1Xi)

2 − σ2
1] = 0

∑

i∈V
(Xi − a − bWi − cYi)







1

Wi

Yi






= 0 (2.5)

∑

i∈V
(Yi − β0 − β1Xi)(

1

Xi
) +

∑

i∈P
[(Yi − β0 − β1Hi)(

1

Hi
) − (

0

cσ2
1
)] = 0

for estimates of η = (σ2
1 , a, b, c, β0, β1), which is a one-to-one transformation of

the original parameters θ = (µ, σ2
x, σ2

1 , σ
2
2 , β0, β1). Next, define

Ai = (Yi − β0 − β1Xi)
2 − σ2

1 , Bi = (Xi − a − bWi − cYi)







1

Wi

Yi






,

Ci = (Yi − β0 − β1Xi)(
1

Xi
), Di = (Yi − β0 − β1Hi)(

1

Hi
) − (

0

cσ2
1
),

and ρ = NV /N . The asymptotic covariance matrix of η̂, the solution of (2.5),

equals








ρE ∂A
∂η

ρE ∂B
∂η

ρE ∂C
∂η + (1 − ρ)E ∂D

∂η









−1







ρEAA
′

ρEAB
′

ρEAC
′

ρEB
′

A ρEBB
′

ρEBC
′

ρEC
′

A ρEC
′

B ρECC
′

+ (1 − ρ)EDD
′















ρE ∂A
∂η

ρE ∂B
∂η

ρE ∂C
∂η + (1 − ρ)E ∂D

∂η









′
−1

.

(2.6)

The matrix (2.6) is rather complicated, and hence an approximation is consid-

ered.

2.2. Small errors approximation

Here we assume that the ratio of the two error variances σ2
2/σ

2
1 , denoted by k,

remains fixed as σ2
1 tends to 0. If µ = 0, then (2.6) is equal to T −1MT−1′

+O(σ3
1),
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where

T = −





















ρ 0 0 0 0 0

0 ρ 0 ρβ0 0 0

0 0 ρσ2
x + σ2

2 ρβ1σ
2
x 0 0

0 ρβ0 ρβ1σ
2
x ρ(β2

0 + β2
1σ2

x + σ2
1) 0 0

0 (1 − ρ)β1 0 (1 − ρ)β0β1 1 0

(1 − ρ)c 0 (1 − ρ)β1σ
2
x (1 − ρ)β2

1σ2
x 0 σ2

x −
(1−ρ)kσ2

1

1+β2

1
k





















,

M =



























0 0 0 0 0 0

0 ρ k
1+β2

1
k

0 ρβ0
k

1+β2

1
k

−ρc 0

0 0 ρσ2
x

k
1+β2

1
k

ρβ1σ
2
x

k
1+β2

1
k

0 −ρcσ2
x

0 ρβ0k

1+β2

1
k

ρβ1σ2
x
k

1+β2

1
k

ρ(β2
0 + β2

1σ2
x) k

1+β2

1
k

−ρβ0c −ρβ1cσ
2
x

0 −ρc 0 −ρβ0c ρ + 1−ρ

1+β2

1
k

0

0 0 −ρcσ2
x −ρcβ1σ

2
x 0 ρσ2

x + 1−ρ

1+β2

1
k
σ2

x



























σ2
1,

Hence, T−1MT−1′

is an approximation of (2.6) when errors are “small.” The
lower-right part of T−1MT−1′

corresponds to the covariance matrix of the esti-
mated regression coefficients, denoted by β̂0 and β̂1, as stated in Theorem 1.

