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Abstract: This paper discusses asymptotically distribution free (ADF) tests in self-
exciting threshold autoregressive (SETAR) models. We also consider the case when

the two different line segments have no jump. These tests are based on a marked em-

pirical process of the underlying residuals. The paper also discusses the asymptotic
behavior of the residual empirical process and ADF tests for the error distribution.

We find that under some mild conditions, the asymptotic null behavior of both of
these processes does not depend on the preliminary estimator of the change point

parameter. Moreover, somewhat surprisingly, the asymptotic behavior of the resid-
ual empirical process in these models is the same as in the one-sample location

model, as long as the residuals are based on an asymptotically linear estimator of

the line segment parameters. The paper also includes a simulation study analyzing
the finite sample behavior of some of the proposed tests.

Key words and phrases: Marked point processes, martingale type transform, model
checks, time series.

1. Introduction

Let Xi, i = 0,±1,±2, . . . be a real valued strictly stationary time series

having finite expectation. Denote with m(x) = E[Xi|Xi−1 = x] the associated

autoregressive (AR) function of order 1. The time series is then called a self

exciting threshold model of order 1 (SETAR(1)), if

Xi = m(Xi−1) + εi,

where (εi)i are i.i.d. ∼ F and m is piecewise linear over two different ranges of x.

The importance of this model and its extensions and some statistical inference

about the underlying parameters in these models have been discussed in Tong

(1990) and references therein, and in Chan (1993) and Qian (1998).

The present paper discusses some model checks for SETAR(1) and some

goodness-of-fit tests for the noise distribution function (d.f.) F . To be more

precise about m, under SETAR(1), we have

m(x) = (a0 + a1x)I(x ≤ r) + (b0 + b1x)I(x > r). (1.1)

Let h(x, ϑ) = (α0+α1x)I(x ≤ s)+(β0+β1x)I(x > s), where ϑ=(α0, α1, β0, β1, s)
′

∈ R5, the family of all functions of SETAR(1) type. Here and in the following, the
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symbol I denotes the indicator of the set in brackets and ′ is transposition. The

typical statistical analysis within the SETAR(1) model then consists in estimat-

ing or testing hypotheses about the unknown parameter ϑ∗ = (a0, a1, b0, b1, r)
′.

In this paper we are interested in checking the assumption, whether SE-

TAR(1) holds at all, i.e., whether the hypothesis H0 : m(x) = h(x, ϑ), for some

ϑ ∈ R5 is true or not, when the error distribution is not necessarily known.

Another goodness-of-fit problem is concerned with the distribution F of the

innovations εi, assuming that SETAR(1) with ϑ = ϑ∗ holds. Here the problem

of interest is to test the simple hypothesis K0 : F = F0, against the alternative

that F 6= F0, where F0 is a known d.f. The knowledge of the error distribution

plays some role if one wants to compute tolerance intervals for future values of

the time series.

Both problems are special cases of classical problems of model checking

and goodness-of-fit testing, and numerous tests for other models are available

in the literature. See, e.g., the review paper by MacKinnon (1992), the pa-

pers by McKeague and Zhang (1994) Hjellvik and Tjøstheim (1995, 1996), the

monographs of Hart (1997), Koul (2002), and the references therein. In most

of the literature, however, the autoregressive function under study was invari-

ably assumed to be smooth in the parameter, first order differentiability at least

being required. Note that under SETAR(1), the autoregressive function m is

non-smooth in both the lag variable and in the parameter vector.

In this paper, we investigate the behavior of the following test processes

under SETAR(1):

Vn(x, ϑ) = n−1
n∑

i=1

(Xi − h(Xi−1, ϑ))I(Xi−1 ≤ x)

F̂n(x, ϑ) = n−1
n∑

i=1

I(Xi − h(Xi−1, ϑ) ≤ x), x ∈ R.

The process Vn may be viewed as a normalized point process of the observed Xi

marked by the Xi − h(Xi−1, ϑ). For ϑ = ϑ∗ these marks become the true errors

εi. Tests about H0 will be based on Vn while F̂n will be needed for K0.

Actually, since the true parameter ϑ∗ = (a0, a1, b0, b1, r)
′ is unknown, we

need to study Vn with ϑ̂, where ϑ̂ = ϑ̂n is an estimator of ϑ∗ based on the

observations X0, . . . , Xn. Similarly, for F̂n.

In the 1990’s, tests based on the analogue of Vn for checking the validity of

a smooth parametric autoregressive model of order one were investigated by An

and Cheng (1991) and Koul and Stute (1999). Extensions to smooth higher order

autoregressive models are due to Dominguez and Lobato (2003) and Stute et al.

(2004). In the regression context, tests based on the analogue of Vn have been
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investigated by Su and Wei (1991), Stute (1997), Stute, Thies and Zhu (1998),

Diebolt and Zuber (1999) and Stute and Zhu (2002), among others. Tests for the

error distribution in a smooth autoregressive model based on F̂n(x, ϑ̂) have been

studied in detail, see, e.g., Boldin (1982) and Koul (2002). Under discontinuities

and structural changes, these methods are not now well understood.

As our two main results, we obtain, in Section 2, expansions of Vn(·, ϑ̂)

and F̂n(·, ϑ̂) which could be used to obtain convergence in distribution in the

Skorokhod space D[−∞,∞] to centered Gaussian processes with a specified co-

variance structure.

A major role is played by the jump size d ≡ b0 − a0 + r(b1 − a1). Theorems

2.1 and 2.2 cover in detail the case

d 6= 0. (1.2)

An informal discussion of d = 0 with a1 6= b1, i.e., when m is continuous but the

slopes differ will be presented in Remark 2.2.

In both cases it will turn out that estimation of the change point r has a

negligible effect on the asymptotic distributions of the involved processes, while

the effect of the estimation of ϑ∗
1 is non-negligible.

As in many cases when parameters are estimated, critical values for standard

goodness-of-fit tests are, however, difficult to obtain. Therefore, in Section 3, we

propose martingale transformations of Vn(·, ϑ̂) and F̂n(·, ϑ̂). The weak limit of

the transformed Vn(·, ϑ̂) under H0 is a Brownian motion in proper time. For

testing H0, we then apply known scaling properties to finally make our tests

applicable to real data. The martingale transformation for Vn(·, ϑ̂) is the same

as given in Koul and Stute (1999) for the smooth case.

As to K0, somewhat surprisingly, we find that if ϑ̂1 is asymptotically linear in

probability, the asymptotic expansion of F̂n(·, ϑ̂) is similar to the one appearing

in a one-sample location model. Hence the martingale transformation here is the

same as in Khmaladze (1981).

In Section 4 we report on some simulation results which indicate that the

nominal level of our test for H0 is well attained with high power against the

selected alternatives. This section also includes a finite sample simulation of

the bias and mean square error of the least square estimators of SETAR(1)

parameters. Proofs are deferred to Section 5.

