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Abstract: We investigate the problem of deciding on the number of hypotheses to

be considered in a multiple hypothesis testing framework when the overall number

of observations that can be collected is limited. A natural question in this context

is whether the number of hypotheses to be tested should be limited in favor of

additional observations per considered hypothesis. We provide guidelines concern-

ing the choice of an optimum number of considered hypotheses in common testing

situations. The optimization is with respect to the expected number of correct

rejections in the hypothesis testing context. We also briefly discuss the classifica-

tion setting, where a linear combination of true and false positives is considered.

The overall number of observations may be limited for several reasons, such as the

number of patients or the amount of probe material available. We demonstrate

that considering an appropriate number of hypotheses in this context can lead to

a substantial increase in the expected number of correct rejections.

Key words and phrases: Bonferroni rule, classification, Dunnett test, false discovery

rate, multiple hypotheses testing.

1. Introduction

One of the goals in statistics is to extract as much information as possible
from a limited number of observations. In the context of multiple hypothesis

testing, extraction of information is usually considered equivalent to correct re-

jections of null hypotheses while ensuring some global control of the type I error.
Therefore a lot of effort has gone into the development of procedures that permit

one to reject as many hypotheses as possible and to control criteria like the fam-

ilywise error or the false discovery rate. Of course the performance of any such
procedure will crucially depend on the number of observations available per hy-

pothesis test. Due to practical constraints the number of observations available

is usually limited, leading to some bound m on the total number of observations
cumulative over all individual hypothesis tests. Depending on the type of ex-

periment, there may be some choice at the design stage concerning how many

hypotheses will be tested and how the overall m observations will be allocated

to the individual hypothesis tests.



842 ANDREAS FUTSCHIK AND MARTIN POSCH

Multiple test problems where the overall number of observations is limited

occur in several situations. Consider for instance a clinical trial involving several
possible treatments of potential interest. Here the issue is how many treatment

groups to consider, given a limited total number of patients. In agriculture, the

total area of the experimental field is usually fixed and a decision has to be made

on the number of competing plant varieties to test. If too many varieties are
tested against some standard (say), the individual tests will suffer from poor

power possibly causing good varieties to remain undetected. On the other hand,

when investigating too few varieties, some promising varieties may not even be

tested. A similar issue arises in the context of gene expression data, where a
frequent goal is to test for differential expression of a large number of genes

represented by spots on a microarray. The amount of available probe material

(for instance taken from human cancer tissues) to be applied on a microarray is

often small. Limiting the number of different genes represented on a microarray
permits a larger number of observations for the represented genes. In the context

of Stochastic Discrete Event Systems, simulations are often carried out for an

extremely large number of combinations of input variables influencing a stochastic
event (Rubinstein and Shapiro (1993) and Rubinstein and Melamed (1998)).

Such systems arise in a variety of engineering contexts, including manufacturing

systems, communication networks, computer systems, logistics, and vehicular

traffic. Due to constraints on the computationally feasible total number m of
simulation runs, there is a trade off between the number of input combinations

considered and the number of simulation runs per input combination.

A worked out example illustrating the practical relevance of our issue in the

medical context is given in Section 7.
The question is how many hypotheses should be tested, if it is desired to

reject as many incorrect null hypotheses as possible. Suppose there is a total

of K hypothesis pairs available for testing, containing a certain proportion of

incorrect null hypotheses. Our goal is to investigate the optimum number k
to pick out of the K hypotheses, in order to maximize the expected number

of rejections of incorrect null hypotheses. Other objective functions, like the

probability of at least one correct rejection, might make sense in some situations

but we focus on the expected number of correct rejections. We give examples
illustrating that sometimes considerably more can be gained in terms of possible

rejections of incorrect null hypotheses by choosing an appropriate number k, than

by choosing a more sophisticated multiple testing procedure.

