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POLYNOMIAL SPLINE REGRESSION
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Abstract: In science and engineering, there is often uncertainty in the linear model

assumed for a response when an experiment is being designed. The errors in pre-

dictions made from a fitted model may then be more dependent on the systematic

errors (bias) that arise from model misspecification than from errors related to the

variance of the estimators of the unknown model coefficients. This may result in

commonly used criteria, such as D−optimality, being inappropriate for the selec-

tion of a design. In this paper the true model is allowed to differ from the model
assumed for design purposes by an additive contamination term which is a random

variable. Design criteria are defined which involve properties of the resulting ran-

dom bias. These criteria are applied to assumed linear models constructed from

polynomials or from polynomial splines where the contamination is modeled by ran-

dom variables that represent the unknown numbers, locations and coefficients of

additional knots (or breakpoints). Designs are found using an exchange algorithm

which incorporates Monte Carlo simulation to approximate properties of the bias

distribution. When the expectation of the contamination is zero, theoretical results

enable a reduction in the computationally intensive design search. The extension
of the approach to the use of a mean squared error criterion is also considered.

Key words and phrases: Bias, design selection criteria, exchange algorithm, mean

squared error, Monte Carlo simulation, optimal design, polynomial splines.

1. Introduction

Suppose that, prior to experimentation, the relationship between a contin-

uous response Y and m factors or variables x = (x1, . . . , xm) is believed to be

described, over the design region, by an assumed model

Y (x) = f(x) + ε , (1.1)

where f(·) is a function of the factors and ε is a random error variable. The

random errors are assumed to be independently and identically distributed with

zero mean and variance σ2. Suppose also that the experimenter’s prior beliefs

about the form of f are incorrect, and that the true model is

Y (x) = f(x) + φ(x) + ε , (1.2)
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where φ(x) represents the misspecification of the assumed model and is called

the contamination.

In practical experiments, the form of φ(x) is often unknown. The contam-

ination might be produced by one or more unidentified factors that arise, for

example, from a production process or from unforeseen calibration errors in lab-

oratory measurements. If the presence of these factors had been anticipated when

the experiment was being planned, then their effects could have been included

in the assumed model and, where control of the factor levels is possible, in the

design of the experiment. Also, there may be some additional factors or model

terms, such as quadratic effects, which the experimenter might have considered

but (wrongly) decided not to address in planning the experiment.

A further situation, which often occurs in practical applications in the phys-

ical sciences, is where simple models that approximate theoretical relationships

are fitted to experimental data in order to obtain empirical estimates of quantities

of scientific interest. By their very nature these approximations are often subject

to misspecification and so the models are fitted to the data in the presence of,

possibly unknown, contamination.

If the contamination φ(x) were known, then a design could be found using

the criterion of Box and Draper (1959) which minimizes the integrated mean

square error (IMSE) over the design region. The IMSE is the sum of the average

normalized prediction variance (V ), representing random errors, and the average

normalized squared prediction bias (B), representing systematic errors due to

model inadequacy. That is,

IMSE =
nΩ

σ2

∫

R
E

{

[f̂(x) − E(f̂(x))]2
}

dx

+
nΩ

σ2

∫

R

{

E[f̂(x)] − E[Y (x)])
}2

dx

= V + B(φ) , (1.3)

where n is the number of points in the design, Ω = (
∫

R dx)−1, R is the design

region of interest and f̂ is the estimator of f obtained by fitting (1.1). Model (1.2)

is most appropriate when, prior to experimentation, V and B(φ) are considered

to be of similar magnitude. If B(φ) is thought to be much larger than V , then

an alternative to f should be sought. If V is much larger than B(φ), then f is

a good approximation to the true function and the planning of the experiment

can proceed under the assumption that (1.1) is correct.

Most work in the literature on minimum bias designs concerns polynomial

regression models with φ(x) consisting of a linear combination of known higher

order monomials and interactions, that is φ(x) = x′
cγ, where xc is a vector of

known functions of x and γ is a vector of unknown coefficients. In the pioneering
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work of Box and Draper (1959) an example was presented where, even when V

was four times as large as B, the design that minimized the IMSE was closer to

the all-bias design that minimizes B than to the V -optimal design that minimizes

V alone.

