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Abstract: Due to natural or artificial clustering, multivariate failure time data of-

ten arise in biomedical research. To account for the intracluster correlation, we

propose a novel class of frailty models by imposing the Box-Cox transformation on

the hazard functions. This class of models generalizes the relationships between

the baseline hazard and the hazard functions, which includes the proportional and

the additive hazards frailty models as two special cases. Since hazards cannot be

negative, complex multidimensional nonlinear parameter constraints must be im-

posed in the model formulation. To facilitate a tractable computational algorithm,

the joint priors are constructed through a conditional-marginal specification. The

conditional distribution of the prior specification is univariate and absorbs the pa-

rameter constraints, while the marginal part is free of constraints. We propose

a Markov chain Monte Carlo (MCMC) computational scheme for sampling from

the posterior distribution of the parameters. We derive an MCMC approximation

for the conditional predictive ordinate to assess model adequacy, and illustrate the

proposed method with a dataset.
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1. Introduction

In biomedical research, multivariate failure time data occur in the presence

of natural or artificial clustering effects. For example, in family studies of genetic

diseases or litter-matched mice studies, failure times for subjects in the same
cluster may be dependent. An example is the Diabetic Retinopathy Study (DRS

Research Group (1985)), which involved paired failure time data on patients’ eyes.
The study focused on the investigation of abnormalities in the microvasculature

within the retina of the eye associated with diabetes mellitus. In the United

States, diabetic retinopathy is the leading cause of legal blindness in people under
the age of 65, and it remains a significant health problem worldwide. There were

197 patients in the dataset, which was a 50% random sample of the patients
with “high-risk” diabetic retinopathy, as defined by the DRS criteria. One eye of

each subject was randomly selected for laser photocoagulation treatment and the

other eye was untreated, for ethical reasons. The event of interest was time from
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the initiation of treatment to the occurrence of severe visual loss (blindness).
Censoring was on the basis of death, dropout, or end of the study. The primary
objective was to study the effectiveness of laser photocoagulation in delaying the
onset of blindness. The failure times of the two eyes on the same subject might
be correlated, which needs to be taken into account in statistical modeling and
inference.

A common approach to accommodating the intraclass correlation is to incor-
porate an unobserved random effect, or frailty, into the Cox (1972) proportional
hazards model. For the kth subject in the ith cluster, with a possibly external
time-dependent covariate vector Zik(t) (i = 1, . . . , n; k = 1, . . . ,Ki) as defined by
Kalbfleisch and Prentice (2002), the usual Cox shared frailty model is

λ(t|Zik,Wi) = λ0(t)Wi exp{β′Zik(t)}, (1.1)

where λ0(t) is the unspecified baseline hazard function, β is the p × 1 unknown
regression coefficient vector, and Wi is the unobservable frailty for the ith cluster.
Conditional on Wi, the failure times are assumed to be independent. The most
studied parametric distribution for Wi is the gamma distribution, referred to as
gamma frailty. For the case of no covariates, the consistency and asymptotic
distribution of the maximum likelihood estimator for the gamma frailty model
have been well studied by Murphy (1994, 1995) and, for the case with covariates,
by Parner (1998). In the Bayesian framework, extensive research has been car-
ried out on the gamma frailty model (1.1), for example, in the work of Clayton
(1991), Sinha (1993) and Gustafson (1997), among others. The positive stable
distribution is another commonly used assumption for Wi (Hougaard (2000)) to
account for heterogeneity among the intensity processes in different subjects. As
opposed to (1.1), an alternative based on the Cox proportional hazards model is

λ(t|Zik,Xik,bi) = λ0(t) exp{β′Zik(t) + b′
iXik(t)}, (1.2)

where the q× 1 random effect vectors bi (i = 1, . . . , n) are usually assumed to be
independent and identically distributed (i.i.d.) from a zero-mean q-dimensional
normal distribution, and Xik(t) is the associated covariate vector. It is easy to see
that (1.1) and (1.2) are equivalent when Xik(t) ≡ 1 and Wi in (1.1) is assumed
to be log-normal.