More formally, suppose that K hypothesis pairs H0,i versus H1,i (1≤ i≤K)
are available for testing. We investigate the choice of an optimum k at the

design stage, assuming that k hypotheses are picked from some set of possible

hypothesis pairs, leading to approximately m/k observations for each test. We

assume that the chance of picking a pair where the alternative holds is equal to
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some constant q. It will turn out that often the optimal number of hypotheses
to pick does not depend on q. Subsequently we focus on z- and t-tests based on
N(θ, σ2) distributed observations and consider the basic one-sample, one-sided
multiple testing situation

H0,i : θi = 0, against H1,i : θi > 0, 1 ≤ i ≤ K,

but we also discuss multiple comparisons with a control, two-sided problems as
well as classical two-sample problems.

We maximize the expected number of correct rejections ENk in k, and obtain
both asymptotic results for m → ∞, assuming an unlimited supply of hypotheses,
and results for fixed m. The optimization is under the assumption that for each
hypothesis pair either the null hypothesis is true or a fixed reference alternative
θ(a) holds. The extension to composite alternatives is also discussed.

In Section 2, we consider the optimization of the expected number of possible
rejections for the Bonferroni multiple test procedure, and discuss the extension
to the Dunnett and Bonferroni−Holm test. In Section 3, we cover optimization
for the Benjamini−Hochberg procedure that controls the false discovery rate. In
Sections 4 and 5, we discuss the extension of our results for the z-test to t-tests
and to composite alternatives. Finally, the optimization problem is addressed for
classification problems in Section 6. All proofs are given in the Appendix.

2. Controlling the Familywise Error Rate

The familywise error is defined as the probability of rejecting at least one
null hypothesis erroneously. There are several multiple testing procedures that
control the familywise error in the strong sense, i.e., regardless of how many
null hypotheses are true. The most prominent is the classical Bonferroni rule
that implies that the familywise error will stay below α if the individual tests
are carried out at level α/k. This approach is easy to implement but in some
situations a considerable amount of power can be gained by using more sophis-
ticated multiple testing rules. For example, if a large fraction of hypotheses is
false, then the Bonferroni−Holm procedure will usually lead to an increase in
the number of possible rejections. In the following, we first concentrate on the
Bonferroni procedure and on normally distributed one-sample test statistics Ti.
The extensions to the Bonferroni−Holm and the Dunnett procedure, as well as
two-sample and two-sided tests, are discussed in Subsection 2.2.

2.1. Bonferroni tests

With Φ(µ,σ2) denoting the normal N(µ, σ2) c.d.f., zγ denoting the 1 − γ
standard normal quantile, and for

∆m := θ(a)

√
m

σ
, (1)
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the expected number of correctly rejected null hypotheses with the Bonferroni
procedure and z-tests is

E(Nk) = q k
(

1 − Φ(∆m/
√

k,1)(zα/k)
)

. (2)

Notice that independence of the test statistics for different hypotheses is not re-
quired for (2) to hold. A plot of E(Nk) in k (see Figure 1) shows that choosing
an inadequate number of hypotheses results in a substantial loss in the expected
number of rejections. To account for cases where the overall number of observa-
tions m could not be split evenly, we used bm/kc + 1 observations for the first
mmodk hypotheses and bm/kc for the rest in the displayed simulation results.
Here bxc denotes the largest integer not exceeding x. The maximizer k∗

m of (2)
is obviously independent of q and depends only on α and ∆m. Consequently,
E(Nk∗

m
) increases linearly in q. Table 1 gives the optimal k∗

m for typical pa-
rameter choices obtained by numerical optimization with the R language (Ihaka
and Gentleman (1996)). We now provide an asymptotic approximation to k∗

m

optimizing (2), for m → ∞.
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Figure 1. The expected number of correctly rejected null hypotheses for
given k with the Bonferroni procedure and the Bonferroni-Holm procedure
(left graph), as well as the Benjamini-Hochberg procedure (right graph).
The dots give simulation results (all standard errors below 0.012) and the
solid lines the theoretical solution for the Bonferroni test (left graph), and
the asymptotic solution for the Benjamini-Hochberg procedure (right graph).
The parameters are θ = 1, m = 200, α = 0.025, and q = 0.5.