Theorem 1. Under (2.1) and the finite fourth moments assumption for (X, ε, δ),
the solution η̂ obtained by solving (2.5) is consistent. Moreover, if σ2

2/σ
2
1 (denoted

by k) remains fixed as σ2
1 → 0 and E(ε3) = 0, then η̂ has asymptotic covariance

T−1MT−1′

+ O(σ3
1). In particular, the asymptotic covariance matrix of β̂0 and

β̂1 is
(

1 − µ

0 1

)





ρ+β2

1
k

ρ+ρβ2

1
k

0

0 1
σ2

x

ρ+β2

1
k

ρ+ρβ2

1
k





(

1 0

− µ 1

)

σ2
1 + O(σ3

1).

To compare the proposed method with conventional RC, a similar analysis
is applied to find the asymptotic covariance matrix of the estimators defined as
the solutions to

∑

i∈V
(Xi − γ0 − γ1Wi)

(

1

Wi

)

= 0,

∑

i∈V
(Yi −β0 −β1Xi)(

1

Xi
)+

∑

i∈P
(Yi −β0 −β1(γ0 +γ1Wi))(

1

(γ0 + γ1Wi)
) = 0.

(2.7)
Theorem 2. Under the same conditions as in Theorem 1, the estimators of β0

and β1 obtained by solving (2.7) have asymptotic covariance matrix

(

1 − µ

0 1

)





(1−ρ)β2

1
k+ρ

ρ
0

0
(1−ρ)β2

1
k+ρ

ρσ2
x





(

1 0

− µ 1

)

σ2
1 + O(σ3

1).
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3. Efficiency Comparison

Three estimators are compared here: β̂, β̂rc and β̂c, where β̂ is our estimator,

β̂rc is the conventional RC estimator, and β̂c is the least squares estimator of

(β0, β1)
′ from the complete case analysis. In Section 2, it was shown that

NE(β̂rc−β)(β̂rc−β)′=

(

1 − µ

0 1

)





(1−ρ)β2

1
k+ρ

ρ
0

0
(1−ρ)β2

1
k+ρ

ρσ2
x





(

1 0

−µ 1

)

σ2
1+O(σ3

1),

NE(β̂−β)(β̂−β)′ =

(

1 − µ

0 1

)





ρ+β2

1
k

ρ+ρβ2

1
k

0

0 1
σ2

x

ρ+β2

1
k

ρ+ρβ2

1
k





(

1 0

− µ 1

)

σ2
1+O(σ3

1),

where β = (β0, β1)
′

. It was also shown that

NV E(β̂c − β)(β̂c − β)′ =

(

1 − µ

0 1

)(

1 0

0 1
σ2

x

)(

1 0

− µ 1

)

σ2
1 + o(σ2

1).

In order to compare these covariance matrices, we set µ = 0, ignore terms smaller

than O(σ2
1), and standardize by NV . We find that leading terms for the asymp-

totic covariance matrices of β̂c, and β̂rc and β̂ are

(

1 0

0 1
σ2

x

)

σ2
1 , [(1 − ρ)β2

1k + ρ]

(

1 0

0 1
σ2

x

)

σ2
1 ,

ρ + β2
1k

1 + β2
1k

(

1 0

0 1
σ2

x

)

σ2
1 . (3.1)

When σ1 is small and N is sufficiently large, we observe the following.

1. The traditional RC estimator outperforms the least squares estimators when

[(1−ρ)β2
1k+ρ] < 1. This condition is likely to hold when | β1 | or the variance

of the measurement error is small.

2. The proposed estimator outperforms the least squares estimator.

3. The proposed estimator outperforms the traditional RC estimator.

We also note that when ρ is close to 1, the three estimation methods differ

by little.

4. Simulation Studies

To assess the performance of these estimation methods in finite samples,

computer simulations were conducted. We set β0 at −1 and β1 at 0.5 or 1.5,

fixed σ2
2 and σ2

1 at 0.25, and drew Xi from both the standard normal and the

standardized uniform distributions. Based on samples of size 300, the algorithm

in Section 2 was iterated three times. Tables 1 and 2 report the mean square

errors and estimated variances averaged over 1,000 replications.
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Table 1. Comparison results when X ∼ N(0, 1).