Notz (1989) and Allen, Yu and Schmitz (2003) modeled γ as a random vector

with known covariance structure. Notz (1989) assumed that the elements of γ

were independent with zero mean and known variance and used convex design

theory (see, for example, Fedorov (1972)) to find designs for a single factor that

minimized the expectation of the determinant or trace of a mean squared error

matrix. Allen, Yu and Schmitz (2003) assumed a known covariance structure

for γ and used an expectation criterion similar to that described in Section 6

of this paper to find designs for a die casting process using a genetic algorithm.

Alternative approaches to finding designs in the presence of model contamination

include those of Montepiedra and Fedorov (1997), Welch (1983), Wiens and Zhou

(1997) and Heo, Schmuland and Wiens (2001). The work in this paper adds an

additional level of model uncertainty to that in the literature by assuming that

both xc and γ are unknown.

We represent our uncertainty about the model misspecification by modeling

φ(x) in (1.2) as a realization of a random variable, Φ(x), with a known distribu-

tion. This distribution may be chosen by using any available prior information

on the likely nature and size of the contamination. Thus a population of true

models is considered, given by

Y (x) = f(x) + Φ(x) + ε, (1.4)

where Φ(x) and ε are independent random variables.

The aim of this paper is to find designs that offer protection against bias

arising from models (1.4). Design selection criteria based on properties of the

distribution of the bias are investigated and implemented using a search algorithm

which incorporates Monte Carlo simulation. The methodology presented applies

to any general linear model.

In Section 2, the bias for a model with random contamination is defined

and an expression is obtained for random bias under a linear model. Section 3

defines three design criteria and describes a design search algorithm for their

implementation. In Section 4 the ideas are applied to a class of flexible linear

regression models built from polynomial spline basis functions (see, for example,

Eubank (1999, Chap.6)).

For the case when the expected contamination is zero, Section 5 gives a

theorem which allows the computational efficiency of the design search to be
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improved. In Section 6 the design selection criteria are extended to include the

prediction variance, V , and some conclusions are given in Section 7.

2. Random Contamination and Bias

Suppose that a linear model f(x) = x′
aβ is assumed, where xa is a q×1 vector

holding functions of x, and β is the q×1 vector of unknown coefficients. The bias

resulting from any given design and assumed model is a random variable, B(Φ),

which takes the value B(φ) for a realization Φ(x) = φ(x), where, from (1.3),

B(φ) =
nΩ

σ2

∫

R

[

E(x′
aβ̂|φ) − x′

aβ − φ(x)
]2

dx . (2.1)

Let X be the n× q model matrix and Y be the n× 1 vector of observations from

the experiment. Then

E[x′
aβ̂|φ] = x′

a(X
′X)−1X ′E(Y (x)) = x′

aβ + x′
aAφD , (2.2)

where A = (X ′X)−1X ′ and φD is an n× 1 vector of values of the contamination

for each design point. From (2.1) and (2.2), each realization of the bias can be

written as

B(φ) =
nΩ

σ2

∫

R

[

x′
aAφD − φ(x)

]2
dx . (2.3)

Throughout this paper, the continuous design region R is approximated by an

evaluation grid of r points containing the n design points. Equation (2.3) is then

approximated by

B(φ) =
n

rσ2

r
∑

i=1

[

x′
a,iAφD − φ(xi)

]2
=

n

rσ2
[FADφ − φ]′ [FADφ − φ] ,

where F is an r × q matrix of assumed model terms for each evaluation point, φ

is an r × 1 vector of contaminations for each evaluation point, and D is an n× r

matrix with (i, j)th entry non-zero and equal to 1 only when the ith design point

and the jth evaluation point coincide. The vectors xi and xa,i hold the m factor

values and the q assumed model terms, respectively, for the ith evaluation point;

see also Welch (1983) for non-random contamination. It follows that

B(φ) =
n

rσ2
tr

{

[FAD − I]′[FAD − I]φφ′
}

, (2.4)

where I is an r × r identity matrix. Every realization of the random variable

B(Φ) has the form (2.4) and hence the random bias is

B(Φ) =
n

rσ2
tr

{

[FAD − I]′[FAD − I]ΦΦ′
}

,
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where the jth entry of the r × 1 random vector Φ is the contamination random

variable Φ(xj) (j = 1, . . . , r).