Theorem 1. Take km := ∆2
m/(2 log(∆2

m)). The optimum number of hypotheses

to test is k∗
m = km[1 − cm(α)], where cm(α) → 0, and [log m]1/2cm(α) → ∞, as

m → ∞.

For small and moderate m, Theorem 1 gives only a rough estimate of k∗
m,

as convergence is slow. However, we see that asymptotically the sample size for
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each individual hypothesis, m/k∗
m, tends to infinity at the rate log(m) as m → ∞,

when choosing k∗
m hypotheses. As a consequence, the power for the individual

tests at the considered alternative θ(a) converges to one and the expected number

of rejections is E(Nk∗

m
) = q km(1 + o(1)).

Table 1. The optimum number of hypotheses k∗
m

and the power (in %)

to reject an individual incorrect null hypotheses. The expected number of

correctly rejected null hypotheses is then given by the product of q, k∗
m

and

the power.

∆m

5 10 20 50 100 1000

0.01 3 (57) 8 (70) 25 (74) 124 (76) 425 (78) 28908 (82)

α 0.025 3 (69) 9 (71) 29 (72) 138 (75) 469 (77) 30883 (81)

0.05 4 (60) 11 (66) 33 (70) 152 (74) 508 (76) 32564 (81)

2.2. Other multiple testing procedures

The Bonferroni-Holm Procedure. Consider the hypotheses H0,i, i = 1, . . .,

k, and let pi denote the p-value for the ith hypothesis, and p[i:k] the ith small-

est p-value. Let i∗ = max{i |p[l:k] < α/(k − l + 1) for all l ≤ i}. Then the

Bonferroni−Holm rule rejects all hypotheses i, 1 ≤ i ≤ k, such that pi <

α/(k − i∗ + 1).

Unlike for Bonferroni tests, the optimum k for the Bonferroni−Holm pro-

cedure depends on the probability q of picking hypotheses pairs where the null

hypothesis fails to be true. Since q is usually unknown, a natural question is how

well the optimum km for the Bonferroni rule works as an approximation. Our

simulations for several values of q, m and θ(a) showed a close similarity of the

objective functions for both rules, even for q as large as 0.5. See Figure 1 for an

example. The figure also suggests that the number of possible rejections can de-

crease considerably more by an inappropriate choice of the number of hypotheses

k than by the use of a less sophisticated multiple testing procedure.

Subsequently we state heuristic bounds for the optimum k that are derived

from the Bonferroni procedure. Since the Bonferroni−Holm procedure leads al-

ways to at least as many rejections as the Bonferroni procedure, the expected

number of correct rejections E(Nk) for the Bonferroni procedure gives a lower

bound Lk for the rejections for Bonferroni−Holm rule. A heuristic upper bound

can be obtained as follows. If the proportion (1 − q) of correct null hypotheses

were known, the Bonferroni procedure could be applied with the level of signifi-

cance α/(k(1 − q)), while still controlling the familywise error. This would lead

to a number of possible rejections that is not smaller than that obtained via
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the Bonferroni-Holm procedure, except for some rare cases involving erronous

rejection of true null hypotheses by the Bonferroni−Holm rule. Neglecting the

possibility of data leading to such rare cases, this modified Bonferroni procedure

provides us with an upper bound Uk for the expected number of possible correct

rejections.

An interval containing the optimum number k
(H)
m of hypotheses to test with

the Bonferroni−Holm procedure is now given by the set of all k, where Uk ≥
maxj Lj . Furthermore since maxj Uj/maxj Lj → 1 as m → ∞ (according to

Theorem 1), any k between the optimum k for the classical Bonferroni rule and

that for the Bonferroni procedure with level α/(k(1− q)) will lead to a vanishing

relative loss in the optimum number of rejections.

The Dunnett Procedure. The Dunnett (1955) procedure is frequently used

when comparing several treatments to a common standard. It is based on the

standardized differences
√

γ m (X̄i − X̄0)/[
√

k σ(1 + γ)], i = 1, . . . , k, of the sam-

ple means. Here σ2 is the common variance of the observations, and γ is the

common ratio ni/n0 between treatment and control sample sizes. Under the al-

ternative of a positive difference θ(a) between the treatment i and the control,

the non-centrality parameter is ∆̃m/
√

k where

∆̃m :=

√
γ m θ(a)

σ(1 + γ)
.