2. Main Results

This section describes the main results of the paper and some of their im-

plications. Throughout we assume that the sequence (Xi)i is strictly stationary

and ergodic under H0. Some conditions under which this holds are given in Tong

(1990). Denote with G the (unknown) distribution function of X0. To proceed



798 HIRA L. KOUL, WINFRIED STUTE AND FANG LI

further, it will be convenient to write ϑ = (ϑ′
1, s)

′ and h(x, ϑ) = hs(x, ϑ1), and to

refer to ϑ1 and s as the coefficient and the change-point parameters, respectively.

Throughout the paper, ϑ′1 := (α0, α1, β0, β1). Let

ḣs(x) = (∂/∂ϑ1)hs(x, ϑ1)

= (I(x ≤ s), xI(x ≤ s), I(x > s), xI(x > s))′,

for s ∈ R∗ ≡ R ∪ {−∞,∞} and x ∈ R denote the vector of partial derivatives of

hs(x, ϑ1) w.r.t. ϑ1. Also, let

Jr(x) = Eḣr(X0)I(X0 ≤ x) = E




I(X0 ≤ x ∧ r)
X0I(X0 ≤ x ∧ r)
I(X0 > r,X0 ≤ x)

X0I(X0 > r,X0 ≤ x)


 .

Finally put, for x ∈ R and t ∈ R,

Dn(x, t) := n−1/2
n∑

i=1

[ḣr(Xi−1) − ḣr+tn−1(Xi−1)]I(Xi−1 ≤ x).

We also need some estimator of ϑ. Chan (1993) and Qian (1998) have proved,

e.g., that under d 6= 0 the conditional least squares and maximum likelihood

estimator ϑ̂ = (ϑ̂′1, r̂)
′ satisfies, under H0,

n1/2(ϑ̂1 − ϑ∗1) = OP(1), (2.1)

n(r̂ − r) = OP(1). (2.2)

Here, ϑ∗1 = (a0, a1, b0, b1)
′ constitutes the first part of ϑ∗.

Theorem 2.1. Assume that (Xi)i is a strictly stationary time series with au-

toregressive function (1.1). Assume d 6= 0 and that ϑ∗1 and r admit estimators

ϑ̂1 and r̂ satisfying (2.1) and (2.2). Additionally, suppose G is continuous at r.

Then, uniformly in x ∈ R∗,

n1/2[Vn(x, ϑ̂)−Vn(x, ϑ∗)] = ϑ∗
′

1 Dn(x, n(r̂−r))−n1/2(ϑ̂1−ϑ∗1)′Jr(x)+oP(1).

(2.3)

Some implications of this theorem are discussed in Remark 2.1 below.

To state our second result, we need to introduce

F̂n(x) = n−1
n∑

i=1

I(εi ≤ x),

(2.4)
µ(x) = EX0I(X0 ≤ x), µ̄(x) = EX0I(X0 > x), Ḡ(x) = 1 −G(x).
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Recall Jr(x) and put Γr ≡ Jr(∞) = (G(r), µ(r), Ḡ(r), µ̄(r) )′.

Theorem 2.2. Suppose the assumptions of Theorem 2.1 hold. In addition,

assume that the error d.f. F has a uniformly continuous Lebesgue density f , and

the stationary d.f. G satisfies

n1/2
[
G(r + bn−1) −G(r − bn−1)

]
= o(1), ∀ 0 < b <∞. (2.5)

Then, uniformly in x ∈ R∗,

n1/2[F̂n(x, ϑ̂) − F̂n(x)] = n1/2(ϑ̂1 − ϑ∗1)
′Γrf(x) + oP(1). (2.6)

Remark 2.1. Consider the first term in the approximation (2.3). Uniformly in

x ∈ R∗ and |t| ≤ K we have

‖ḣr(Xi−1) − ḣr+tn−1(Xi−1)‖I(Xi−1 ≤ x)

≤ 2(1 + |Xi−1|)I
(
r −Kn−1 < Xi−1 ≤ r +Kn−1

)
,

cf. (5.4). Hence on the event |n(r̂ − r)| ≤ K we get

sup
x

‖Dn(x, n(r̂ − r))‖ ≤ Cn1/2[Gn(r +Kn−1) −Gn(r −Kn−1)].

Under (2.5), the expectation of the last quantity, however, tends to zero. Con-

clude that if, in Theorem 2.1, we in addition require (2.5), then the first term on

the right hand side of (2.3) tends to zero uniformly in x, in probability. For a

later reference we summarize this discussion in

Corollary 2.1. Under the assumptions of Theorem 2.1 and (2.5), uniformly in

x ∈ R∗, n1/2
[
Vn(x, ϑ̂) − Vn(x, ϑ∗)

]
= −n1/2(ϑ̂1 − ϑ∗1)

′Jr(x) + oP(1).

Observe that in the above result the effect of estimating the jump point

on the process Vn is not reflected in the same way as that of estimating the

coefficients parameter vector ϑ∗
1. The primary reason for this is that the processes

involved are of the magnitude OP(n
−1/2), while r̂ converges to r at the rate n−1,

in probability.

Remark 2.2. In the case of no jump, i.e., d = 0, a1 6= b1, the two line segments

have different slopes but they meet at the change-point r. In this case, r̂ converges

to r at the rate n−1/2, in probability, so that in (2.2) n is replaced by n1/2.

See, e.g., Chan and Tsay (1998) about the least squares estimator. In such

a situation, Theorem 2.1 needs to be modified as follows. First, observe that

d = 0 is equivalent to ϑ∗
′

1 a(r) = 0 with a(x) = (−1,−x, 1, x)′. In addition to the
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conditions of Theorem 2.1, assume G has a continuous Lebesgue density g at r

with g(r) > 0. Then (2.3) changes to, uniformly in x ∈ R∗,

n1/2[Vn(x, ϑ̂) − Vn(x, ϑ∗)]

= ϑ∗
′

1 a(r)g(r)

{ (
n1/2(x− r)I(r < x ≤ r̂) + n1/2(r̂ − r)I(x > r̂)

)
I(r̂ > r)

−
(
n1/2(x− r̂)I(r̂ < x ≤ r) + n1/2(r − r̂)I(x > r)

)
I(r̂ ≤ r)

}

−n1/2(ϑ̂1 − ϑ∗1)
′Jr(x) + oP(1).

Similarly, under the conditions of Theorem 2.2 and the above conditions on g,

the conclusion (2.6) is replaced with the following: uniformly in x ∈ R∗,

n1/2[F̂n(x, ϑ̂) − F̂n(x)] =
[
−|n1/2(r̂ − r)|ϑ∗′1 a(r)g(r) + n1/2(ϑ̂1 − ϑ∗1)

′Γr

]
f(x)

+oP(1). (2.7)

These results will not be proved here, but can be deduced by an analysis similar

to that appearing in the proofs of Theorems 2.1 and 2.2 below. Note, however,

that because ϑ∗
′

1 a(r) = 0 in the case of no jump, these approximations reduce to

those given in the above theorems when d 6= 0. Thus, even in this case, the effect

of estimating the threshold parameter r is not reflected in the limiting behavior

of these processes.