However, the proportional hazards assumption might not hold in many prac-
tical situations. The underlying true relation of the hazards could be parallel,
instead of proportional. Through a linear relationship between the covariate and
the hazard function, Lin and Ying (1994) proposed the additive hazards model
for independent survival data. For multivariate failure time data, we propose the
additive hazards frailty model

λ(t|Zik,Xik,bi) = λ0(t) + β′Zik(t) + b′
iXik(t). (1.3)
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Apparently, one major difficulty in (1.3) is the non-negative hazard constraint,

i.e., λ0(t) + β′Zik(t) + b′
iXik(t) ≥ 0.

The Box-Cox transformation (Box and Cox (1964)) has been widely used in

the linear regression model when the normality assumption of the error terms is

not satisfied,

Y (γ) =

{

(Y γ − 1)/γ γ 6= 0
log(Y ) γ = 0,

where γ is the transformation parameter. The application of this family of trans-

formations in survival analysis is very limited, and has only been applied to

independent failure time data. Breslow and Storer (1985) and Barlow (1985) ap-

plied this power transformation to the covariate structure to model the relative

risk R(Zi), log R(Zi) = {(1 + β′Zi)
γ − 1}/γ. Aranda-Ordaz (1983) and Breslow

(1985) argued the desirability of a compromise between the proportional and ad-

ditive hazards models where, for grouped data, they imposed the transformation

on the conditional probability − log{1 − Pr(ti−1 < T ≤ ti|T > ti−1)}, using the

m partitions of the time scale 0 = t0 < t1 < . . . < tm < ∞. Particularly, the

British Doctors Study (Breslow and Day (1987)) which was concerned with the

effects of cigarette smoking on mortality, suggested that the hazard difference

increases in t whereas the hazard ratio decreases. Thus a compromise between

the proportional and the additive hazards models might capture this interesting

phenomenon.

In this article, we propose a class of frailty models based on the Box-Cox

transformation for clustered survival data. This family of transformation models

is general and broad, including models (1.2) and (1.3) as special cases. By adding

only one pre-specified power parameter, the modeling structure allows for a much

richer class of hazard patterns. In many multivariate survival applications, where

the hazards are neither proportional nor parallel, the proposed Box-Cox trans-

formation frailty model provides a unified and flexible methodology.

In Section 2, we introduce this class of frailty models based on the Box-Cox

transformed hazards, and derive the corresponding likelihood function within the

Bayesian paradigm. In Section 3, we propose a prior specification that is suitable

for the inherent constrained parameter problem. In Section 4, we derive the full

conditional distributions needed for Gibbs sampling. In Section 5, we study the

model selection criterion based on the conditional predictive ordinate (Geisser

(1993)) for correlated data, and derive its corresponding MCMC approximation.

We illustrate the proposed methods with the DRS data in Section 6.

2. A class of frailty models

Let Tik (i = 1, . . . , n; k = 1, . . . ,Ki) be the failure time for the kth subject

in the ith cluster, Cik be the censoring variable, and Yik = min(Tik, Cik) be the
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observed time. The failure time indicator νik = 1 if Yik = Tik, and νik = 0 oth-
erwise. Let Zik(t) be the corresponding p × 1, and Xik(t) be the q × 1, bounded
and possibly external time-dependent covariate vectors, where Xik(t) usually
contains 1 and part of Zik(t). Assume that Tik and Cik are conditionally inde-
pendent given Zik(t) and Xik(t). Within each cluster, {(Tik, Cik,Zik(t),Xik(t)),
k = 1, . . . ,Ki} may be dependent but are exchangeable.

Under this setup, we propose a class of frailty models by imposing the Box-
Cox transformation on the hazards,

λ(t|Zik,Xik,bi)
γ − 1

γ
=

λ0(t)
γ − 1

γ
+ β′Zik(t) + b′

iXik(t). (2.1)