The resulting objective function can be obtained from (2) by plugging in the

above defined ∆̃m instead of ∆m, and replacing the quantile zα/k by the corre-

sponding Dunnett multivariate normal critical values dα,k,γ. See Somerville and

Bretz (2001) for a numerical algorithm to obtain critical values. For obtaining

the optimum k, direct numerical optimization is an obvious strategy. Notice

that recommendations concerning the optimum choice of γ are available in the

literature (see e.g., Bechhofer and Tamhane (1983)).

Two sample and/or two sided tests. We discuss here Bonferroni z-tests.

There, for two sided tests, the quantile zα/k in (2) needs to replaced by zα/(2 k).

If directional errors are not considered as correct rejections, this is the only nec-

essary modification. For two sample tests with equal group sizes, the parameter

∆m in (1) changes to θ(a)

√

m/[2 (σ1
2 + σ2

2)] , where θ(a) denotes the parameter

difference, and σj , j = 1, 2 the standard deviations in the two groups.

3. Controlling the False Discovery Rate

An alternative to the control of the familywise error is the Benjamini−
Hochberg (BH) procedure that controls the more liberal false discovery rate.
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As proposed by Benjamini and Hochberg (1995), the false discovery rate is de-

fined by E (V/R), where R is the number of rejected null hypotheses and V the

number of true null hypotheses that are rejected. If R = 0, the fraction V/R is

defined to be 0. In the case that all tested null hypotheses are true, the false

discovery rate is equivalent to the familywise type I error. For the control of the

false discovery rate, Benjamini and Hochberg (1995) propose a sequential p-value

method (which dates back to Seeger (1968), see Finner and Roters (2001) for a

historical treatise). Consider the hypotheses H0,i, i = 1, . . . , k and let pi denote

the p-value for the ith hypothesis, and p[i:k] the ith smallest p-value. If there

exists a j such that p[j:k] < αj with αj = α j/k, then all hypotheses i, 1 ≤ i ≤ k

such that pi < αj can be rejected. This procedure controls the false discovery rate

at α in particular under the assumption that all test statistics are independent

(Benjamini and Hochberg (1995)).

An exact computation of the expected number of correctly rejected hypothe-

ses for the BH procedure is very hard. However, the asymptotic approximations

provided by Genovese and Wasserman (2002) for independent test statistics and

an increasing number of hypotheses are helpful in our setting. Indeed, accord-

ing to Genovese and Wasserman (2002) and for a single alternative θ(a), the

Benjamini−Hochberg procedure is asymptotically equivalent to a single−step

procedure where each hypothesis is tested at level u, and u solves

H∆m/
√

k (u) = βu, (3)

with H∆m/
√

k(·) being the distribution of the p-value under the non-centrality

parameter ∆m/
√

k and β = (1/α − (1 − q))/q.

Therefore the optimum k for such a single step procedure using the signifi-

cance level u should provide a guideline for the choice of an optimum k for the

Benjamini−Hochberg procedure. We optimize the above single step test proce-

dure in k and focus, as for Bonferroni tests, on normally distributed test statistics.

In the one-sided setting our optimization problem is given by

E(Nk) = q k
(

1 − Φ(∆m/
√

k,1)(zu)
)

→ max
k

, (4)

where u is defined by (3).

Unlike for Bonferroni tests, it follows from Theorem 2 below that the opti-

mum k grows linearly in the number of available observations m and quadratically

in ∆m defined in (1). Therefore the optimum number of observations per hy-

pothesis test m/k∗
m (and also the power to reject an individual null hypothesis)

does not depend on m, and does in particular not tend to infinity when m → ∞.

The actual optimization requires maximization of a simple objective function.