Remark 2.3. In many cases, the estimator ϑ̂ of ϑ∗ is such that ϑ̂1 is asymptoti-

cally linear, i.e., for some constant c 6= 0 and for some function ψ with Eψ(ε) = 0

and Eψ2(ε) <∞, we have

n1/2(ϑ̂1 − ϑ∗1) = cΣ−1
r n−1/2

n∑

i=1

ḣr(Xi−1)ψ(εi) + oP(1), (2.8)

Σr = Eḣr(X0)ḣr(X0)
′ =




G(r) µ(r) 0 0

µ(r) τ(r) 0 0

0 0 Ḡ(r) µ̄(r)

0 0 µ̄(r) τ̄(r)


 .

Here τ(r) = EX2
0 I(X0 ≤ r) and τ̄(r) = EX2

0 I(X0 > r). For example, the least

squares estimator satisfies this condition with ψ(x) = x, c = 1, cf. Chan (1993).

Or if F0 has an absolutely continuous density f0 with a.e. derivative f ′
0 such

that 0 <
∫
(f ′0/f0)

2dF0 < ∞, the ratio ψ := −f ′
0/f0 is differentiable and ψ′ is

Lipschitz (1) with
∫
ψ′dF0 6= 0, then the MLE under K0 satisfies this condition

with c = 1/
∫
ψ′dF0; see Qian (1998).
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Now, combining (2.6) with (2.8) we obtain, under K0, that

n1/2[F̂n(x, ϑ̂) − F0(x)]

= n1/2[F̂n(x) − F0(x)] + cΓ′
rΣ

−1
r n−1/2

n∑

i=1

ḣr(Xi−1)ψ(εi) f0(x) + oP(1).

In view of the fact Γ′
rΣ

−1
r = (1, 0, 1, 0), the coefficient of f0(x) in the above

approximation is c n−1/2∑n
i=1 ψ(εi). In other words, under the conditions of

Corollary 2.1 and under (2.8), we obtain that uniformly in x ∈ R,

n1/2[F̂n(x, ϑ̂) − F0(x)]

= n1/2[F̂n(x) − F0(x)] + c n−1/2
n∑

i=1

ψ(εi)f0(x) + oP(1). (2.9)

The structure of the leading term on the right-hand side above is similar to the

expansion of the classical residual empirical process in the one-sample location

model. Hence any methodology leading to asymptotically distribution-free tests

there will work here also. In the next section we focus on this methodology to

test for H0 and K0.

3. ADF tests for H0 and K0

Write V̂n(x) and Vn(x) for Vn(x, ϑ̂) and Vn(x, ϑ∗), respectively. Now take ϑ̂

as the least squares estimator of ϑ. This section will discuss a transformation Tn

of V̂n, so that under the conditions of Corollary 2.1 and under H0, the processes

n1/2TnV̂n converge weakly to σB ◦ G, where B is a Brownian motion on [0, 1].

Hence, many tests of H0 based on a continuous function of n1/2TnV̂n will be

ADF. Remark 3.1 outlines the situation for F̂n, while Remark 3.2 discusses the

transformation for more general SETAR-models.

Because under the conditions of Corollary 2.1 the asymptotic behavior of V̂n

does not depend on the estimator r̂, the transformation Tn is the same as in Koul

and Stute (1999) (K-S) studied under smoothness conditions. To describe it, let

Hr(y) := Eḣr(X0)ḣr(X0)
′I(X0 ≥ y), y ∈ R. In view of the definition of ḣr, we

have

Hr(y) =




E I(X0≤r,X0≥y) EX0I(X0≤r,X0≥y) 0 0

EX0I(X0≤r,X0≥y) EX2
0 I(X0≤r,X0≥y) 0 0

0 0 Ḡ(r∨y) µ̄(r∨y)
0 0 µ̄(r∨y) τ̄(r∨y)


 .

Thus, because I(x ≤ r, x ≥ y) = 0 for all y > r, and because of the continuity

of the distribution of X0, the matrix Hr(y) is invertible only for y < r. Write
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H−1
r (y) for its inverse and define the operator T through

T` := `(x) −
∫
ḣr(y)

′H−1
r (y)

[∫
ḣr(z)I(z ≥ y)`(dz)

]
I(y ≤ x)G(dy), x < r.

In this definition ` is either a function of bounded variation or a Brownian motion.

As mentioned in K-S, it preserves the Brownian motion and

nσ−2Cov (TVn(x), TVn(y)) = G(x ∧ y) = nσ−2
E (Vn(x)Vn(y)) , x, y < r,

the covariance function of the time transformed Brownian motion B ◦G. More-

over, if additionally Eε4 < ∞, then, for any δ > 0, TVn ⇐ σB ◦ G in the

Skorokhod space D[0, r − δ]. But this result is of little use as T depends on the

unknown parameters r and G. Let Tn and Hn denote T and Hr after r and G

are replaced by their estimates r̂ and Gn, respectively. For numerical issues, see

the next section. We now have

Theorem 3.1. Suppose the assumptions of Corollary 2.1 hold with Eε4 <

∞.Then under H0, for any δ > 0, and with τ := r − δ,

n1/2 sup
x≤τ

∣∣∣TnV̂n(x) − TVn(x)
∣∣∣ = oP(1), (3.1)

n1/2σ̂−1
n TnV̂n ⇐ B ◦G in distribution (3.2)

in the space D[−∞, τ ], where σ̂2
n is a consistent estimator of σ2.

It readily follows from the derivations in the previous section that σ̂2
n :=

n−1∑n
i=1(Xi − ϑ̂′1ḣr̂(Xi−1))

2 is a consistent estimator of σ2. By letting δ → 0,

and using the consistency of r̂ for r, from the above theorem we are thus able to

conclude that if the support of G contains (−∞, r), then under H0,

D̃n := sup
x<r̂

∣∣∣
n1/2TnV̂n(x)

σ̂nG
1/2
n (r̂−)

∣∣∣⇐ sup
0≤t≤1

|B(t)| in distribution.

Thus the test that rejects H0 when D̃n > bα will be ADF of the asymptotic size

α, provided bα is determined so that P(sup0≤t≤1 |B(t)| > bα) = α, 0 < α < 1.

Remark 3.1. To obtain ADF tests for K0, recall (2.9). Following Khmaladze

(1981), assume F0 has an absolutely continuous density f0 with its a.e. derivative

ḟ0 satisfying 0 <
∫
(ḟ0/f0)

2dF0 <∞. Put

ϕ0(u) :=
ḟ0

f0
(F−1

0 (u)), q(u) := f0(F
−1
0 (u)), γ(u) := (1, ϕ0(u))

′,

Bu :=
(1 − u −q0(u)
−q0(u)

∫ 1
u ϕ

2
0

)
, 0 ≤ u ≤ 1.
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Additionally, assume that the constant function 1 and the score function ϕ0(u)

are linearly independent on the set u > 1 − η, for all sufficiently small η > 0.