Though γ is an identifiable parameter, we consider γ to be fixed and known
throughout, since there is usually little information in the data to precisely esti-
mate γ. The extension of the transformation on the hazard functions is natural
due to their non-negativity. It is easy to see that model (2.1) reduces to (1.2)
as γ → 0, and reduces to (1.3) as γ = 1. By pre-specifying a set of γ’s, the
rigidness of modeling structures (either proportional or parallel hazards) is com-
pletely relaxed and various hazard shapes become possible. Our primary interest
has γ in [0, 1], a compromise between the proportional (γ = 0) and the additive
(γ = 1) hazards models, though γ can theoretically take any value on the real
line. When γ = 0, it is reasonable to assume the bi’s are i.i.d. random vectors
from Nq(0,Σb). When γ ∈ (0, 1], due to the non-negativity of the hazard func-
tion, it is more natural to assign a distribution with support on the positive real
line to help alleviate the burden of the hazard constraint. Here, we take the bi’s
to be i.i.d. from the first-order autoregressive correlated gamma distributions.
Let bi = (b[i,1], . . . , b[i,q])

′. For 0 < γ ≤ 1, consider modeling the components of
bi through a sequence of one-dimensional gamma distributions,

b[i,1] ∼ Ga(ζ, ξ), (b[i,k]|b[i,k−1]) ∼ Ga(ζb[i,k−1], ξ), k = 2, . . . , q. (2.2)

This novel structure of modeling the random effects provides a very flexible and
general class of distributions on the positive real line.

The hazard function based on model (2.1) is

λ(t|Zik,Xik,bi) = [λ0(t)
γ + γ{β′Zik(t) + b′

iXik(t)}]1/γ . (2.3)

For 0 < γ < 1, β, λ0(t) and b = (b1, . . . ,bn)′ are intertwined together under the
power of 1/γ, and hence cannot be separated in (2.3). The usual frequentist mar-
tingale and counting process techniques (Fleming and Harrington (1991)) might
not be directly applicable in this situation. Therefore, we propose to conduct
inference with this transformation frailty model using a Bayesian approach.

Toward this goal, a piecewise constant hazard is assumed for λ0(t) (Ibrahim,
Chen and Sinha (2001)). Let J denote the number of partitions of the time
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axis, i.e., 0 < s1 < . . . < sJ . For J = 1, namely with no partition, we obtain
a parametric exponential model. By increasing J , we allow more flexibility in
modeling the underlying baseline hazard. The piecewise constant hazard model
assumes that λ0(y) = λj for y ∈ (sj−1, sj], j = 1, . . . , J . The partition of
the time axis needs to balance the number of failures among all the intervals,
as well as guarantee that there is at least one failure in each interval. Define
δikj = 1 if subject k in cluster i fails or is censored in interval j, and 0 otherwise.
The likelihood function is constructed as follows. Let yik be the observed time
for the kth subject in the ith cluster, y = (y11, . . . , y1K1 ; . . . ; yn1, . . . , ynKn)′,
ν = (ν11, . . . , ν1K1 ; . . . ; νn1, . . . , νnKn)′, the (N × p)-dimensional data matrix
Z(t) = (Z1(t), . . . ,Zp(t)), and (N × q)-dimensional X(t) = (X1(t), . . . ,Xq(t)),
where N is the total sample size, i.e., N =

∑n
i=1 Ki. The hazard in the jth

interval is λj(t|Zik,Xik,bi) = [λγ
j + γ{β′Zik(t) + b′

iXik(t)}]δikj/γ . Let D =
(N,y,Z(t),X(t),ν) denote the observed data and λ = (λ1, . . . , λJ)′. For ease of
exposition, let Zik ≡ Zik(t), Xik ≡ Xik(t). Thus, the likelihood function is

L(β,λ,b|D) =
n
∏

i=1

Li(β,λ|bi, D)π(bi),

where

Li(β,λ|bi, D)

=
Ki
∏

k=1

J
∏

j=1

{λγ
j + γ(β′Zik + b′

iXik)}δikjνik/γ exp[−δikj{(λγ
j + γ(β′Zik + b′

iXik))
1/γ

×(yik − sj−1) +
j−1
∑

l=1

(λγ
l + γ(β′Zik + b′

iXik))
1/γ(sl − sl−1)}], (2.4)

and π(bi) is the density,

π(bi) =
1√

2π|Σb|1/2
exp

(

−1

2
b′

iΣ
−1
b bi

)

, whenγ = 0,

π(bi) = π(b[i,1])
q
∏

k=2

π(b[i,k]|b[i,k−1]), whenγ ∈ (0, 1],

where b[i,1] ∼ Ga(ζ, ξ), (b[i,k]|b[i,k−1]) ∼ Ga(ζb[i,k−1], ξ), k = 2, . . . , q. It is appeal-
ing for bi to have a correlated gamma distribution for γ 6= 0, to alleviate the
burden from the complex nonlinear constraints in (β,λ,b).