848 ANDREAS FUTSCHIK AND MARTIN POSCH

Theorem 2. The solution of (4) is given by k∗
m = ∆2

m/(zu∗

β
− zβu∗

β
)2, where u∗

β

maximizes u/(zu − zβu)2.

It follows from Theorem 2 that ENk∗

m
→ ∞ for m → ∞, if the optimum

number of hypotheses k∗
m is chosen.

Figure 1 shows a typical example of the relationship between the number

of hypotheses considered and the expected number of correct rejections. We

plotted the asymptotic estimate based on Theorem 2 together with estimates

from a simulation study. The asymptotic results give a good approximation even

for the chosen moderate m and θ. Table 2 allows for an easy derivation of the

optimal number of hypotheses for different values of α and q.

Table 2. The optimum number of hypotheses k∗
m

over ∆2
m

and the power (in
%) to reject an individual incorrect null hypotheses (obtained by numerical
optimization). The expected number of correctly rejected null hypotheses is
then given by the product of q, k∗

m
and the power.

q

0.1 0.25 0.5 0.75 0.9

0.01 0.070 (73) 0.084 (70) 0.099 (68) 0.110 (67) 0.116 (66)

α 0.025 0.084 (70) 0.105 (68) 0.129 (65) 0.148 (63) 0.158 (63)
0.05 0.100 (68) 0.130 (65) 0.167 (62) 0.198 (60) 0.215 (59)

4. Student’s t-Test

Analogous to the normal case, the expected number of rejections based on

one-sample Bonferroni t-tests involving k hypotheses is

EN
(t)
k = q k[1 − F

(t)

m/k−1,∆m/
√

k
(tα/k,m/k−1)], (5)

where F
(t)
ν,δ is the cdf of the non-central t-distribution with ν degrees of freedom

and noncentrality parameter δ, and tγ,ν denotes the 1−γ quantile of the standard

t-distribution with ν degrees of freedom. Similarly, we obtain, with u defined

by (3),

EN
(t)
k = q k[1 − F

(t)

m/k−1,∆m/
√

k
(tu,m/k−1)] (6)

for the Benjamini−Hochberg procedure.

The following result suggests that the optimum k for z-tests should provide

a good approximation also for t-tests, involving small effects and a large overall

number of observations m. The result assumes a constant sequence ∆m =: ∆.

Theorem 3. Let θ(a) > 0, and take θm = θ(a)/
√

m. Assume that ∆m =

θm
√

m/σ = θ(a)/σ. Then, for m → ∞, the optimum solution of (5) converges to

that of (2) and the optimum solution of (6) to that of (4).
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5. Composite Alternatives

So far we have focused on the optimization of the expected number of pos-

sible rejections for a fixed reference alternative. Assuming that hypotheses are

chosen at random from a pool of hypotheses at the design stage, we may also op-

timize the expected number of possible rejections under parameters generated at

random from some alternative generating distribution F. We first discuss multiple

Bonferroni tests, and then the Benjamini−Hochberg (FDR) setting.

For one-sided, one-sample z-tests, the expected number of correct rejections

is

ENk = q k

∫ ∞

0

(

1 − Φ(zα/k − ∆m(θ)√
k

)

)

dF (θ), (7)

where F denotes the conditional c.d.f. of θ for a randomly chosen pair of hy-

potheses given θ > 0, q = P (θ > 0), and ∆m(θ) = θ(
√

m/σ). Let km,F :=

md2
F /[2σ2 log(md2

F /σ2)], where dF maximizes d2(1 − F (d)).

Theorem 4. Assume that F is continuous and that d2(1−F (d)) → 0 as d → ∞.

The optimum solution k∗
m,F to (7) satisfies k∗

m,F = km,F (1 + o(1)).

As for fixed alternatives, arguments by Genovese and Wasserman (2002) turn

out to be helpful when optimizing k for the Benjamini−Hochberg procedure in

the case of distributed alternatives. Indeed, according to their Theorem 7, the

BH-procedure is now asymptotically equivalent to a single-step procedure with

significance level u solving

β u =

∫ ∞

0
H∆m(θ)/

√
k (u) dF (θ), (8)

where F is defined as above and H and β are as in (3). Analogous to Section 3,

we focus on the one-sided normal case. Our optimization problem is given by

ENk = q k

∫ ∞

0

(

1 − Φ(zu − ∆m(θ)√
k

)

)

dF (θ) → max
k

, (9)

where u is defined in (8).