Then B−1
u exists for all 0 ≤ u < 1. Define

ε̂i :=Xi − h(Xi−1, ϑ̂), L(u) :=

∫ u

0
γ(s)′B−1

s ds,

ζi(u) := L(u)γ(ε̂i), 1 ≤ i ≤ n.

Finally, set

n1/2TnF̂n(u, ϑ̂) := n−1/2
n∑

i=1

{
[1− ζi(ε̂i)]I(ε̂i ≤ u)− ζi(u)I(ε̂i > u)

}
, 0 ≤ u ≤ 1.

Similar to Khmaladze (1981) it follows then that, e.g., the Kolmogorov-

Smirnov test based on the process n1/2TnF̂n(·, ϑ̂n) will be ADF for testing for

K0.

Remark 3.2. The above results also hold for some general stationary and ergodic

SETAR models where the AR function may consist of more than two linear or

nonlinear segments. More specifically, consider the following set up. Let k, p, q, d

be known positive integers with 1 ≤ d ≤ p, Yi−1 := (Xi−1, Xi−2, . . . , Xi−p)
′,

−∞ = r0 < r1 < · · · < rk < rk+1 = ∞ be a partition of R, ϑ1 ∈ Rq, and

gj(Yi−1, ϑ1), j = 1, . . . , k + 1, be some known functions. Let r := (r1, . . . , rk).

Consider the problem of testing for the general SETAR model where the AR

function is given by

h(Yi−1, ϑ) :=
k+1∑

j=1

gj(Yi−1, ϑ1)I(rj−1 < Xi−d ≤ rj), ϑ := (ϑ′1, r)
′. (3.3)

Tong (1990) discusses some sufficient conditions for the stationarity and ergod-

icity of some AR models of type (3.3).

The appropriate analogue of the process V̂n on which tests are to be based

here is

V̂n(x) := n−1
n∑

i=1

(Xi − h(Yi−1, ϑ̂))I(Xi−d ≤ x),

where ϑ̂ is the least squares estimator of ϑ∗, and can be shown to satisfy the

conditions (2.1) and (2.2) provided Σr :=
∑k+1

j=1 Eġj(Y0, ϑ
∗
1)ġ

′
j(Y0, ϑ

∗
1) I(rj−1 <

X1−d ≤ rj) is positive definite. In fact one can show that the least squares

estimator of ϑ∗1 satisfies

n1/2(ϑ̂1 − ϑ∗1) = Σ−1
r n−1/2

n∑

i=1

ḣr(Yi−1, ϑ
∗
1)εi + oP(1), (3.4)
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with ḣr(Yi−1, ϑ
∗
1) :=

∑k+1
j=1 ġj(Yi−1, ϑ

∗
1)I(rj−1 < Xi−d ≤ rj).

Let Lj(x) := E|gj(Y0, ϑ
∗
1)|I(X1−d ≤ x), j = 1, . . . , k, x ∈ R. The analogue of

condition (2.5) is

k+1∑

j=1

n1/2 [Lj(rj + b/n) − Lj(rj − b/n)] = o(1), ∀ 0 < b <∞. (3.5)

Suppose, additionally, that for almost all y ∈ Rp (with respect to the distribution

of Y0), the functions gj(y, ·) , j = 1, . . . , k + 1, are absolutely continuous in a

neighborhood of ϑ∗1 and the vector of the corresponding a.e. derivatives ġj ’s

satisfies

E‖ġj(Y0, ϑ
∗
1 + s) − ġj(Y0, ϑ

∗
1)‖ −→ 0, as ‖s‖ → 0, ∀ j = 1, . . . , k + 1. (3.6)

Then the analogue of Corollary 2.1 continues to hold for V̂n:

n1/2
[
V̂n(x) − Vn(x, ϑ∗)

]
= −n1/2(ϑ̂1 − ϑ∗1)

′Jr(x, ϑ
∗
1) + oP(1),

where now Jr(x, ϑ
∗
1) := Eḣr(Y0, ϑ

∗
1)I(X1−d ≤ x), and Vn(x, ϑ∗) := n−1∑n

i=1(Xi−
h(Yi−1, ϑ

∗)) I(Xi−d ≤ x), x ∈ R.

The analogue of the matrix Hr(y) needed in the transformation T is

Hr(y, ϑ
∗
1) := Eḣr(Y0, ϑ

∗
1)ḣr(Y0, ϑ

∗
1)

′I(X1−d ≥ y)

=
k+1∑

j=1

Eġj(Y0, ϑ
∗
1)ġj(Y0, ϑ

∗
1)

′I(rj−1 < X1−d ≤ rj , X1−d ≥ y).

This matrix is nonsingular only for y < r1. Let
̂̇
h(z) := ḣr̂(z, ϑ̂1), z ∈ Rp,

and Ĥn(y) := n−1∑n
i=1

̂̇
h(Yi−1)

̂̇
h(Yi−1)

′I(Xi−d ≥ y), y ∈ R. The analogue of the

transformation Tn of the process V̂n(x) here is as follows. Let ε̂i := Xi−h(Yi−1, ϑ̂).

Then, for x < r1,

TnV̂n(x) := n−1
n∑

i=1

[
I(Xi−d ≤ x)

−n−1
n∑

k=1

̂̇
h(Yk−1)

′Ĥ−1
n (Xk−d)

̂̇
h(Yi−1)I(Xi−d ∧ x ≥ Xk−d)

]
ε̂i.

An analogue of Theorem 3.1 also holds, and the analogue of the test D̃n here will

be ADF for checking the above more general model.

Similarly, in connection with testing for an error distribution in these models,

the analogues of (2.6) and (2.9) continue to hold under the above assumptions,
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with Γr appearing in (2.6) given now by Γr =
∑k+1

j=1 Eġj(Y0, ϑ
∗
1)I(rj−1 < X0 ≤

rj).

In a general linear SETAR model of Tong (1990), gj(Y0, ϑ1) = ϑ′j,1

(
1

Y0

)
, j =

1, . . . , k + 1, where each ϑj,1 is a vector in Rp+1, and ϑ1 = (ϑ1,1, . . . , ϑk+1,1). In

this case the assumption that the time series is stationary and ergodic, with

the stationary d.f. having a bounded density that is positive at all jump points

rj, j = 1, . . . , k, and the error d.f. having zero mean and finite variance, imply

(3.5), (3.6) and (3.4) for the LSE.

Under the same conditions, the analogues of Theorem 2.2 and Remark 2.3

also continue to hold for testing for an error d.f. in these general linear SETAR

models, using the residuals based on the LSE. Note that even here with Γr,Σr

as above, one has the property Γ′
rΣ

−1
r = (1, 0, . . . , 1, 0).

4. Simulations

This section contains a simulation study of the proposed model check for

a SETAR(1) model. It investigates the finite sample behavior of the level and

power of the proposed test and includes the finite sample analysis of the bias

and standard deviation (s.d) of the least square estimators of ϑ∗. The section

also contains the graphs of the simulated densities of the standardized estimator

n(r̂ − r).

