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Abstract: We propose a simple estimation method for regression parameter in a par-

tial linear model when the response variable is subject to random right censorship.

It is based on suitably stratifying a Gehan-type extension of the Wilcoxon-Mann-

Whitney estimating function. The stratification is rational, flexible and natural.

The resulting estimate is shown to be consistent and asymptotically normal, even

with the size of each stratum being as small as 2. In some special situations, the

estimate is asymptotically as accurate as the analogous estimate with the func-

tion of the nonparametric component being completely known, implying that the

stratification poses little loss of information. Inference is easily obtained through

a resampling scheme which is valid with small or moderate sizes of strata. Both

the parameter estimation and the resampling scheme can be carried out by linear

programming and are easy to implement numerically. Extensive simulations are

carried out and the results show strong support of the theory.

Key words and phrases: Accelerated failure time model, asymptotic normality,

consistency, efficiency, linear programming, resampling.

1. Introduction

Partial linear models have proved useful, especially when the dependence of

the response on one of the covariates is not certain and is not of main interest.

For example, in many clinical trials and biomedical studies, the main interest

is to identify the effect of a treatment in the presence of a confounding factor

such as age. In these studies, a partial linear model is often employed and the

confounding factor is treated as the nonparametric component. By so doing, the

confounding effect, which is less certain and of less interest, is included properly

in the model and the estimation accuracy of the treatment effect interpreted

through the key slope parameter can be maintained. We propose the use of

ranks to estimate the slope parameter in a partial linear model with censored

data. Our method is rigorous, yet computationally simple.

The partial linear model is a simple and direct generalization of the linear

regression model. With a log-transformation of the response variable, partial
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linear models give rise to a more general form of accelerated failure time mod-

els. In survival analysis, accelerated failure time linear regression models are

important alternatives to the Cox proportional hazards model (Cox (1972)), and

sometimes more appealing because of more direct interpretation (Reid (1994)).

For linear regression models with censored data, the least squares estimation

(LSE) and rank estimation methods were proposed and analyzed in Buckley and

James (1979), Ritov (1990), Tsiatis (1990), Lai and Ying (1991a, b), Ying (1993)

and Jin, Lin, Wei and Ying (2003), among many others. In particular, Jin, Lin,

Wei and Ying (2003) used linear programming and a resampling scheme (see

also Parzen, Wei and Ying (1994)) to overcome the computational complexity

of the rank estimation method. However, it is unclear whether and how these

computational advantages can be carried over to the partial linear model with

censored data. With the presence of censorship, it is not clear how to eliminate

the infinite dimensional nuisance parameter to obtain the estimate of the slope

parameter. In particular, the conventional least squares method for the partial

linear model without censorship, developed in Chen (1988) and Speckman (1988)

for example becomes increasingly difficult to carry over to censored data. In ad-

dition, one of main problems with linear or partial linear models for censored

data is variance estimation. Wang (1996), Wang and Zheng (1997), Liang and

Zhou (1998) and Wang and Li (2002) tried to tackle the problem using synthetic

data, however some of their estimation and inference procedures are also rather

complex. Moreover, the method of synthetic data relies on the assumption of the

independence of the censoring variable and the covariates, which is often a too

restrictive assumption; see also Koul, Susarla and van Ryzin (1981). In summary,

the analysis of censored data with partial linear model is quite challenging both

theoretically and numerically.

In this paper we propose a rank estimation procedure, a direct generalization

of Wilcoxon-Mann-Whitney estimation, to partial linear model with censored

data. A key step is to eliminate the nuisance parameter by a proper stratifica-

tion. Using counting process martingale theory, we prove that the resulting slope

estimate is consistent and asymptotically normal. The two computational prob-

lems commonly associated with rank estimation, namely computing the slope

estimate and obtaining its inference, are solved by linear programming and a re-

sampling scheme and are easy to implement numerically; see Remark 1. One of

the major advantages of this estimation method is the flexibility of the stratifica-

tion involved. There is essentially no restriction on the stratification−consistency,

asymptotic normality and inference via a resampling scheme are all valid as long

as the size of each stratum is greater than 1 and is of order o(n1/2); see Remarks
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1 and 3. Moreover, the stratification does not depend on whether the nonpara-

metric component is discrete/categorical or continuous. In certain situations the

estimate can be as accurate as its linear model analogue when the function h(·)

as the nuisance parameter of infinite dimension is completely known. This im-

plies that the proposed estimation method via stratification indeed successfully

eliminates the nuisance parameter h(·) with little loss of estimation accuracy; see

Remark 1.