According to Theorem 5 below, the solution can be reduced to the maximiza-

tion of an objective function that does not depend on m and σ. Furthermore, a

scale transform F (θ/γ) has γ2 times the optimum k of F (θ).

Theorem 5. Take k∗
m,F = m/(ωβ(u∗

β)σ)2 to optimize (9), where ωβ(u) solves
∫ ∞
0 (1 − Φ(zu − θω))dF (θ) = βu, in ω, and u∗

β maximizes u/ωβ(u)2.

The proof is analogous to the case of a single alternative.
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As in the case of a single alternative, it follows now from Theorem 5 that

ENk∗

m,F
→ ∞, if the optimum number of hypotheses k∗

m,F is chosen.

6. Classification Procedures

We focus on the problem of classifying between θ = 0 (decision D0) versus

θ = θ(a) (decision D1).

With gk(θ) denoting the probability that a chosen classification rule decides

for D1 under the true parameter θ, classification rules intend to minimize some

linear combination

k (w1 q [1 − gk(θ1)] + w0 (1 − q)gk(0)) (10)

of the expected number of false decisions for D0 and for D1. The constants w1 and

w0 can be interpreted as costs associated with the two types of false decisions.

The direct minimization of the above objective function in k does not make sense,

since obviously doing nothing and choosing k = 0 would minimize the expected

number of errors.

However, for fixed k, the problem is equivalent to that of finding a rule that

maximizes

k (w1 q gk(θ1) − w0 (1 − q)gk(0)) . (11)

This can be interpreted as maximizing the expected number of correct decisions

for D1 minus the incorrect decisions for D1, weighted according to the respective

gain w1 and cost w0. The advantage of this version is that it permits maximiza-

tion in k.

We consider the optimization of (11) for the Bayes classifier. For any given

k, it is well known that the Bayes classifier optimizes both (10) and (11) (see for

instance Duda, Hart and Stork (2001, Chap. 2)). The Bayes classifier decides for

D1, if the likelihood ratio exceeds a threshold r = w0 (1 − q)/(w1 q), depending

on the ratio of the priors and the ratio of the cost.

It is easily checked that for n i.i.d. normal N(µ, σ2) observations and θ(a) > 0,

the Bayes classifier decides for D1, if

Ti :=
√

n
X̄

σ
> c(r,∆n) :=

log(r)

∆n
+

∆n

2
,

where ∆n = θ(a)

√
n/σ. See for instance Das Gupta (1982). In this context, (11)

becomes

U(k) := k {w1 q Φ(∆n − c(r,∆n)) − w0 (1 − q)Φ(−c(r,∆n))} . (12)

When k classification problems are considered, n = m/k observations are avail-

able for each problem, and we set ∆n = ∆m/k = ∆m/
√

k when optimizing in k.

The result below follows by differentiating (12) with respect to ∆m/k.



ON THE OPTIMUM NUMBER OF HYPOTHESES TO TEST 851

Theorem 6. If r > 1, the maximum of (12) in k satisfies k = (∆m/xr)
2, where

xr is the solution of

0 = xϕ[x − c(r, x)]/2 − Φ[x − c(r, x)] + r Φ[−c(r, x)],

with c(r, x) = log(r)/x + x/2, and ϕ(·) denoting the standard normal density.

Notice that the optimum sample size for each individual classification prob-
lem, given by m/k∗

m = (xr/θ(a))
2, is independent of m. Substituting the optimum

k into c(r,∆m/k), it turns out that the critical value of the Bayes classifier is in-
dependent of ∆m, and depends only on r. This is in contrast to the case of a
fixed number of classification problems, where m and θ(a) do influence the Bayes
classifier.