3. Prior Distributions

The joint prior distribution of (β,λ,b) needs to accommodate the non-
negativity constraint for the hazard function, that is,

λγ
j + γ(β′Zik + b′

iXik) ≥ 0 (i = 1, . . . , n; k = 1, . . . ,Ki; j = 1, . . . , J). (3.1)
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Bayesian computation and analysis become quite complicated with constrained

parameter problems (Gelfand, Smith and Lee (1992), Chen and Shao (1998) and

Chen, Shao and Ibrahim (2000, Chap.6)). If (3.1) is violated, the likelihood

function and the posterior density are not well defined. For γ = 0 we assume

that bi ∼ Nq(0,Σb), where Σ−1
b ∼ Wishart(η, (ηΩ)−1) with the density,

π(Σ−1
b ) ∝ |Σ−1

b |(η−q−1)/2

|η−1Ω−1|η/2
exp

{

−1

2
trace(ηΩΣ−1

b )

}

,

Ω is a q × q symmetric and positive definite parameter matrix, and η > 0. For

0 < γ ≤ 1, we take bi to be a set of first-order autoregressive correlated gamma

random variables, b[i,1] ∼ Ga(ζ, ξ), and (b[i,k]|b[i,k−1]) ∼ Ga(ζb[i,k−1], ξ), k =

2, . . . , q. We fix ζ as a constant and give ξ a gamma prior as ξ ∼ Ga(a, d).

This prior formulation can be easily generalized to higher-order autoregressive

correlated gamma distributions.

One way to satisfy (3.1) is to specify an appropriately truncated joint prior

distribution for (β,λ,b), for example a truncated multivariate normal prior for

(β|λ,b). This would lead to a prior distribution of the form

π(β,λ,b) = π(β|λ,b)π(λ,b)I{λγ
j + γ(β′Zik + b′

iXik) ≥ 0, for all i, k, j},

where I(·) is the indicator function. Following this route, suppose that (β|λ,b)

has a p-dimensional truncated normal prior distribution with mean 0 and covari-

ance matrix Σβ. The normalizing constant under the constrained space,

c(λ,b) =

∫

· · ·
∫

λγ
j
+γ(β

′

Zik+b′

i
Xik)≥0,for all i,k,j

exp

(

−1

2
β′Σ−1

β β

)

dβ1 · · · dβp,

does not have an analytic closed form, and thus the full conditionals are not

tractable.

To circumvent the multivariate constrained parameter problem, we reduce

it to a one-dimensional integral such that the normalizing constant can be ob-

tained in a closed form. Without loss of generality, assume that all the covari-

ates are positive. Let Z(−g) denote the covariate matrix with the gth column

deleted, and β(−g) denote the (p − 1)-dimensional parameter vector with the

gth component of β removed, thus Z(−g) = (Z1, . . . ,Zg−1,Zg+1, . . . ,Zp) and

β(−g) = (β1, . . . , βg−1, βg+1, . . . , βp)
′. We propose a joint prior for (β,λ,b) of

the form

π(β,λ,b) = π(βg|β(−g),λ,b)π(β(−g),λ,b)

× I

(

βg ≥ −
λγ

j + γ(β′
(−g)Z[ik,(−g)] + b′

iXik)

γZ[ik,g]
, for all i, k, j

)

,
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where Z[ik,(−g)] and Z[ik,g] are covariates Z(−g) and Zg corresponding to subject k
in cluster i, respectively. This specification involves only one parameter βg in the
constraints, and leaves all the other parameters free of constraints. Specifically,
we take (βg|β(−g),λ,b) to have a truncated normal distribution,

π(βg|β(−g),λ,b) = c−1(β(−g),λ,b) exp

(

−
β2

g

2σ2
g

)

×I

{

βg ≥ −
λγ

j + γ(β′
(−g)Z[ik,(−g)] + b′

iXik)

γZ[ik,g]
, for all i, k, j

}

, (3.2)

where the normalizing constant is given by

c(β(−g),λ,b) =
√

2πσg

[

1 − Φ

(

−min
i,k,j

{

λγ
j + γ(β′

(−g)Z[ik,(−g)] + b′
iXik)

γZ[ik,g]σg

})]

,

(3.3)
and Φ(·) is the cumulative distribution function of the standard normal distri-
bution. For ease of exposition, we can take β(−g), λ and b to be independent
a priori in (3.2), and we assume that the components of λ have independent
gamma priori distributions.