The rank estimate is proposed and proved to be consistent and asymptotic

normal in Section 2. Section 3 contains simulation results in support of the

theory and an application of it.

2. The Estimate And Inference

Let (Ỹ ,X,W, ε) be random variables satisfying the partial linear model

Ỹ = β′X + h(W ) + ε, (1)

where Ỹ is the response, X and W are covariates of p and 1 dimensions respec-

tively, ε is the error term which is independent of (X,W ), β is the slope parameter

of p dimensions, and h(·) is a function which can be viewed as an infinite dimen-

sional nuisance parameter. Let C be a censoring variable which is conditionally

independent of Ỹ given (X,W ). Let (Ỹi, Xi,Wi, εi, Ci), 1 ≤ i ≤ n, be n inde-

pendent and identically distributed copies of (Ỹ ,X,W, ε, C). With the presence

of censorship, we observe (Yi, Xi,Wi, δi), 1 ≤ i ≤ n, where δi = I(Ỹi ≤ Ci) and

Yi = min(Ỹi, Ci).

The main feature of a partial linear regression model is the presence of the

infinite dimensional nuisance parameter h(·). To eliminate it, we propose the fol-

lowing method. Stratify the observations into Kn groups, J1, . . . , JKn , according

to the values of the nonparametric component W such that, for 1 ≤ k0. Since M

is chosen to be large, the minimization of L(β) is equivalent to the minimization

of
Kn
∑

k=1

∑

i,j∈Jk

|uij − β′vij| +
∣

∣

∣M + β′

Kn
∑

k=1

∑

i,j∈Jk

vij

∣

∣

∣.

This can be implemented easily with statistical software. For example, in Splus

or R, use l1fit or rq.fit. In addition, the minimization of L(β) can also be carried

out in linear programming: minimize the linear function
∑Kn

k=1

∑

i,j∈Jk
wij subject

to the linear constraints wij ≥ 0 and wij ≥ −(uij − β′vij).

For clarity of presentation, let β0 be the true value of β. Denote by f , F

and Λ the density, distribution and cumulative hazard functions of ε. Let λ and

λ̇ be the first and second derivative functions of Λ. To show the consistency and

asymptotic normality of β̂, we need the following regularity conditions.
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C1. The covariates X and W have bounded supports, and the support of C is

bounded above.

C2. On the support of W , h(·) satisfies the Lipschitz condition |h(t) − h(s)| ≤

D|t − s| for some constant D > 0.

C3. As n → ∞, max{|Wk −Wl| : k, l ∈ Ji, 1 ≤ i ≤ Kn} = o(n−1/2). For all n ≥ 1,

max{|Ji|/an : 1 ≤ i ≤ Kn} is bounded, where |Ji| is the size of the set Ji and

an = n/Kn.

C4. As n → ∞, an → ∞ and Gn(w)/an → g(w) as n → ∞, where g(·) is a

deterministic function and Gn(·) is a step function such that Gn(w) = |Jk| if

w ∈ [min(Wi, i ∈ Jk),min(Wi, i ∈ Jk+1)).

C5. The matrices Σ1 and Σ2 defined in (A.9) and (A.10) are finite and nonde-

generate, and
∫ c
−∞

|λ̇(t)|dt is finite for any constant c.

Throughout the paper, we show no limits for integration over the whole line,

and b⊗2 = bb′ for any vector b.

Proposition 1. Assume C1−C3 and C5 hold. Then, β̂ is consistent and asymp-

totically normal. If in addition C4 holds,

n1/2(β̂ − β0) → N(0,Σ−1
2 Σ1Σ

−1
2 ), (3)

where Σ1 and Σ2 are defined in (A.9) and (A.10) ıin the Appendix.

Remark 1. Conditions C1, C2 and C5 are simply regularity conditions while

Conditions C3 and C4 are related to the stratification rule. Stratification is

a commonly used method in biostatistics, especially in studying the effect of

certain risk factors (e.g., X) when a confounding factor (e.g., W ) is also present.

It is seen from C3 and C4 that the proposed stratification rule is quite flexible.

In fact, C4 is only for obtaining an analytic expression for Σ1 and Σ2, and is

not necessary for consistency, asymptotic normality or inference via resampling;

see Remark 2 for more discussion. Moreover, the stratification also allows for

discrete/categorical or continuous W . When W is categorical, stratification may

reduce to the conventional one: each stratum is the group of subjects with the

same value of W . When W is continuous, the restriction that the nonparametric

components within each stratum do not vary too much (of the order o(n−1/2)),

is still mild. This restriction ensures that the bias arising from stratification is

negligible. The rationale for the proposed stratification can be understood in

the following two scenarios. The first is when h(·) is assumed completely known.