ρ = 0.2, β1 = 0.5 ρ = 0.5, β1 = 0.5

MSE*103 Estimated MSE*103 Estimated

variance ∗103(∗103) variance ∗103(∗103)

β̂
c

(3.95, 4.52)? 4.13◦(0.76), 4.16�(0.88) β̂
c

(1.65,1.50) 1.66(0.19), 1.68(0.28)

β̂
rc

(1.54,1.86) 1.68(0.67), 1.66(0.63) β̂
rc

(1.10,1.05) 1.04(0.13), 1.05(0.15)

β̂ (1.42,1.85) 1.44(0.48), 1.44(0.46) β̂ (1.05,1.01) 0.99(0.11), 1.00(0.14)

ρ = 0.2, β1 = 1.5 ρ = 0.5, β1 = 1.5

MSE*103 Estimated MSE*103 Estimated

variance ∗103(∗103) variance ∗103(∗103)

β̂
c

(3.95,4.52) 4.13(0.76), 4.16(0.88) β̂
c

(1.65,1.50) 1.66(0.19), 1.68(0.28)

β̂
rc

(6.95,8.07) 8.41(5.70), 8.26(5.44) β̂
rc

(2.56,2.39) 2.70(0.83), 2.68(0.70)

β̂ (2.92,3.26) 3.11(5.69), 3.13(6.11) β̂ (1.41,1.28) 1.37(0.20), 1.38(0.22)

Table 2. Comparison results when X ∼ Uni(−0.5, 0.5) ∗ 3.4641.

ρ = 0.2, β1 = 0.5 ρ = 0.5, β1 = 0.5

MSE*103 Estimated MSE*103 Estimated

variance ∗103(∗103) variance ∗103(∗103)

β̂
c

(3.86, 4.10) 4.10(0.77), 4.11(0.81) β̂
c

(1.64,1.57) 1.66(0.19), 1.67(0.23)

β̂
rc

(1.61,1.73) 1.68(0.50), 1.67(0.48) β̂
rc

(1.03,1.03) 1.04(0.13), 1.04(0.13)

β̂ (1.50,1.63) 1.48(0.34), 1.47(0.33) β̂ (1.00,0.96) 1.00(0.11), 1.00(0.12)

ρ = 0.2, β1 = 1.5 ρ = 0.5, β1 = 1.5

MSE*103 Estimated MSE*103 Estimated

variance ∗103(∗103) variance ∗103(∗103)

β̂
c

(3.86,4.10) 4.10(0.77), 4.11(0.81) β̂
c

(1.64,1.57) 1.66(0.19), 1.67(0.23)

β̂
rc

(7.20,7.26) 8.54(4.13), 8.44(3.95) β̂
rc

(2.42,2.23) 2.72(0.66), 2.71(0.59)

β̂ (3.09,2.91) 3.04(3.18), 3.03(3.42) β̂ (1.39,1.22) 1.39(0.16), 1.40(0.17)

Note: The vector “(?)” represents the mean square error in estimation of β0 and β1.

The symbols “◦” and “�” indicate the average values of variance estimates from (3.1) of

estimators of β0 and β1, respectively. The sample standard deviation of these variance

estimates are in parentheses.
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There is not much difference between Tables 1 and 2, indicating that normal-
ity is not necessary for the proposed method. We also note that when β1 = 0.5,
β̂rc is more efficient than β̂c. But, when β1 = 1.5, the reverse is true. In all
cases, β̂ demonstrates superior performance, as expected. However, the variance
estimates should be used with caution when the amount of validation data is
relatively small, and the parameter β1 is not close to 0.