3. Bias-Based Criteria and Their Implementation

Let D denote the set of all n-point designs in R, and A(δ) and D(δ) denote

the respective matrices A and D evaluated for design δ ∈ D. Three types of

optimal design are considered as follows.

• A design δ∗ ∈ D is expected bias (EB−) optimal over D if E [B(Φ)|δ∗] =

minδ∈D E [B(Φ)|δ], where

E [B(Φ)|δ] =
n

rσ2
tr

{

[FA(δ)D(δ) − I]′[FA(δ)D(δ) − I]E
[

ΦΦ′
]}

. (3.1)

• For given 0 < p ≤ 1, a design δ∗ ∈ D is said to be pth percentile bias

(PB(p)-) optimal over the set D if b(δ∗, p) = minδ∈D b(δ, p), where Pr(B(Φ) <

b(δ, p)|δ) = p. Median bias optimality is obtained for p = 0.5.

• A design δ∗ ∈ D is variance bias (V B-) optimal over D if Var [B(Φ)|δ∗] =

minδ∈D Var [B(Φ)|δ], where

Var [B(Φ)|δ] =

(

n

rσ2

)2

Var
[

tr
{

[FA(δ)D(δ) − I]′[FA(δ)D(δ) − I]ΦΦ′
}]

.

As minimization of Var [B(Φ)|δ] does not necessarily lead to designs with

small bias, V B-optimality is only recommended for use as a secondary criterion

to discriminate between designs which are efficient under EB- or PB-optimality.

The task of finding designs analytically under the above criteria is mathe-

matically intractable for even simple contamination functions. Hence a search

approach is adopted and a modified Fedorov exchange algorithm (Cook and

Nachtsheim (1980)) developed. An exchange algorithm swaps points between

a candidate list of possible points and a design in an iterative procedure to find

an optimal design. An exchange is kept if it results in an improvement in the

chosen objective function. In the algorithm used here, for each exchange of a

candidate and design point, the required properties of the bias distribution are

approximated by a Monte Carlo simulation using samples of size s.

Implementation of an EB-optimal search requires, from (3.1), only one ap-

proximation of E[ΦΦ′] in each run of the algorithm. In outline, realizations

φ1, . . . , φs of the contamination are simulated and E[ΦΦ′] is approximated by
∑s

i=1 φiφ
′
i/n. At each exchange of design and candidate points, a comparison is

made of the values of the objective function for the current and potential designs

using the single simulation. This leads to a computationally efficient search and

the elimination of Monte Carlo error within each run of the algorithm.
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By contrast, in order to implement the PB(p)- and V B-optimality criteria,

a separate approximation of the appropriate bias property is required for every
swap of a design and candidate point. Large values of s are then necessary

to ensure sufficient accuracy of design comparisons within the algorithm. This

leads to far more computational effort than is required for EB-optimality. Thus,

these criteria are most practically used to choose a design from a shortlist of
EB-optimal designs.

In the examples in this paper, designs are found under EB-optimality using

s = 100, 000 for each search and 10 tries of the algorithm with different random

starting designs. This value of s was found to give accurate approximations of
E[ΦΦ′]. The design region was assumed to be the same as the region over which

predictions are to be made. Hence the candidate list and the evaluation grid

over which (3.1) is approximated were chosen to coincide. The algorithms used
to generate and evaluate the designs in this paper are available from the author.

4. Application to Polynomial Spline Contamination

In many practical experiments, a factor may affect a response in a way that

is not adequately described by a low order polynomial. For example, the response

may have several local optima or display non-smooth behaviour. A model built
from polynomial spline functions may then provide a better description of the

data and more accurate predictions; see Wold (1974) and Frey (1993) for exam-

ples of spline modeling in chemistry, and Grove, Woods and Lewis (2004) for an

automotive application.
A spline of degree d is a function that may take a different polynomial form,

up to degree d, on each of a set of continuous intervals separated by points called

knots. The polynomial pieces are constrained to be at least continuous at these
knots. The splines considered here also have d − 1 continuous derivatives at

each knot and are known as maximally smooth. Bases for polynomial splines

include the truncated power and B-spline bases. We consider models built from

the truncated power basis, which have the advantage that extra knots can be
incorporated easily through the addition of terms to the model. For models with

known knots, Draper, Guttman and Lipow (1977) found all-bias designs which

protect against known higher order terms.