Then β can be estimated by the β̂◦ which minimizes

L◦(β) =
n

∑

i,j=1

δi{Y
◦

i − Y ◦

j − β′(Xi − Xj)}
−,
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where Y ◦
i = Yi − h(Wi). The second is when h(·) is assumed to be constant

(known or unknown). Then the partial linear model reduces to a linear model

and Y ◦
i − Y ◦

j = Yi − Yj. The estimate which minimizes L◦(·) is studied in Jin,

Lin, Wei and Ying (2003). In general, it can be shown along the line of proof

presented in the Appendix that n1/2(β̂◦ − β0) → N(0,Σ◦
2
−1Σ◦

1Σ
◦
2
−1), where Σ◦

1

and Σ◦
2 are similarly defined as Σ1 and Σ2 in (A.9) and (A.10), except with g(W )

replaced by 1 and all the conditional expections/probabilities replaced by those

without conditioning on W . Suppose now g(W ) = 1, i.e., each stratum has the

same size, and W is independent of C̃ and X. Then Σ1 = Σ◦
1, Σ2 = Σ◦

2 and β̂

and β̂◦ have the same asymptotic distribution. In particular, in the absence of

censorship, the independence of W and X and equal size of stratum imply the

equal asymptotic accuracy of β̂ and β̂◦. When the partial linear model reduces

to a linear model, the equal size of strata and independence of W and (C̃,X)

imply that the proposed estimate is as accurate as the estimate studied in Jin,

Lin, Wei and Ying (2003).

Remark 2. The synthetic estimates proposed and analyzed in Wang (1996),

Wang and Zheng (1997) and Wang and Li (2002) are motivated quite differently

from the estimates in this paper. A key step in constructing synthetic estimates

is to estimate the distribution of the censoring variable by the Kaplan-Meier

estimate and thereby to synthesize the response variable. As with other synthetic

estimates in the literature, such as the Koul-Susarla-van Ryzin estimate, validity

requires the independence of the censoring variable and the covariates, which is

often too restrictive. For example, it excludes competing risk models and cannot

be naturally extended to dependent censoring. These can be accomplished with

the assumption of conditional independence of the censoring variable and the

response variable given the covariates. The proposed estimate does not rely on

any structural assumption. It is properly motivated by the classical Wilcoxon-

Mann-Whitney estimates and has a valid and easy inference procedure described

below.

Remark 3. Assume C1−C3 and C5 hold. Suppose each stratum contains more

than one subject but the size of each stratum may not converge to infinity. Here

C4 is not imposed, and the size of each stratum may be as small as 2. The

consistency and asymptotic normality of β̂, as expressed in (A.8), still hold even

though Σ−1
n,2Σn,1Σ

−1
n,2 as the approximate variance of β̂ may not have a limit.

Most importantly, the following resampling scheme is also valid without C4.

Although the expressions of Σn,1, Σn,2, Σ1 and Σ2 regarding the asymptotic

variance of β̂ are available in closed forms in (A.4), (A.5), (A.9) and (A.10), a

direct estimation of the variance of β̂ via the plug-in rule is in fact quite difficult
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since these expressions contain the derivative of the density of ε, which cannot be

accurately estimated. For ease of implementation, we propose to use a resampling

scheme that is computationally straightforward and does not involve estimating

any density or its derivative. Define

L∗(β) =
Kn
∑

k=1

∑

i,j∈Jk

δi{Yi − Yj − β′(Xi − Xj)}
−ξi,

where ξi, i ≥ 1, are independent and identically distributed positive random

variables, with E(ξi) = var(ξi) = 1, that are independent of {(Yi, Xi,Wi, δi), i ≥

1}. Denote the minimizor of L∗(β) by β̂∗.

Proposition 2. Suppose conditions C1−C3 and C5 hold. Then, with probability

1 as n → ∞,

sup
t∈Rp

|Fn(t) − F ∗

n(t)| → 0, (4)

where Fn(·) is the distribution of n1/2(β̂ − β0) and F ∗
n(·) is the conditional dis-

tribution of n1/2(β̂∗ − β̂) given the data (Yi, Xi,Wi, δi), 1 ≤ i ≤ n. If in addition

C4 holds, then with probability 1, F ∗
n has limiting distribution N(0,Σ−1

2 Σ1Σ
−1
2 ),

as does Fn.