PSfrag replacements

0

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80 100

0
.0

0.5

1
.0

1.5

2
.0

3
.0

k

Bonferroni
Holm

E(Nk)

correct
incorrect

U(k)

BH asymptotic

BH simulationFigure 2. The function U(k) and the expected number of correct and in-
correct decisions for D1 for given k and the parameters m = 100, q = 0.5,
w1 = 1, w2 = 3, and θ(a)/σ = 1/2. The optimum is reached at k = 11.15.

A typical example displaying the expected number of correct and incorrect
decisions D1 and the value of U(k) is given in Figure 2. Both the number of
correct and the number of incorrect decisions D1 attain a global maximum in k.

7. Example

The following example follows the lines of an actual consulting case for a
project investigating gender differences in the expression of metabolizing and
membrane transporting enzymes in gall bladders. Gender differences in ex-
pression intensity are to be assessed by two sided two-sample t-tests. The
determination of expression intensity is performed by polymerase chain reac-
tion (PCR). The investigator originally planned to test for ten different en-
zymes but the project budget allows PCR’s for at most 200 intensity mea-
surements in total. The optimization problem is to asses how many different
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enzymes should be investigated. Assuming equal variances σ2 in both gen-

ders, analogous to (5) the expected number of correct rejections is given by

q k[1−F
(t)

m/(2 k)−2,|θ(a)|
√

m/(2 σ2k)
(tα/(2 k),m/(2 k)−2)], where the Bonferroni multiple

testing procedure with two sided multiple level α is used. Setting α = 0.05 and

assuming an effect size of half a standard deviation, the expected number of cor-

rect rejections is maximized if two enzymes are tested, each with 100 patients per

group. The expected number of rejected null hypothesis, given for both enzymes

the alternative holds, is 1.49. If, instead, the experimenters were testing all ten

enzymes, after Bonferroni correction the expected number of rejections is as low

as 0.39, given that for all enzymes the alternative holds (see Figure 3).
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8. Discussion

From our theoretical and simulation results, it turned out that the appropri-

ate choice of the number of hypotheses considered has a considerable influence

on the number of rejections, and should thus be considered at the design stage

of studies when the overall number of observations is limited.

Traditionally sample sizes are often planned in order to achieve a desired

power for the individual tests. Choices of 0.8 or 0.9 for the power are particularly

popular and motivated by cost and other considerations. Our results may be

used as another guideline to choose an appropriate power, taking into account

the expected number of possible rejections.

Comparing the results for Bonferroni testing on the one hand, and classifica-

tion as well as Benjamini−Hochberg testing on the other, it turns out that there

is a qualitative difference in the limit behavior of the optimum k∗
m as m → ∞:

while the optimum k∗
m for the Bayes classifier and BH tests increases at a linear
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rate, it increases only at the rate m/ log(m) for the Bonferroni procedure. This

implies, for the latter, that the optimum sample size for each individual hypothe-

sis tends to infinity, while for both BH tests and Bayes classifier it is independent

of m.

We provide R functions to calculate the optimum k in our considered situa-

tions at http://www.meduniwien.ac.at/medstat/misc/opt/optimum.htm.

Appendix

Proof of Theorem 1. Note that (ϕ(x)/x)(1 − x−2) ≤ 1 − Φ(x) ≤ ϕ(x)/x for

x > 0 (see inequality (61) of Galambos (1987)) and therefore (see also Reiss

(1989)) zα/k =
√

2 log(k/α) + o(1), as k → ∞.

Let now c
(1)
m = am/

√

2 log(m) with am → ∞ and am = o(
√

2 log m) and

k
(1)
m = km(1 − c

(1)
m ). Then

z
α/k

(1)
m

−
√

∆2
m

k
(1)
m

=
√

2 log(m)(1 − [1 − c(1)
m ]−1/2) + o(1)

= −am

2
+ o(1) → −∞,

by Taylor expansion of (1 − c
(1)
m )−1/2. Therefore, according to (2), E(N

k
(1)
m

) =

qkm(1 + o(1)).