5. Discussion

Response variable regression calibration can be extended to multiple regres-
sion. The model (2.1) can be rewritten as

Yi = β0 + β1Xi + β2Wi + σ1εi

with β2 = 0, where the covariates Xi and Wi are correlated. Compare this
equation with a multiple regression model

Yi = β0 + β1X1i + β2X2i + · · · + βmXmi + σ1εi,

with a portion of the X1i missing completely at random and with surrogates
W1i available for all individuals. There is not much difference between these
two equations, except that the number of variables correlated with X1i may go
up to m in multiple regression models. A best linear predictor of X1i using
response variables is still available, and the estimation procedure is similar to
the univariate case.

It is also possible to extend the idea to nonlinear models. For example,
consider the nonlinear model Y = g(X, β) + ε described in Lee and Sepanski
(1995). They projected g(X, β) onto the subspace consisting of linear functions
of surrogates and used a nonlinear least squares method to derive estimates.
The method we propose is equivalent to replacing the mean function β0 + β1X
by its projection β0 + β1H onto the subspace of linear functions of W and Y .
In the same spirit, we can project the function g(X, β) onto the subspace of
linear functions of surrogates and response variables, though explicit form of the
projection may be hard to derive. The situation can be complicated, and we
believe its exploration is an interesting area for future research.
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Appendix

We only prove Theorem 1. Theorem 2 can be shown in a similar way. First,

we define notation and establish two lemmas. When µ = 0, one can express Hi
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as Xi − ∆Xi − ηi, where ∆ = (1 − b − cβ1) and ηi = −(bσ2δi + cσ1εi). Let

ei = Xi − Hi = ∆Xi + ηi denote the difference between Xi and its predictor Hi.

Lemma 3. Let V and V0 denote the asymptotic covariance matrix of estimators

of β0 and β1 obtained by solving (2.5) when µ = 0 and when µ 6= 0. Then,

V =

(

1 − µ

0 1

)

V0

(

1 0

−µ 1

)

.

Proof. Note that the equations in (2.5) can be written as
∑

i∈V
[(Yi − (β0 + β1µ) − β1X

∗

i )2 − σ2
1] = 0,

∑

i∈V
(X∗

i − a∗ − bW ∗

i − cYi)







1

W ∗

Y






= 0,

∑

i∈V
(Yi − (β0 + β1µ) − β1X

∗

i )(
1

X∗

i

)

+
∑

i∈P
[(Yi − (β0 + β1µ) − β1H

∗

i )(
1

H∗

i

) − (
0

cσ2
1
)] = 0,

where X∗

i = Xi − µ,W ∗

i = Wi − µ,H∗

i = a∗ + bW ∗

i + cYi and a∗ = a − (1 − b)µ.

The estimators (b0 +b1µ) and b1 of (β0 +β1µ) and β1 have asymptotic covariance

V0. Since
(

b0

b1

)

=

(

1 −µ

0 1

)(

b0 + b1µ

b1

)

,

the conclusion follows easily.

Lemma 4. Assume that X, ε and δ all have finite fourth moments with µ = 0

and that σ2
2/σ

2
1 = k remains fixed as σ2

1 approaches 0. Then we have

a =
−β0β1k

1 + β2
1k

+ O(σ2
1), b =

1

1 + β2
1k

+ O(σ2
1), c =

β1k

1 + β2
1k

+ O(σ2
1),

E(H) = 0, E(H2) = σ2
x −

kσ2
1

1 + β2
1k

+ O(σ4
1),

E(e) = E(eH) = E(eW ) = E(eY ) = 0, E(eX) = ∆σ2
x = O(σ2

1),

E(e2) =
k

1 + β2
1k

σ2
1 + O(σ3

1), E(e2W ) = O(σ3
1),

E(e2Y ) =
β0k

1 + β2
1k

σ2
1 + O(σ3

1), E(e2X) = O(σ3
1), E(e2H) = O(σ3

1),

E(e2W 2) =
kσ2

x

1 + β2
1k

σ2
1 + O(σ3

1), E(e2Y 2) = (β2
0 + β2

1σ2
x)

k

1 + β2
1k

σ2
1 + O(σ3

1),
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E(e2WY ) =
β1kσ2

x

1 + β2
1k

σ2
1 + O(σ3

1), E(e2H2) =
kσ2

x

1 + β2
1k

σ2
1 + O(σ3

1).