The truncated power representation of a maximally smooth polynomial
spline regression model for a single factor is obtained by the substitution into

equation (1.1) of

f(x) =
d

∑

i=0

βix
i +

l
∑

j=1

βd+j(x − ξj)
d
+ , (4.1)

where the function (a)+ is defined as a if a > 0 and zero otherwise, and ξj

(j = 1, . . . , l) are the knots. When the ξj are assumed known, then (4.1) is linear
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in the unknown parameters, βi, and linear model inference and design search

techniques can be applied. If there is uncertainty in the number and location of

the knots, then a more complicated design problem results.

Suppose that the locations of certain knots are known, for example, from

a pilot experiment or scientific knowledge, but that there is uncertainty in the

numbers and locations of possible additional knots. Suppose also that the aim of

the experiment is to make inferences using model (4.1) in the presence of possible

bias resulting from omitting the additional knots. We may then select designs

using the criteria of Section 3.

In order to model our uncertainty we assume that the contamination consists

of a random number of extra knots in random locations, so that each realization

φ(x) has the form

φ(x) =
k

∑

i=1

γi(x − λi)
d
+ .

We assume also that the number of additional knots, k, is a realization of a ran-

dom variable K and that, conditional on K = k, the locations λi and coefficients

γi are realizations of random variables Λi and Γi respectively (i = 1, . . . , k). Then

Φ(x) =
K

∑

i=1

Γi(x − Λi)
d . (4.2)

Prior distributions may be placed on K, Λi and Γi using any available information

on the contamination to suggest values for their respective means µk, µl, µg and

variances σ2
k, σ2

l , σ2
g . A prior distribution for B(Φ) can then be defined and the

criteria of Section 3 applied.

Two examples are presented below where it is assumed that K follows a

Poisson(µk) distribution and, for given K = k, the Γj are independent and

identically distributed N(µg, σ
2
g) (j = 1, . . . , k). For each example, the factor x

takes values in [−1, 1]. In Example 1, each Λi follows a Uniform(l1, l2) distribution

and in Example 2, each Λi follows a Beta(u, v) distribution defined on the interval

[−1, 1]. Also Λi, Γj (i, j = 1, . . . , k) are assumed to be mutually independent.

Example 1. Consider a quadratic polynomial assumed model, d = 2, l = 0.

Four-point near EB-optimal designs were found from 10 runs of the algorithm

for the values of µk, µg and σ2
g shown in Table 1 and with l1 = −1 and l2 = 1, so

that additional knots are equally likely to occur in any subinterval of the range

of x. The same design {−0.85,−0.35, 0.35, 0.85} was obtained for each set of

parameter values with approximate expected bias given in the table. This design

has far lower expected bias than the D-optimal design {−1, 0, 0, 1}, between 62%

and 65% smaller. The EB-optimal design also has much better performance

for n = 4 points than the uniformly spread design {−1,−0.33, 0.33, 1}, with
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expected bias between 49% and 54% smaller. As n increases, a uniformly spread

design becomes increasingly competitive; for example, there is little difference

in expected bias between the EB-optimal and the uniformly spread design for

n = 11.

Table 1. The approximate expected bias for values of µk, µg and σ2
g from

Example 1.

Approx. expected bias

µk, µg , σ2
g EB-optimal Uniform spread D-optimal

2, 0, 1 0.01 0.02 0.03

2, 10, 100 3.26 6.65 8.79

15, 0, 100 7.91 15.46 20.80

15, 10, 1 72.99 157.41 206.34

As the sub-intervals in which additional knots may occur are varied, different

EB-optimal designs are obtained. Figure 1 shows designs for five different sets

of l1, l2 values for µk = 15, µg = 0 and σ2
g = 1. All the designs have four distinct

support points, two more than the D-optimal design for this assumed model, and

the points become less equally-spaced as the l1, l2 values move away from -1, 1

respectively.
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Figure 1. Five near EB-optimal designs, each found for different l1 and l2
values for Example 1 with µk = 15, µg = 0 and σ2

g = 1.