4. Full Conditionals and Gibbs Sampling

When γ = 0, we have the Cox-type random effects model and the likeli-
hood function is log-concave in (β1, . . . , βp;λ1, . . . , λJ ;b1, . . . ,bn) (for details see
Ibrahim et al. (2001, Chap.4)). For 0 < γ ≤ 1, the full conditionals of (β1, . . . , βp)
are log-concave, in which case the adaptive rejection sampling (ARS) proposed by
Gilks and Wild (1992) is readily applicable. Due to the non-log-concavity of the
full conditionals of (λ1, . . . , λJ ;b1, . . . ,bn), a Metropolis step is required within
the Gibbs iterations, referred to as the adaptive rejection Metropolis sampling
(ARMS) proposed by Gilks, Best and Tan (1995). For each Gibbs sampling step,
the parameter space needs to be set to satisfy the constraint (3.1), such that the
likelihood function always has valid support.

The likelihood function given b is L(β,λ|b, D) =
∏n

i=1 Li(β,λ|bi, D). The
full conditional distributions are π(βg|β(−g),λ,b, D) ∝ L(β,λ|b, D)π(βg), π(βl,

l 6= g|β(−l),λ,b, D) ∝ L(β,λ|b, D)π(βl)c
−1(β(−g),λ,b), and π(λj |β,λ(−j),b,

D) ∝ L(β,λ|b, D)π(λj)c
−1(β(−g),λ,b), where π(βl) ∝ exp{−β2

l /(2σ2
l )}, and

π(λj) ∝ λα−1
j exp(−φλj), for i = 1, . . . , n, j = 1, . . . , J and l = 1, . . . , p. When

γ = 0,

π(bi|β,λ,b(−i),Σb, D) ∝ Li(β,λ|bi, D)c−1(β(−g),λ,b) exp

(

−1

2
b′

iΣ
−1
b bi

)

,

π(Σ−1
b |b, D) ∝ Wishart

(

η + n, (
n
∑

i=1

bib
′
i + ηΩ)−1

)

.
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When γ ∈ (0, 1],

π(b[i,1]|β,λ,b(−[i,1]), ξ,D) ∝ Li(β,λ|bi, D)c−1(β(−g),λ,b)bζ−1
[i,1] exp(−ξb[i,1]),

and, for k = 2, . . . , q,

π(b[i,k]|β,λ,b(−[i,k]), ξ,D)∝Li(β,λ|bi, D)c−1(β(−g),λ,b)b
ζb[i,k−1]−1

[i,k] exp(−ξb[i,k]),

π(ξ|b, D) ∝ Ga(ζ
n
∑

i=1

(1 + b[i,1]+, . . . ,+b[i,q−1]) + a,
n
∑

i=1

(b[i,1]+, . . . ,+b[i,q]) + d).

These full conditionals have nice tractable structures since c(β (−g),λ,b) has a
closed form. Remarkably, the posterior estimation is very robust with respect to
the choice of g in (3.2).

5. Model Assessment

It is critical to compare a class of competing models for a given dataset and

select the model that best fits the data. A suitable model selection criterion is

based on the conditional predictive ordinate (CPO) statistics (Geisser (1993),

Gelfand, Dey and Chang (1992) and Dey, Chen and Chang (1997)). Closely

related to cross-validation, the CPO statistic is defined for each observation in

the dataset by obtaining the conditional predictive density given the deletion of

that observation.