In the simulation, we chose ϑ∗ = (0.5, 0.3, 0.6,−0.7, 0.5)′ , i.e., the true m was

h(x, ϑ∗) = (0.5 + 0.3x)I[x ≤ 0.5] + (0.6 − 0.7x)[x > 0.5]. Hence the jump equals

d = −0.4. The errors were chosen to be normal N (0, 0.1) and logistic with mean

zero and scale 0.05 (logis(0.05)), so that the s.d. is close to 0.1.

The data was simulated from the following three models:

Model 1: Xi = h(Xi−1, ϑ
∗) + εi

Model 2: Xi = h(Xi−1, ϑ
∗) + 0.5(Xi−1 − 0.6)2 − 0.4(Xi−1 − 0.6)3 + εi,

Model 3: Xi = h(Xi−1, ϑ
∗) − 1.2 exp(−X2

i−1)Xi−1 + εi.

Note that Model 1 belongs to the null model while the other two are part of

the alternative. The sample sizes chosen were 100, 200, 500 and 1, 000, each

simulation being repeated 2,000 times. The test statistic is

D̃n = sup
x<r̂

∣∣∣
n1/2TnV̂n(x)

σn{Gn(r̂−)} 1

2

∣∣∣, σn =

(
1

n

n∑

i=1

(Xi − h(Xi−1, ϑ̂))2
) 1

2

,

with ϑ̂ being the least squares estimator of ϑ∗.
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We used the nominal levels α = 0.05, 0.025 and 0.01 to implement the tests.

Let bα satisfy P( sup0≤t≤1 |B(t)| > bα) = α. Using the well known fact

P

(
sup

0≤t≤1
|B(t)| < b

)
= P( |B(1)| < b )+2

∞∑

i=1

(−1)i
P( (2i−1)b < B(1) < (2i+1)b ),

we obtain the following table for some selected values of bα. Since under H0,

D̃n ⇒ sup0≤t≤1 |B(t)|, the bα’s are the asymptotic critical values of the proposed

test. The empirical size and power are computed by using #[D̃n > bα]/2, 000.

Table 1. The critical values bα.

α 0.05 0.025 0.01

bα 2.24241 2.49771 2.80705

The simulation programming was done using S-plus. We first generated

(501 + n) error variables from N (0, 0.1) and logis(0.05). Using these errors and

Models 1-3 with the initial value of X0 = 0, we generated (501+n) observations.

The last (n+ 1) observations from the data thus generated are used in carrying

out the simulation study for n = 100, 200, 500 and 1, 000. The density curves

of the normalized r̂ are plotted by using density plot command with Gaussian

kernel option in S-plus.

The results of the simulation study are shown in the Tables 2 and 3. Data

simulated from Model 1 are used to study the empirical size and the data from

Models 2 and 3 are used to study the empirical power of the test. One sees that

under (null) Model 1, the empirical sizes of the tests are smaller than the true α

levels for most of the moderate sample sizes, but they are much closer to the true

levels when the sample size gets larger. Under Models 2 and 3, the simulated

powers are seen to increase quickly with n and they are quite large for n ≥ 500,

even at α−level 0.01, for both error distributions.

Table 2. Proportion of rejections for test D̃n under models 1−3 with N (0, 0.1)

errors.

α−level Ha �n 100 200 500 1,000

0.05 Model 1 0.0205 0.0320 0.0395 0.0415
Model 2 0.2045 0.4760 0.8975 0.9975

Model 3 0.0935 0.3870 0.8385 0.9865

0.025 Model 1 0.0085 0.0145 0.0190 0.0195

Model 2 0.1270 0.3640 0.8265 0.9915

Model 3 0.0515 0.3040 0.7890 0.9800

0.01 Model 1 0.0035 0.0070 0.0080 0.0085

Model 2 0.0560 0.2375 0.7105 0.9770

Model 3 0.0235 0.2185 0.7345 0.9605
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Table 3. Proportion of rejections for test D̃n under models 1−3 with logis(0.05)

errors.
α−level Ha �n 100 200 500 1,000

0.05 Model 1 0.0180 0.0310 0.0475 0.0520

Model 2 0.1670 0.4065 0.8490 0.9935

Model 3 0.0855 0.3725 0.8440 0.9870

0.025 Model 1 0.0090 0.0140 0.0260 0.0300

Model 2 0.1070 0.3030 0.7610 0.9850

Model 3 0.0465 0.2800 0.7915 0.9750

0.01 Model 1 0.0025 0.0055 0.0075 0.0140
Model 2 0.0550 0.1925 0.6390 0.9600

Model 3 0.0205 0.1905 0.7260 0.9600

Table 4 below lists the means and standard deviations of the least squares

estimator under H0 for both normal and logistic error processes. From this table

one sees very little bias for all sample sizes and that ϑ̂ converges to ϑ∗ and

standard deviations tend to decrease as sample sizes increase from 100 to 1, 000.

Table 4. Means and (standard deviations) of ϑ̂ under model 1, i.e., H0.

N (0, 0.1) errors Logistic errors

estimate� n 100 200 500 1,000 100 200 500 1,000

â0 0.4997 0.4999 0.4997 0.4999 0.4996 0.4999 0.5001 0.4998

(0.0241) (0.0171) (0.0108) (0.0076) (0.0224) (0.0158) (0.0103) (0.0073)

â1 0.3040 0.3001 0.3013 0.3003 0.3027 0.3018 0.3003 0.2998

(0.0872) (0.0591) (0.0384) (0.0272) (0.0819) (0.0581) (0.0370) (0.0262)

b̂0 0.6019 0.5969 0.6018 0.5996 0.5985 0.5998 0.5987 0.6004
(0.1250) (0.0888) (0.0537) (0.0387) (0.1163) (0.0812) (0.0513) (0.0351)

b̂1 -0.7029 -0.6952 -0.7026 -0.6994 -0.6978 -0.6994 -0.6982 -0.7002

(0.2004) (0.1428) (0.0859) (0.0621) (0.1900) (0.1326) (0.0834) (0.0571)

r̂ 0.4940 0.4971 0.4989 0.4994 0.4946 0.4973 0.4989 0.4994

(0.0065) (0.0033) (0.0013) (0.0007) (0.0061) (0.0030) (0.0012) (0.0006)

The simulation results of the densities of n(r̂ − 0.5) are shown in Figures

1 and 2. The first figure contains the Monte Carlo density curves from 2,000

replications for the normal error processes and sample sizes n = 100, 200, 500 and

1, 000, respectively, while the second figure has similar densities for the logis(0.05)

process. Under both error processes, the graphs show that the distributions of

the normalized estimate n(r̂− r) are skewed for all the sample sizes chosen. The

graphs also give evidence that the convergence rate of r̂ to r is n−1.

In the following figures, “· · · · · ·” is for n = 100, ”− · −” is for n = 200,

”−−−” is for n = 500 and the solid line is for n = 1, 000.
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Figure 1. The density of n(r̂ − 0.5) under H0 with N (0, 0.1) errors.
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Figure 2. The density of n(r̂ − 0.5) under H0 with logis(0.05) errors.