There can be many near-optimal designs for the random bias problem. Ta-

ble 2 shows the designs found for 10 runs of the algorithm when µk = 2, µg = 10,

σ2
g = 1, l1 = 0 and l2 = 0.333. There are eight distinct designs with some con-
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siderable differences between their points. However, the maximum difference in
approximate expected bias between these designs is only 2.5% (not shown). This
difference, although small, demonstrates that the designs found are near, rather
than exactly, optimal.

For this example, the size of the Monte Carlo error is negligible compared
with the size of the expected bias. For assumed models with smaller expected
bias, such as higher order polynomials or splines with many knots, larger sim-
ulations may be needed in order to discriminate between designs from different
runs of the algorithm.

Table 2. Near EB-optimal designs found from ten runs of the ex-
change algorithm from Example 1, with approximate variance, me-
dian and the 95th bias percentile, together with the near PB(0.95)-
and V B-optimal designs.

Design Var (B) Median 95th percentile

EB-optimal

-0.85, -0.55, 0.15, 0.80 76.751 4.254 23.799

-0.80, -0.15, 0.60, 0.90 80.865 4.326 26.227

-0.85, -0.55, 0.15, 0.80 76.751 4.254 23.799

-0.80, -0.05, 0.60, 0.85 76.720 4.217 25.858

-0.75, -0.05, 0.15, 0.80 80.226 4.226 24.484

-0.75, 0.00, 0.70, 0.85 80.706 4.242 24.447

-0.80, -0.70, 0.05, 0.80 82.092 4.310 24.299

-0.85, -0.65, 0.70, 0.85 82.818 4.306 25.071

-0.75, 0.00, 0.70, 0.85 80.706 4.242 24.447

-0.75, 0.05, 0.75, 0.80 78.978 4.331 24.515

PB(0.95)-optimal

-0.75, 0.05, 0.10, 0.80 77.582 4.285 23.770

V B-optimal

-0.75, -0.05, 0.65, 0.80 75.912 4.250 25.011

Table 2 also gives the values of the objective functions for V B and PB(p)
(p = 0.5 and p = 0.95) for each design and shows only small differences (up to
8%) across the designs. Also given are the best approximate V B- and PB(0.95)-
optimal designs found from ten tries for the same parameter settings. These
two designs have similar variance bias and percentile bias values to those of the
near EB-optimal designs. We conclude from this, and other examples, that
the extra computational effort required to find the V B and PB-optimal designs
does not result in a substantial increase in design performance and leads to the
recommendation in Section 3.
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Example 2. Consider a linear spline assumed model, d = 1, l = 2, with ξ1 =

−0.333 and ξ2 = 0.333. The locations of the additional knots in the contamina-

tion function are assumed to follow Beta(u, v) distributions. For fixed u = 5 and

v = 10, the eight-point EB-optimal design {−0.9,−0.6,−0.4,−0.2, 0, 0.25, 0.3,

0.8} was found for all four of the triplets (µk, µg, σ2
g) with values (2, 10, 1),

(2, 0, 100), (15, 0, 1) and (15, 10, 100). Designs found under different com-

binations of u and v are shown in Figure 2. Under this more flexible assumed

model, containing two knots, and with the knot locations following a Beta dis-

tribution, the EB-optimal designs are less sensitive to the location parameters

than in Example 1.

The invariance of EB-optimal designs to µk, µg and σ2
g demonstrated in Ex-

amples 1 and 2 has also been observed for many other examples and is established

for the case when µg = 0 in the following section.

PSfrag replacements

Design points

Design

-1.0

-0.7

-0.5

-0.2

0

4

6

8

50

100

150

200

R

EB-optimal

V-optimal

EMSE-optimal

Expected mean squared error

0.0

0.3

0.5

0.8

1.0

(5,10)

(5,0.5)

(1,1)

(1,5)

(0.5,0.5)

(-1,1)

(-1,0)

(-0.5,0.33)

(0,1)

(0.33,1)

(u, v)

(l1, l2)

Figure 2. Near EB-optimal designs from Example 2 with µk = 2, µg = 10

and σ2
g = 100 for different u and v values.

5. A Theorem on EB-Optimal Designs

Suppose that µg = 0, so that the expected value of each term in (4.2) is zero. Then

the assumed model is correct on average but with any particular realization possibly

being subject to non-zero contamination, see Notz (1989) and Dumouchel and Jones

(1994).