Let y(−i) denote the response vector with yi = (yi1, . . . , yiKi
)′ deleted, where

y = {y′
i,y

(−i)′}′. Let ν(−i) be the (N −Ki)×1 failure time indicator vector with

νi = (νi1, . . . , νiKi
)′ deleted, Z(−i) be the (N − Ki) × p covariate matrix with

the Ki rows of observations associated with the ith cluster deleted, and X(−i)

be defined similarly. The resulting observed data can be written as D (−i) =

{(N − Ki),y
(−i),Z(−i),X(−i),ν(−i)}, i.e., the data with all the observations in

the ith cluster deleted. The conditional density function of yik (k = 1, . . . ,Ki; i =

1, . . . , n) is denoted by f(yik|Zik,Xik,β,λ,bi). Define CPOi to be the posterior

predictive density of yi given Zi = (Zi1, . . . ,ZiKi
)′, Xi = (Xi1, . . . ,XiKi

)′ and

D(−i), which can be written as CPOi = f(yi|Zi,Xi, D
(−i)). A more convenient

form for CPOi is

CPOi = f(yi|y(−i)) =

∫ ∫ ∫ f(y|β,λ,bi)π(β,λ,bi)

π(β,λ,bi|y)f(y)
π(β,λ,bi|y)dβ dλ dbi

∫ ∫ ∫ f(y(−i)|β,λ,bi)π(β,λ,bi)

π(β,λ,bi|y)f(y)
π(β,λ,bi|y)dβ dλ dbi

.

Due to the conditional independence, we have

CPOi =

{

∫ ∫ ∫

π(β,λ,bi|D)
∏Ki

k=1 f(yik|Zik,Xik,β,λ,bi)
dβ dλ dbi

}−1

.
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A Monte Carlo approximation of CPOi for the proposed model, is given by

ĈPOi =

{

1

M

M
∑

m=1

1

Li(β[m],λ[m]|bi,[m],yi,Zi,Xi)

}−1

,

where M is the number of Gibbs samples after burn-in, and

Li(β[m],λ[m]|bi,[m],yi,Zi,Xi)

=
Ki
∏

k=1

J
∏

j=1

(λγ
j,[m] + γ(β′

[m]Zik + b′
i,[m]Xik))

δikjνik/γ

× exp[−δikj{(λγ
j,[m] + γ(β′

[m]Zik + b′
i,[m]Xik))

1/γ

×(yik − sj−1) +
j−1
∑

l=1

(λγ
l,[m] + γ(β′

[m]Zik + b′
i,[m]Xik))

1/γ(sl − sl−1)}].

Here β[m] = (β1,[m], . . . , βp,[m])
′, λ[m] = (λ1,[m], . . . , λJ,[m])

′ and bi,[m] (i = 1, . . .,

n) are the samples of the mth Gibbs iteration. We summarize the CPO statistics

across all the clusters with B =
∑n

i=1 log(CPOi), where a larger value of B

indicates a better fit of a model.

6. The DRS Example

In many applications, one can apply (2.1) to the data with a set of pre-

specified γ’s and choose the best fitting model according to a suitable model

selection criterion. As an illustration, we applied the proposed Box-Cox trans-

formation frailty model to the DRS example. The response variable was time

to blindness (in months), which could be right-censored. The covariates in this

analysis were treatment (laser photocoagulation and control), the type of dia-

betes (juvenile with the age at diagnosis < 20 years, and adult), and age (a

standardized continuous variable).

Without loss of generality, we considered q = 1 in this example. For γ = 0,

we defined τ = σ−2
b and assumed τ ∼ Ga(0.001, 0.001) in order to obtain a

noninformative prior. For γ ∈ (0, 1], we assumed bi ∼ Ga(ζ, ξ), where we fixed

the shape parameter at ζ = 10−6, and assigned a gamma prior for the scale

parameter, ξ ∼ Ga(a, d). The unconditional prior mean and variance of bi are

given by,

E(bi) =
ζd

a − 1
,

var(bi) =
ζd2

(a − 1)(a − 2)
+ ζ2

{

d2

(a − 1)(a − 2)
−
(

d

a − 1

)2
}

.
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Hence, we chose the hyperparameter a = 3 and d = 105 to obtain a vague prior
distribution for bi, with var(bi) ≈ 5, 000.