E(ε) = 0, E(εW ) = 0, E(εY ) = σ1, E(εH) = cσ1,

E(ε2H) = 0, E(ε2H2) = (1 − 2∆)σ2
x + O(σ2

1),

E(eε) = −cσ1, E(eεH) = 0, E(eεH2) = −cσ1σ
2
x + O(σ3

1),

E(eεW ) = 0, E(eεX) = 0, E(eεY ) = −β0cσ1,

E(eεXW ) = −cσ1σ
2
x, E(eεXY ) = −cσ1β1σ

2
x + O(σ3

1).

Proof. We only establish the forms for a, b, c and E(e2WY ). From (2.2) and

some straightforward calculations, it follows that






a

b

c






=
(

E







1 W Y

W W 2 WY

Y WY Y 2







)

−1
E







X

WX

XY







=







1 0 β0

0 σ2
x + σ2

2 β1σ
2
x

β0 β1σ
2
x β2

0 + β2
1σ2

x + σ2
1







−1





0

σ2
x

β1σ
2
x







=
1

1 + β2
1k







−β0β1k

1

β1k






+ O(σ2

1).

Recall that e = X − H = ∆X + η, where η = −bσ2δ − cσ1ε = Op(σ1) and

∆ = 1−b−cβ1. It is easy to show that ∆ = O(σ2
1) and E(η2) = (k/(1 + β2

1k))σ2
1+

O(σ2
1). It follows that

E(e2WY ) = E[(∆2X2 + η2 + 2∆Xη)(X + σ2δ)(β0 + β1X + σ1ε)]

= E[(η2(X)(β0 + β1X)] + O(σ3
1) = β1(b

2σ2
2 + c2σ2

1)σ
2
x + O(σ3

1)

= β1[(
1

1 + β2
1k

+ O(σ2
1))

2kσ2
1 + (

β1k

1 + β2
1k

+ O(σ2
1))

2σ2
1]σ

2
x + O(σ3

1)

=
β1kσ2

x

1 + β2
1k

σ2
1 + O(σ3

1).

Proof of Theorem 1. We assume that E(X) = 0 to derive a formula and then

apply Lemma 3 for the case E(X) 6= 0.

Since the expectations of the equations on the left-hand sides of (2.5) are

0 (if and only if they are evaluated at the true parameter η), the consistency

property is established. To compute the matrices in (2.6), we see that

E
∂A

∂η
= (

∂A

∂σ2
1

,
∂A

∂a
,
∂A

∂b
,
∂A

∂c
,

∂A

∂β0
,

∂A

∂β1
) = (−1, 0, 0, 0, 0, 0),



REGRESSION CALIBRATION USING RESPONSE VARIABLES IN LINEAR MODELS 695

E
∂B

∂η
=







0 −1 0 −β0 0 0

0 0 −(σ2
x + σ2

2) −β1σ
2
x 0 0

0 −β0 −β1σ
2
x −(β2

0 + β2
1σ2

x + σ2
1) 0 0






, and

E
∂C

∂η
=

(

0 0 0 0 − 1 0

0 0 0 0 0 −σ2
x

)

.

The term E(∂D/∂η) equals E∂

(

Y − β0 − β1H

(β1e + σ1ε)H − cσ2
1

)

/∂η and consists of

∂D

∂σ2
1

=

(

0

−c

)

,
∂D

∂a
=

(

−β1
∂H
∂a

(β1e + σ1ε)
∂H
∂a

− β1H
∂H
∂a

)

,

∂D

∂b
=

(

−β1
∂H
∂b

(β1e + σ1ε)
∂H
∂b

− β1H
∂H
∂b

)

,
∂D

∂c
=

(

−β1
∂H
∂c

(β1e + σ1ε)
∂H
∂c

− β1H
∂H
∂c

− σ2
1

)

,

∂D

∂β0
=

(

−1

−H

)

and
∂D

∂β1
=

(

−H

−H2

)

.