Computational scheme. For an interested reader we now describe the com-

putation of TnV̂n and D̃n used in the above simulations. As before, let ϑ1 =

(α0, α1, β0, β1)
′, ϑ∗1 = (a0, a1, b0, b1)

′, and ϑ∗ = (ϑ∗
′

1 , r)
′.

Step 1. Sort




X0 X1
...

...

Xn−1 Xn


 according to the first column. Let




X(1) Y1
...

...

X(n) Yn




denote the ordered observations, where X(1) ≤ · · · ≤ X(n) are the ordered



MODEL DIAGNOSIS FOR SETAR TIME SERIES 809

X0, . . . , Xn−1.

Step 2. For k = 1, . . . , n, minimize, with respect to ϑ1 ∈ R4,

M(ϑ1, k) =
k∑

i=1

(Yi − (α0 + α1X(i)))
2 +

n∑

i=k+1

(Yi − (β0 + β1X(i)))
2.

Let ϑ̂1,k = (â0,k, â1,k, b̂0,k, b̂1,k)
′ denote the minimizer.

Step 3. Compute the least squares estimate ϑ̂ of ϑ∗ under H0: ϑ̂ = (ϑ̂′
1,k̂
, r̂)′,

r̂ = X(k̂), k̂ = argmin1≤k≤nM(ϑ̂1,k, k).

Step 4. Compute σn and Gn(r̂−): σn =
√
M(ϑ1,k̂, k̂)/n, Gn(r̂−) = (k̂ − 1)/n.

Step 5. For l = 1, . . . , k̂ − 1, compute TnV̂n(X(l)):

Substep 1. Let ε̂i :=Yi−h(X(i), ϑ̂). Compute n1/2V̂n(X(l))=(1/
√
n)
∑l

i=1ε̂i.

Substep 2. Compute U(y, z,X(l)) := ḣr̂(y)
′H−1

n (y)ḣr̂(z) [z ≥ y] [y ≤ X(l)],

where [A] := I(A) for any event A:

U(y, z,X(l)) =
1

Dn(y)

(
1

n

k̂∑

i=1

X2
(i) [X(i) ≥ y] [y ≤ X(l) ∧ z] [z ≤ r̂]

− 1

n

k̂∑

i=1

X(i) [X(i) ≥ y] y [y ≤ X(l) ∧ z] [z ≤ r̂]

− 1

n

k̂∑

i=1

X(i) [X(i) ≥ y] [y ≤ X(l) ∧ z] z [z ≤ r̂]

+
1

n

k̂∑

i=1

[X(i) ≥ y] y [y ≤ X(l) ∧ z] z [z ≤ r̂]

)
,

Dn(y) =
1

n2

k̂∑

i=1

X2
(i) [X(i) ≥ y]

k̂∑

i=1

[X(i) ≥ y] − 1

n2

( k̂∑

i=1

X(i) [X(i) ≥ y]
)2
.

Substep 3. Compute

∫
U(y, z,X(l))Gn(dy) =

1

n

l∑

j=1

1

Dn(X(j))

( 1

n

k̂∑

i=1

X2
(i)[X(i)≥X(j)][X(j)≤z][z≤ r̂]

− 1

n

k̂∑

i=1

X(i) [X(i) ≥ X(j)]X(j) [X(j) ≤ z] [z ≤ r̂]

− 1

n

k̂∑

i=1

X(i) [X(i) ≥ X(j)] [X(j) ≤ z] z [z ≤ r̂]
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+
1

n

k̂∑

i=1

[X(i) ≥ X(j)]X(j) [X(j) ≤ z] z [z ≤ r̂]
)
.

Substep 4. Compute

n1/2
∫ ∫

U(y, z,X(l))Gn(dy) V̂n(dz)

=
1√
n

k̂∑

k=1

ε̂k
1

n

l∧k∑

j=1

1

Dn(X(j))

[ 1

n

k̂∑

i=j

X2
(i)

− 1

n

k̂∑

i=j

X(i)X(j) −
1

n

k̂∑

i=j

X(i)X(k) +
1

n

k̂∑

i=j

X(j)X(k)

]
.

Substep 5. From the definition of TnV̂n, and the above substeps 1-4, we

obtain

n1/2TnV̂n(X(l))

=
1√
n

l∑

i=1

ε̂i −
1√
n

k̂∑

k=1

ε̂k
1

n

l∧k∑

j=1

1

Dn(X(j))

[ 1

n

k̂∑

i=j

X2
(i)

− 1

n

k̂∑

i=j

X(i)X(j) −
1

n

k̂∑

i=j

X(i)X(k) +
1

n

k̂∑

i=j

X(j)X(k)

]
.

Step 6. Compute the test statistic

D̃n = sup
1≤l≤k̂−1

∣∣∣∣∣∣∣∣

n1/2TnV̂n(X(l))√
M(ϑ̂

1,k̂
, k̂) (k̂−1)

n2

∣∣∣∣∣∣∣∣
.

5. Proofs

We first summarize some facts about the AR function h and its derivatives

ḣs. For x ∈ R and ϑ, ϑ∗ ∈ R5 we have

‖ḣs(x)‖ ≤ 1 + |x|, (5.1)

|hs(x, ϑ1)| ≤ ‖ϑ1‖(1 + |x|), (5.2)

|hs(x, ϑ1) − hs(x, ϑ
∗
1)| ≤ ‖ϑ1 − ϑ∗1‖(1 + |x|). (5.3)

Moreover, for all real numbers x and s ≤ t,

‖ḣs(x) − ḣt(x)‖ ≤ 2(1 + |x|)I(s < x ≤ t). (5.4)
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Finally, note that

hs(x, ϑ1) = ϑ′1ḣs(x). (5.5)

Proof of Theorem 2.1. We obviously have, cf. (5.5),

n1/2[Vn(x, ϑ̂) − Vn(x, ϑ∗)] = n−1/2
n∑

i=1

[ϑ∗
′

1 ḣr(Xi−1) − ϑ̂′1ḣr̂(Xi−1)]I(Xi−1 ≤ x).

Write

ϑ̂1 = ϑ∗1 + un−1/2 and r̂ = r + tn−1. (5.6)

By (2.1) and (2.2), for a given ε > 0, we may find a (large) constant K so that

for n ≥ n0, say, we have up to an event of probability ≤ ε, that ‖u‖ ≤ K and

|t| ≤ K. We therefore have to study the processes

∆n(x, t, u) := n−1/2
n∑

i=1

[ϑ∗
′

1 ḣr(Xi−1) − (ϑ∗1 + un−1/2)′ḣr+tn−1(Xi−1)]I(Xi−1 ≤ x)

uniformly in x ∈ R∗ and ‖u‖, |t| ≤ K. Expand ∆n as

∆n(x, t, u) = n−1/2
n∑

i=1

ϑ∗
′

1

[
ḣr(Xi−1) − ḣr+tn−1(Xi−1)

]
I(Xi−1 ≤ x)

−u′n−1
n∑

i=1

[ḣr+tn−1(Xi−1) − ḣr(Xi−1)]I(Xi−1 ≤ x)

−u′n−1
n∑

i=1

ḣr(Xi−1)I(Xi−1 ≤ x).