We constrained the regression coefficient for laser treatment (β1) to have a
truncated normal prior. The priors for β = (β1, β2, β3)

′ and λ = (λ1, . . . , λJ)′

were taken to be noninformative, where (β1|β2, β3,λ,b) had the truncated N(0,
104) prior as defined in (3.2), β2 and β3 were independent a priori and taken
to have N(0, 104) distributions, and λj ∼ Ga(α, φ) with α = 2 and φ = 0.001,
and independent for j = 1, . . . , J . We specified priors in such a way that the
likelihood clearly dominated the posterior distribution, which would allow for a
fair comparison between different models, particularly for γ = 0 and γ ∈ (0, 1].
The shape and flexibility of the baseline hazard function is controlled by the
choice of J . The finer the partition of the time axis, the more general the pattern
of the hazard that is captured. However, by increasing J , we introduce more
unknown parameters (the λj’s) to be estimated, hence there should be some
optimal J due to this trade-off. The parameter γ also directly affects the shapes of
the hazard functions, and there is much interplay between J and γ in controlling
the shapes of the hazards. To search for a suitable model, we set J = (1, 2, 3, 4, 5)
and γ = (0, 0.25, 0.5, 0.75, 1). In this two-dimensional grid, we would locate the
point (J, γ) which yielded the largest B statistic, and the corresponding model
was then deemed to be the best fitting one.

The posterior computations were based on 30,000 Gibbs iterations with a
burn-in of 2,000 samples. The B statistics for model selection are summarized
in Table 1. Clearly, J = 4 and γ = 0.5 yields the largest CPO statistic (B =
−827.10) and the corresponding model is deemed to be the best fitting one.
Table 2 summarizes the posterior mean, standard deviation, and the 95% HPD
interval for J = 1 and J = 4. Across these competing models, the signs of the
three regression parameters are the same and they all show a significant effect
of laser treatment and a nonsignificant effect of age. However, there are some
discrepancies on the effect of the type of diabetes among different models. The
selected best fitting model (J = 4 and γ = 0.5) shows a significant effect of the
type of diabetes on the time to blindness. Patients with the adult type of diabetes
had significantly longer vision survival than those with the juvenile type.

Table 1. Grid search for the largest B statistic based on the CPO’s with
respect to J and γ in the DRS data.

J

1 2 3 4 5

0 −828.88 −831.56 −834.60 −837.21 −843.15

0.25 −1032.43 −828.40 −828.46 −829.41 −834.85

γ 0.5 −977.92 −829.00 −828.46 −827.10 −832.75

0.75 −990.16 −827.61 −827.17 −827.38 −828.38

1 −987.80 −827.51 −827.53 −827.21 −828.86
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Table 2. Posterior means, standard deviations, and 95% HPD intervals for
the DRS data.

J γ Covariate Mean Std. Dev. 95% HPD Interval

1 0 Treatment 0.8997 0.1819 (0.5504, 1.2636)
Type of Diabetes −0.6094 0.4647 (−1.5639, 0.2586)

Age 0.3082 0.2284 (−0.1250, 0.7384)

0.25 Treatment 0.2655 0.0545 (0.1578, 0.3724)

Type of Diabetes −0.0808 0.1019 (−0.2824, 0.1184)

Age 0.0443 0.0545 (−0.0649, 0.1491)

0.5 Treatment 0.0772 0.0160 (0.0455, 0.1086)

Type of Diabetes −0.0321 0.0316 (−0.0961, 0.0268)

Age 0.0110 0.0174 (−0.0220, 0.0456)

0.75 Treatment 0.0225 0.0046 (0.0135, 0.0314)

Type of Diabetes −0.0137 0.0078 (−0.0290, 0.0013)

Age 0.0040 0.0048 (−0.0052, 0.0136)

1 Treatment 0.0062 0.0013 (0.0037, 0.0088)

Type of Diabetes −0.0039 0.0017 (−0.0070, −0.0003)
Age 0.0008 0.0012 (−0.0012, 0.0033)

4 0 Treatment 0.5502 0.1741 (0.2050, 0.8900)

Type of Diabetes −1.3971 0.4818 (−2.4140, −0.4892)
Age 0.5008 0.2224 (−0.0795, 0.9564)