The following lemma and theorem establish the invariance of an EB-optimal design

to µk, σ2
k and σ2

g when µg = 0. Proofs are given in the appendix.

Lemma 1. Assume (4.1) and (4.2), where K has a distribution with mean µk and

variance σ2
k and, for given K = k, the knot locations Λ are identically and independently



MINIMUM BIAS DESIGNS UNDER RANDOM CONTAMINATION 629

distributed (i.i.d.). The corresponding coefficients Γ are also i.i.d. with mean µg and

variance σ2
g , and Λ and Γ are assumed independent. Then

E
[

ΦΦ′
]

= µk(σ2
g + µ2

g)E
(1) + µ2

g

(

σ2
k + µk(µk − 1)

)

E(2) , (5.1)

where Φ = (Φ(x1), . . . , Φ(xr))
′, and E(1) and E(2) are r × r matrices with respective

(i, j)th entries

E
(1)
ij = E

[

(xi − Λ)d
+(xj − Λ)d

+

]

and E
(2)
ij = E

[

(xi − Λ)d
+

]

E
[

(xj − Λ)d
+

]

.

Theorem 1. Under the assumptions of Lemma 1, if µg = 0 then

(i) E[B(Φ)|δ] = nµkσ2
gtr{[F (X ′X)−1X ′D − I ]′[F (X ′X)−1X ′D − I ]E(1)}/(rσ2),

(ii) the expected bias optimal design is invariant to µk, σ2
k and σ2

g .

The use of this theorem increases the computational efficiency of the design search by
reducing the amount of simulation required to approximate the expected bias. Empirical

evidence, such as that from Examples 1 and 2, suggests that even when µg 6= 0, EB-

optimal designs are unaffected by the values of µk, σ2
k, µg and σ2

g , and leads to the

conjecture that Theorem 1 (ii) holds when µg 6= 0.

6. Extension of Criteria to Expected Mean Squared Error

Consider the expected mean squared error under a design δ ∈ D:

E(MSE|δ) = V (δ) + E [B(Φ)|δ] , (6.1)

where V (δ) = (n/r)tr
{

F ′(X ′X)−1F
}

, with F defined as in Section 2. A design that
minimizes V (δ) is called V -optimal. A design δ∗ ∈ D that minimizes (6.1) is expected

mean squared error optimal (EMSE-optimal) over the set D. Near optimal designs

may be found using the methods described in Section 3; see also Allen, Yu and Schmitz

(2003).
Under spline contamination (4.2), with µg = 0, it follows from Theorem 1 that

E(MSE|δ) =
n

r
tr

{

F ′(X ′X)−1F +
µkσ2

g

σ2
[FAD − I ]′[FAD − I ]E(1)

}

.

For a given assumed model and known distributions for the additional knot locations,

the ratio of µkσ2
g to σ2 controls the trade-off between the variance error and the bias in

design selection. Large values of this ratio correspond to a larger expected number of

additional knots and/or a more diffuse prior for Γi. Hence an EMSE-optimal design
depends on this ratio, as demonstrated in the following example.

Example 3. Consider (4.1) with l = 0, d = 2, and (4.2), where Λi ∼ U(−0.2, 0.2)

and µg = 0. Table 3 gives four-point approximate EMSE-optimal designs for different

values of the ratio R = µkσ2
g/σ2. As R → ∞, the EMSE-optimal design approaches the

EB-optimal design {−0.8,−0.2, 0.2, 0.8}. As R decreases, the design points slowly shift
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toward the V -optimal design {−1, 0, 0, 1} but the V -optimal design is not achieved until

the square root of V (δ) is more than 3.8 times the size of the square root of E(B(Φ)|δ).

At this point, the bias would be difficult to detect and so the assumed model would be

a good approximation. The limiting EB- and V -optimal designs are determined by the

distribution of the additional knot locations and the assumed model, respectively. The

table shows that a series of compromise designs is found between these two extremes.

Table 3. Approximate optimal expected mean squared error designs for

different values of the ratio R. ∗ (†) denotes the EB-optimal (V -optimal)

design.