Now apply Cauchy-Schwarz and (5.4) to get, uniformly in x and ‖u‖ ≤ K, 0 < t ≤
K, that the second sum in absolute values is less than or equal to 2Kn−1∑n

i=1(1+

|Xi−1|)I(r ≤ Xi−1 ≤ r +Kn−1). From the continuity of G at r and the Ergodic

Theorem, the last term is easily seen to converge to zero with probability one.

Similarly, for −K ≤ t ≤ 0.

Finally, from a Glivenko-Cantelli result for strictly stationary time series

(see, e.g., Stute and Schumann (1980)), we have with probability one, uniformly

in x ∈ R∗,

lim
n→∞

n−1
n∑

i=1

ḣr(Xi−1)I(Xi−1 ≤ x) = Eḣr(X0)I(X0 ≤ x) = Jr(x).

Recalling (5.6), we thus obtain, uniformly in x ∈ R∗,

n1/2[Vn(x, ϑ̂) − Vn(x, ϑ∗)]

= ϑ∗
′

1 n
−1/2

n∑

i=1

[ḣr(Xi−1) − ḣr̂(Xi−1)]I(Xi−1 ≤ x) − n1/2(ϑ̂1 − ϑ∗1)
′Jr(x) + oP(1),
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as desired.

Proof of Theorem 2.2. By (5.5), the residuals may be written as

Xi − ϑ̂′1hr̂(Xi−1) = εi +
[
ϑ∗

′

1 ḣr(Xi−1) − (ϑ∗1 + un−1/2)′ḣr+tn−1(Xi−1)
]

= εi + ξn(Xi−1, t, u), say,

where with large probability, t and u satisfy |t| ≤ K and ‖u‖ ≤ K, for some

K <∞.

Hence for u and t from (5.6), F̂n(x, ϑ̂) = n−1∑n
i=1 I(εi ≤ x−ξn(Xi−1, t, u)) ≡

F̂n(x, t, u). Recall the definition of F̂n from (2.4) and let Fn(x, t, u) = n−1∑n
i=1

F (x− ξn(Xi−1, t, u)), αn(x, t, u) = n1/2[F̂n(x, t, u)−Fn(x, t, u)]. Let 0 denote the
zero vector in R4. Note that we have ξn(x, 0,0) ≡ 0, so that Fn(x, 0,0) = F (x)

and F̂n(x, 0,0) = F̂n(x).

We are going to show that, for any finite K > 0,

sup
x∈R,|t|≤K,‖u‖≤K

|αn(x, t, u) − αn(x, 0,0)| = oP(1), (5.7)

sup
x∈R,|t|≤K,‖u‖≤K

|n1/2[Fn(x, t, u) − F (x)] − u′Γrf(x)| = oP(1). (5.8)

To show (5.8), assume t > 0 w.l.o.g. Decompose

Fn(x, t, u) = n−1
n∑

i=1

F (x− ξn(Xi−1, t, u))I(Xi−1 ∈ (r, r + tn−1])

+n−1
n∑

i=1

F (x− ξn(Xi−1, t, u))I(Xi−1 /∈ (r, r + tn−1])

≡ A1(x, t, u) +A2(x, t, u), say.

Similarly, write

F (x) = F (x)n−1
n∑

i=1

I(Xi−1 ∈ (r, r+tn−1])+F (x)n−1
n∑

i=1

I(Xi−1 /∈ (r, r+tn−1])

≡ B1(x, t, u) +B2(x, t, u).

Since supx;t,u |A1(x, t, u) −B1(x, t, u)| ≤ 2n−1∑n
i=1 I(Xi−1 ∈ (r, r +Kn−1]) and

the expectation of the last term equals 2[G(r + Kn−1) − G(r)] = o(n−1/2), by

(2.5), we obtain

n1/2 sup
x;t,u

|A1(x, t, u) −B1(x, t, u)| = oP(1). (5.9)

Next, we discuss A2 − B2. Since now we sum over Xi−1 /∈ (r, r + tn−1], we

have

n1/2ξn(Xi−1, t, u) = −u′ḣr(Xi−1). (5.10)
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From this, uniformly in x and |t| ≤ K, ‖u‖ ≤ K,

A2(x, t, u) −B2(x, t, u)

= n−1
n∑

i=1

[F (x− ξn(Xi−1, t, u)) − F (x)]I(Xi−1 /∈ (r, r + tn−1])

= n−1
n∑

i=1

[F (x+ u′n−1/2ḣr(Xi−1)) − F (x)]I(Xi−1 /∈ (r, r + tn−1]).

Now we can use an argument similar to the one leading to (5.9) to show that the

last sum equals, uniformly in x ∈ R,

n−1
n∑

i=1

[F (x+ u′n−1/2ḣr(Xi−1)) − F (x)] + oP(n
−1/2). (5.11)

Apply Taylor’s formula, the integrability of ḣr(X0) and the Ergodic Theorem

to obtain that (5.11) equals, uniformly in x ∈ R, f(x)u′n−3/2∑n
i=1 ḣr(Xi−1) +

oP(n
−1/2). The assertion (5.8) now follows from another application of the Ergodic

Theorem.

We now sketch a proof of (5.7). As before, we may also decompose sums into

Xi−1 satisfying r < Xi−1 ≤ r + tn−1 and the rest. We then obtain, uniformly in

x and 0 ≤ t ≤ K, ‖u‖ ≤ K,

n−1/2
n∑

i=1

[I(εi ≤ x− ξn(Xi−1, t, u)) − F (x− ξn(Xi−1, t, u))]

×I(r < Xi−1 ≤ r + tn−1) = oP(1).

Conclude from (5.10) that, uniformly in x and |t|, ‖u‖ ≤ K,

αn(x, t, u) − αn(x, 0,0)

= n−1/2
n∑

i=1

[
I(εi ≤ x+ n−1/2u′ḣr(Xi−1)) − F (x+ n−1/2u′ḣr(Xi−1))

−I(εi ≤ x) + F (x)
]
+ oP(1). (5.12)

Let Un(x, u) stand for the leading term on the right hand side of (5.12). Note

that for each index i the random variable εi is independent of ḣr(Xi−1). Hence

the summands of Un(x, u) form a martingale difference array. For fixed u, we

may therefore apply Theorem 1.1 of Koul and Ossiander (1994) to obtain that

the process Un(x, u) is C-tight in x, provided n−1/2 max1≤i≤n ‖ḣr(Xi−1)‖ = oP(1)

and n−1∑n
i=1 ‖ḣr(Xi−1)‖ = OP(1). The first condition, however, follows since X0

has a finite second moment, while the second follows from the Ergodic Theorem.
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Altogether this shows that for a fixed u, supx |Un(x, u)| = oP(1). To obtain this

result uniformly in u over a compact set, we use a standard argument. First

cover the cube ‖u‖ ≤ K by finitely many small cubes and let u0 be the center

of such a cube, say C(u0). To compare Un(x, u) with Un(x, u0) over C(u0),

use the monotonicity of the indicator function and of F , and observe that after

telescoping, there will appear error terms of the form

n−1/2
n∑

i=1

[
F (x+ n−1/2u′ḣr(Xi−1)) − F (x+ n−1/2u′0ḣr(Xi−1))

]
,

which, in turn, are bounded from above in absolute value by

‖f‖
∣∣∣n−1

n∑

i=1

(u− u0)
′ḣr(Xi−1)

∣∣∣.