0.25 Treatment 0.1830 0.0521 (0.0797, 0.2839)
Type of Diabetes −0.2518 0.1131 (−0.4756, −0.0292)

Age 0.0899 0.0585 (−0.0275, 0.2017)

0.5 Treatment 0.0593 0.0156 (0.0288, 0.0894)

Type of Diabetes −0.0724 0.0287 (−0.1333, −0.0180)

Age 0.0248 0.0163 (−0.0067, 0.0574)

0.75 Treatment 0.0178 0.0046 (0.0087, 0.0266)

Type of Diabetes −0.0183 0.0069 (−0.0314, −0.0043)

Age 0.0052 0.0046 (−0.0033, 0.0143)

1 Treatment 0.0047 0.0013 (0.0022, 0.0072)

Type of Diabetes −0.0042 0.0015 (−0.0072, −0.0012)

Age 0.0009 0.0011 (−0.0008, 0.0034)

We ran parallel chains with diverse starting values to evaluate the MCMC

convergence properties. These chains converged to the same range of values for

each parameter, and all the regression parameters appeared to mix satisfactorily.

The 50% and 97.5% quantiles of the sampling distribution for the shrinking factor

reported by the Gelman and Rubin (1992) diagnostics were very close to 1 for

all the regression parameters.
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To investigate the robustness of the proposed model and the influence of

the prior distributions, we carried out several sensitivity analyses by varying the

hyperparameters. Table 3 shows that the posterior estimates are very robust

using noninformative prior distributions under a wide range of hyperparameters.

We conducted another set of sensitivity analyses, summarized in Table 4, to

examine the choice of the constrained regression parameter (β1, β2, or β3) for the

truncated normal prior distribution. The results are very robust with respect to

the constrained parameter, which demonstrates the feasibility of the proposed

prior specification.

Table 3. Sensitivity analysis with different hyperparameters on the priors

for the DRS data using J = 4 and γ = 0.5.

σβ φ (ζ, d) Covariate Mean Std. Dev. 95% HPD Interval

5 0.001 (10−6, 105) Treatment 0.0594 0.0155 (0.0289, 0.0895)

Type of Diabetes −0.0764 0.0288 (−0.1333, −0.0204)
Age 0.0274 0.0166 (−0.0049, 0.0600)

10 0.001 (10−6, 105) Treatment 0.0593 0.0160 (0.0280, 0.0902)

Type of Diabetes −0.0701 0.0296 (−0.1277, −0.0125)

Age 0.0237 0.0168 (−0.0096, 0.0564)

100 0.1 (10−6, 105) Treatment 0.0596 0.0158 (0.0287, 0.0907)

Type of Diabetes −0.0755 0.0317 (−0.1390, −0.0151)

Age 0.0259 0.0175 (−0.0080, 0.0606)

100 0.01 (10−6, 105) Treatment 0.0586 0.0158 (0.0279, 0.0895)
Type of Diabetes −0.0740 0.0300 (−0.1325, −0.0157)

Age 0.0253 0.0168 (−0.0075, 0.0582)

100 0.001 (10−4, 103) Treatment 0.0590 0.0159 (0.0275, 0.0904)

Type of Diabetes −0.0779 0.0291 (−0.1359, −0.0199)
Age 0.0291 0.0164 (−0.0035, 0.0612)

100 0.001 (10−5, 104) Treatment 0.0596 0.0160 (0.0282, 0.0904)

Type of Diabetes −0.0700 0.0300 (−0.1270, −0.0105)

Age 0.0227 0.0170 (−0.0116, 0.0553)

Table 4. Analysis of the DRS data with different regression parameters
having truncated normal priors as in (3.2), using J = 4 and γ = 0.5.

Truncated Covariate Regression Coefficient Mean Std. Dev. 95% HPD Interval

Type of Diabetes Treatment 0.0594 0.0156 (0.0291, 0.0902)
Type of Diabetes −0.0754 0.0290 (−0.1318, −0.0178)

Age 0.0270 0.0166 (−0.0065, 0.0592)

Age Treatment 0.0598 0.0156 (0.0290, 0.0908)

Type of Diabetes −0.0715 0.0294 (−0.1289, −0.0152)

Age 0.0239 0.0167 (−0.0079, 0.0565)
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