µkσ2

g

σ2

√

V (δ)
E(B[Φ)|δ] Design

→ ∞ → 0 -0.8, -0.2, 0.2, 0.8∗

213 1.0 -0.85, -0.25, 0.25, 0.85

90 1.4 -0.9, -0.3, 0.3, 0.9

25 2.3 -0.95, -0.25, 0.25, 0.95

10 2.8 -1, -0.15, 0.15, 1
5 3.8 -1, 0, 0, 1†
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Figure 3. Approximate expected mean squared error for the EMSE-, EB-

and V -optimal designs of Example 3 for a selection of R values.

Figure 3 shows that, although for small values of R the V -optimal design has

smaller expected mean squared error than the EB-optimal design, the expected

mean squared error for the V -optimal design increases rapidly with R. For the
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EB-optimal design, this increase in E[MSE] is slower. The expected mean

squared error for the EB-optimal design is smaller than for the V -optimal design

for R ≥ 50 and tends towards the value for the EMSE-optimal design as R → ∞.

The advantage of the EMSE-optimal design is clear: for any value of R, it has

the lowest possible value for E[MSE].

7. Discussion

For the EB-criterion, a computationally efficient design search is possible

which produces designs that perform well under the PB(p) and V B criteria.

The designs have more distinct points, more evenly distributed across the design

region, than designs obtained from variance-based criteria. These properties can

make the designs more attractive for many practical experiments.

The criteria are particularly appropriate for polynomial spline models where

there will generally be uncertainty in the number and location of knots prior to

the experiment. It is then useful to have designs which offer some protection

against additional unknown knots. The robustness of the EB-optimal designs to

the number of extra knots and the distributions of the contamination parameters

speeds the design search and increases the applicability of the designs.
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Appendix

Proof of Lemma 1. From (4.2), it follows that

Φ(xi)Φ(xj) =

[

K
∑

s=1

Γs(xi − Λs)
d
+

] [

K
∑

t=1

Γt(xj − Λt)
d
+

]

=
K

∑

h=1

Γ2
h(xi − Λh)d+(xj − Λh)d+ +

k
∑

s=1

k
∑

t=1
s6=t

ΓsΓt(xi − Λs)
d
+(xj − Λt)

d
+ ,

and hence

E [Φ(xi)Φ(xj)] =
∞
∑

k=0

E [Φ(xi)Φ(xj)|K = k] P (K = k) . (A.1)
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Further, by independence of Λs, Λt, Γs and Γt, it can be shown that

E [Φ(xi)Φ(xj)|K = k] = k(σ2
g + µ2

g)E
[

(xi − Λ)d+(xj − Λ)d+

]

+k(k − 1)µ2
gE

[

(xi − Λ)d+

]

E
[

(xj − Λ)d+

]

, (A.2)

as Λs (s = 1, . . . , k) are identically distributed. Substitution of (A.2) into (A.1)

gives

E [Φ(xi)Φ(xj)] = (σ2
g + µ2

g)E
[

(xi − Λ)d+(xj − Λ)d+

]

∞
∑

k=0

kP (K = k)

+µ2
gE

[

(xi − Λ)d+

]

E
[

(xj − Λ)d+

]

∞
∑

k=0

k(k − 1)P (K = k)

= µk(σ
2
g + µ2

g)E
[

(xi − Λ)d+(xj − Λ)d+

]

+µ2
g

(

σ2
k + µk(µk − 1)

)

E
[

(xi − Λ)d+

]

E
[

(xj − Λ)d+

]

.

Proof of Theorem 1. From (3.1),

E[B(Φ)|δ] =
n

rσ2
tr

{

[F (X ′X)−1X ′D − I]′[F (X ′X)−1X ′D − I]E
[

ΦΦ′
]

}

,

where ΦΦ′ does not depend on δ ∈ D. An application of Lemma 1 with E[Γ] =

µg = 0, gives

E [B(Φ)|δ] = µkσ
2
g

n

rσ2
tr

{

[F (X ′X)−1X ′D − I]′[F (X ′X)−1X ′D − I]E(1)
}

,

where E(1) and E(2) are defined in the statement of the lemma. This expression

is minimized by a choice of design δ that minimizes

n

rσ2
tr

{

[F (X ′X)−1X ′D − I]′[F (X ′X)−1X ′D − I]E(1)
}

regardless of the values of µk, σ2
k and σ2

g .
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