Such terms can be made arbitrarily small, uniformly in u ∈ C(u0), provided

that C(u0) has been chosen small enough. Hence the oscillations of Un(x, u) are

uniformly small over C(u0). This completes the proof of (5.7) and, together with

(5.8), also of Theorem 2.2.

Proof of Theorem 3.1. The claim (3.2) follows from (3.1) and the fact

n1/2TVn ⇐ σB ◦G in D[−∞, τ ], proved in K-S.

The basic details of the proof of (3.1) are similar to those appearing in K-S,

but the discontinuity of hr makes some details necessarily different. We briefly

indicate the differences. Let ∆n := n1/2(ϑ̂1 − ϑ∗1). We have

TnV̂n(x) = V̂n(x) −
∫
ḣr̂(y)

′H−1
n (y)

[ ∫
ḣr̂(z) I(z ≥ y)V̂n(dz)

]
I(y ≤ x) Gn(dy),

TVn(x) = Vn(x) −
∫
ḣr(y)

′H−1
r (y)

[ ∫
ḣr(z) I(z ≥ y)Vn(dz)

]
I(y ≤ x) G(dy).

Let Ûn(y) :=
∫
ḣr̂(z) I(z ≥ y)V̂n(dz), Un(y) :=

∫
ḣr(z) I(z ≥ y)Vn(dz). From

Corollary 2.1, we obtain n1/2V̂n(x) = n1/2Vn(x)−∆′
nJr(x)+oP(1). Thus we have

n1/2[TnV̂n(x) − TVn(x)]

= −∆′
nJr(x) + oP(1) + n1/2

∫
ḣr(y)

′H−1
r (y)Un(y)I(y ≤ x)G(dy)

−n1/2
∫
ḣr̂(y)

′H−1
n (y)Ûn(y)I(y ≤ x)Gn(dy)

= −∆′
nJr(x) + oP(1) + Tn1(x) − Tn2(x), say. (5.13)

Next, we have the bound

‖Hn(x) −Hr(x)‖ ≤ 2n−1
n∑

i=1

∥∥∥ḣr(Xi−1)
∥∥∥
∥∥∥ḣr̂(Xi−1) − ḣr(Xi−1)

∥∥∥
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+ n−1
n∑

i=1

n∑

i=1

∥∥∥ḣr̂(Xi−1) − ḣr(Xi−1)
∥∥∥
2

+
∥∥∥n−1

n∑

i=1

ḣr(Xi−1)ḣr(Xi−1)
′I(Xi−1 ≥ x) −Hr(x)

∥∥∥,

= B1 +B2 +B3(x), say.

By (5.1) and (5.4), for a finite constant C,

B1 +B2 ≤ C n−1
n∑

i=1

(
1 + |Xi−1|

)2
I
(
|Xi−1 − r| ≤ |r̂ − r|

)

≤ C
[
|r̂ − r|2 + (1 + r)2

{
Gn(r + |r̂ − r|) −Gn(r − |r̂ − r|)

}]

= oP(1).

The Ergodic Theorem and a Glivenko-Cantelli type argument show that supx∈R

‖B3(x)‖ = oP(1). Hence we have

sup
x∈R

‖Hn(x) −Hr(x)‖ = oP(1), (5.14)

sup
x≤τ

‖H−1
n (x) −H−1

r (x)‖ = oP(1). (5.15)

Next, rewrite

n1/2Ûn(y) = n−1/2
n∑

i=1

ḣr̂(Xi−1)
(
Xi − ϑ̂′1ḣr̂(Xi−1)

)
I(Xi−1 ≥ y)

= n−1/2
n∑

i=1

ḣr̂(Xi−1)
[
εi + ϑ∗

′

1 ḣr(Xi−1) − ϑ̂′1ḣr̂(Xi−1)
]
I(Xi−1 ≥ y)

n1/2Un(y) = n−1/2
n∑

i=1

ḣr(Xi−1)εi I(Xi−1 ≥ y).

Then

n1/2[Ûn(y)−Un(y)] = n−1/2
n∑

i=1

[
ḣr̂(Xi−1)−ḣr(Xi−1)

]
εi I(Xi−1≥y)

+n−1/2
n∑

i=1

ḣr̂(Xi−1)
[
ϑ∗

′

1 ḣr(Xi−1) − ϑ̂′1ḣr̂(Xi−1)
]
I(Xi−1≥y)

= An(y) +Dn(y), say.

Fix an ε > 0. By (2.2), there is a bε = b <∞, Nε <∞, such that P(|r̂− r| ≤
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b/n) > 1 − ε, for all n > Nε. Now, on the event {|r̂ − r| ≤ b/n}, by (5.4),

sup
y∈R∗

‖An(y)‖

≤ C n−1/2
n∑

i=1

[
1 + |Xi−1|

]
I
(
|Xi−1 − r| ≤ |r̂ − r|

)
|εi|

≤ C [1 + |r| + b/n] n−1/2
n∑

i=1

I(|Xi−1 − r| ≤ b/n) |εi|, ∀ n > Nε.

But the expected value of the second factor in this upper bound is proportional

to n1/2[G(r + b/n) − G(r − b/n)], which tends to zero under the conditions of

Corollary 2.1. Hence supy∈R∗ ‖An(y)‖ = oP(1).

The term Dn(y) can be written as Dn1(y) −Dn2(y), where Dn1(y) ≡ n−1/2

∑n
i=1 ḣr̂(Xi−1)

[
ϑ∗

′

1

(
ḣr(Xi−1) − ḣr̂(Xi−1)

)]
I(Xi−1 ≥ y), Dn2(y) ≡ Hn(y) ∆n.

Arguing as above, one obtains supy∈R∗ ‖Dn1(y)‖ = oP(1), while by (2.1) and

(5.14), supy∈R∗ ‖Dn2(y) −Hr(y)∆n‖ = oP(1). We have thus proved n1/2 supy∈R∗

‖Ûn(y) − Un(y) +Hr(y)∆n‖ = oP(1). Use this, (5.14), (5.15), and an argument

like in the proof of Theorem 2.4 of K-S, to obtain uniformly in x ≤ τ ,

Tn2(x)=

∫ x

−∞
ḣ′rH

−1
r Un dG−

∫ x

−∞
ḣ′rdG ∆n+oP(1) = Tn1(x)−∆′

nJr(x)+oP(1),

This, together with (5.13), completes the proof of Theorem 3.1.
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