It remains to show that k
(2)
m = km(1 − c

(2)
m ) leads an expected number of

rejections that is lower than E(N
k
(1)
m

) for large m, if c
(2)
m does not satisfy both

cm → 0 and cm
√

log m → ∞. Assume first that c
(2)
m > δ for some δ > 0. Then

obviously E(N
k
(2)
m

) ≤ qkm(1 − δ), and k
(2)
m cannot be optimal. If, on the other

hand c
(2)
m < −δ < 0, then

dm := z
α/k

(2)
m

−
√

∆2
m

k
(2)
m

≥ δ∗
√

2 log m

for some δ∗ > 0 and therefore 1 − Φ(dm) ≤ (ϕ(dm)/dm) ≤ m−(δ∗)2 for large

enough m. Thus E(N
k
(2)
m

) = o(km) in this case. Assume finally that c
(2)
m =

am/
√

log m and |am| < δ for some constant δ. Then E(N
k
(2)
m

) ≤ qkm[1 −
Φ(−δ)](1 + o(1)), and k

(2)
m again is not optimal.

Proof of Theorem 2. By (3), we have that β u = 1 − Φ
(|∆m|

√
1/k,1)

(zu), or

equivalently k = ∆2
m/(zu − zβu)2. By substituting for k, (4) becomes q ∆2

m β u/

(zu − zβu)2. The result follows now by maximizing the above in u instead of (4)

in k.
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Proof of Theorem 3. We give a proof for the Bonferroni rule only, since the

arguments for the Benjamimi−Hochberg procedure are completely analogous.

Since the z-test is uniformly most powerful, the objective function (5) is always

below (2). The result follows, since EN
(t)
k → ENk for the fixed k optimizing (2),

due to the weak convergence of the t-statistic to the corresponding z-statistic.

Proof of Theorem 4. For simplicity, assume σ = 1. We set w.l.o.g. k = km =

mδ2
m/(2 log m) in (7) and optimize equivalently over δm ∈ Sm := [

√

2 log m/m,√
2 log m] corresponding to km ∈ [1,m]. Define furthermore am := zα/km

, bm =

bm(δm) :=
√

m/km =
√

(2/δ2
m) log m, and cm = log log m.

We start by considering the case δm ∈ S∗
m = [c−1

m ,
√

2 log m] ⊂ Sm. In this

case, we have that am =
√

2 log m + O((log log m)/
√

log m) uniformly in δm (see

Reiss (1989, p.161)). Dropping q and multiplying by log m/m, our objective

function (7) is

δ2
m

∫ ∞

0
(1 − Φ(am − θbm))dF (θ) = δ2

m

(

∫
am−cm

bm

0
+

∫ ∞

am−cm
bm

)

:= I1 + I2. (13)

Obviously I1 ≤ c2
m(1 − Φ(cm)) = o(1) and

I2 ≤ δ2
m[1 − F (

am − cm

bm
)] = δ2

m

[

1 − F
(

δm

(

1 − log log m√
2 log m

+ O(
log log m

log m
)
))]

.

Since d2(1 − F (d)) → 0 for d → ∞ according to our assumptions, our result for

δm restricted to S∗
m follows by proving that the inequality for I2 is asymptotically

sharp for δm in some open bounded interval (C1, C2) containing the maximizer(s)

of u2(1 − F (u)). Write

I2 = δ2
m

(

∫
am+cm

bm

am−cm
bm

+

∫ ∞

am+cm
bm

)

:= I3 + I4.

Since (cm/bm) → 0 on [C1, C2], it follows that I3 ≤ C2
2 (2cm/bm) = o(1) uniformly

on (C1, C2). Furthermore, since the integrand converges to one on the considered

interval, I4 = δ2
m[1−F ((am + cm)/bm)] + o(1) = u2

m[1−F (um)] + o(1), for um =

δm(1−(log log m)/
√

2 log m+O((log log m)/log m)). Together the δm maximizing

(13) satisfies δm = u + o(1) for the u maximizing u2[1 − F (u)]. The proof is now

completed by checking that (13) is bounded from above by (log log m)−2 for

δm < c−1
m , and by checking that km,F = km(1 + o(1)) for km.
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