Replacing (∂H/∂a), (∂H/∂b) and (∂H/∂c) by 1,W , and Y and H by (1−∆)X−η

and using Lemma 4, we have

E
∂D

∂η
=





0 −β1 0 −β0β1 −1 0

−c 0 −β1σ
2
x −β2

1σ2
x 0 −σ2

x +
kσ2

1

1+β2

1
k



+ O(σ4
1).

Replacing c by [(β1kσ2
x)/(σ2

x(1 + β2
1k) + kσ2

1)], it follows that








ρE ∂A
∂η

ρE ∂B
∂η

ρE ∂C
∂η + (1 − ρ)E ∂D

∂η









(A.1)

= −























ρ 0 0 0 0 0

0 ρ 0 ρβ0 0 0

0 0 ρ(σ2
x + σ2

2) ρβ1σ
2
x 0 0

0 ρβ0 ρβ1σ
2
x ρ(β2

0 + β2
1σ2

x + σ2
1) 0 0

0 (1−ρ)β1 0 (1−ρ)β0β1 1 0
(1−ρ)β1kσ2

x

σ2
x
(1+β2

1
k)+kσ2

1

0 (1 − ρ)β1σ
2
x (1 − ρ)β2

1σ2
x 0 σ2

x−
(1−ρ)kσ2

1

1+β2

1
k























+O(σ4
1).

From Lemma 4 and straightforward computations, one can show that

E(AA
′

) = O(σ4
1), E(BB

′

) =







1 0 β0

0 σ2
x β1σ

2
x

β0 β1σ
2
x (β2

0 + β2
1σ2

x)







kσ2
1

1 + β2
1k

+ O(σ3
1).
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E(CC
′

) =

(

1 0

0 σ2
x

)

σ2
1, E(DD

′

) =





1
1+β2

1
k

0

0 σ2
x

1+β2

1
k



σ2
1 + O(σ3

1),

E(AB
′

) = (0, 0, 0)+O(σ3
1), E(AC

′

)=(0, 0), E(BC
′

)=−c







1 0

0 σ2
x

β0 β1σ
2
x






σ2

1+O(σ3
1).

We also note that E(AD
′

) = 0, E(BD
′

) = 0 and E(CD
′

) = 0, because the

individuals in the two sets are independent. In conclusion, the middle factor in

(2.6) is






ρEAA
′

ρEAB
′

ρEAC
′

ρEB
′

A ρEBB
′

ρEBC
′

ρEC
′

A ρEC
′

B ρECC
′

+ (1 − ρ)EDD
′






(A.2)

=

































0 0 0 0 0 0

0 ρk

1+β2

1
k

0 ρβ0k

1+β2

1
k

−ρc 0

0 0 ρkσ2
x

1+β2

1
k

ρβ1kσ2
x

1+β2

1
k

0 −ρcσ2
x

0 ρβ0k

1+β2

1
k

ρβ1kσ2
x

1+β2

1
k

ρ(β2

0
+β2

1
σ2

x
)k

1+β2

1
k

−ρβ0c −ρβ1cσ
2
x

0 −ρc 0 −ρcβ0
1+ρβ2

1
k

1+β2

1
k

0

0 0 −ρcσ2
x −ρcβ1σ

2
x 0

1+ρβ2

1
k

1+β2

1
k

σ2
x

































σ2
1 + O(σ3

1).

The determinant of (A.1) is of order O(σ2
1). If terms of O(σ4

1) in (A.1) and

terms of O(σ3
1) in (A.2) are ignored, they become the matrices T and M in (2.6).

Multiplying by the matrix T−1MT−1′

completes the proof of Theorem 1.
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