Since (4) holds without C4, it implies that the resampling procedure for

inference is valid without requiring the size of each stratum to be large. The

above proposition suggests, for example, that a confidence interval for β can

be constructed as follows. Let σ̂ be the conditional variance of β̂∗ given the

data (Yi, Xi,Wi, δi), 1 ≤ i ≤ n. This can be computed straightforwardly through

resampling. For any given 0 < α < 1, one can use (β̂ − z(α/2)σ̂, β̂ + z(α/2)σ̂) as

the confidence interval for β at confidence level 1−α. Here z(α/2) is the 1−α/2

percentile of the standard normal distribution. As the minimization of L∗(β) is

as simple as the minimization of L(β), the inference is easily obtained.

3. Numerical Studies

Extensive numerical studies were conducted. The following simulation ex-

amples were done with the software R, a key part was running L1 regression

using the quantreg package. The sample size n was 100; εi followed the standard

normal distribution N(0, 1); Xi followed the uniform distribution U(0, 5) and

Wi was chosen to be independent of or dependent on Xi specified below. We

took β to be 1 or 2 and h(·) to be constant, linear or quadratic. The censoring

variable Ci was generated from C = β ′X + h(W ) + ε∗, where ε∗ follows the

uniform distribution U(0, r) independent of the rest of the variables. Here r was

chosen such that the proportion of censoring was approximately 80%; see, e.g.,
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Jin, Lin, Wei and Ying (2003). We chose equal size of strata, denoted by m, in

each simulation, and m was 5, 10 or 20. The results presented in the following

are based on 1,000 simulations. The size of each resampling was 500. For the

resampling, ξi followed the exponential distribution with E(ξi) = var(ξi) = 1.

Table 1 contains simulation results for the independent case, i.e., Wi is U(0, 1)

and independent of Xi. Table 2 contains simulation results for the dependent

case in which Wi = 0.1(Xi + ηi), where ηi is U(0, 5) and independent of the rest

of the variables.

In the following tables, we present the average of the estimates β̂, the em-

pirical standard error (“EMPSE”), the average of the estimated standard errors

(“ESTSE”) and coverage probabilities (“CP”) of 95% confidence intervals based

on the resampling. For the purpose of comparison, we also present results based

on the analogous estimation method with known h(·), as discussed in Remark 1.

Table 1. Simulation results with W independent of X .

Bias EMPSE ESTSE CP

m = 2 h(w) = 0.5 0.0079 0.133 0.137 94.4

h(w) = w -0.0085 0.131 0.136 93.0
h(w) = w2 -0.0050 0.133 0.135 94.3

m = 5 h(w) = 0.5 -0.0026 0.091 0.091 93.6

h(w) = w -0.0074 0.090 0.092 93.7

h(w) = w2 -0.0008 0.087 0.091 94.6
β0 = 1 m = 10 h(w) = 0.5 0.0024 0.084 0.081 93.3

h(w) = w -0.0041 0.082 0.082 93.9

h(w) = w2 -0.0022 0.086 0.081 93.3

m = 20 h(w) = 0.5 0.0017 0.078 0.077 93.5

h(w) = w -0.0005 0.077 0.077 93.8
h(w) = w2 -0.0020 0.079 0.078 94.3

h(·) is known -0.0033 0.077 0.074 93.0

m = 2 h(w) = 0.5 0.0006 0.129 0.136 94.3

h(w) = w 0.0020 0.128 0.136 94.7

h(w) = w2 0.0008 0.126 0.135 94.5

m = 5 h(w) = 0.5 0.0006 0.090 0.091 94.3
h(w) = w 0.0011 0.091 0.092 94.3

h(w) = w2 0.0049 0.089 0.090 93.5

β0 = 2 m = 10 h(w) = 0.5 -0.0037 0.080 0.081 93.5

h(w) = w 0.0043 0.080 0.080 95.0
h(w) = w2 0.0012 0.085 0.081 93.3

m = 20 h(w) = 0.5 -0.0009 0.074 0.077 95.5

h(w) = w -0.0008 0.077 0.078 94.7

h(w) = w2 -0.0008 0.077 0.077 93.3

h(·) is known -0.0010 0.074 0.074 94.9
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Table 2. Simulation results with W dependent on X .

Bias EMPSE ESTSE CP

m = 2 h(w) = 0.5 0.0103 0.190 0.194 93.0
h(w) = w 0.0029 0.181 0.193 93.7

h(w) = w2 0.0043 0.185 0.193 93.8

m = 5 h(w) = 0.5 -0.0021 0.127 0.128 94.0

h(w) = w 0.0054 0.131 0.129 93.4

h(w) = w2 0.0037 0.129 0.129 94.1
β0 = 1 m = 10 h(w) = 0.5 0.0049 0.115 0.114 94.7

h(w) = w 0.0049 0.110 0.113 94.8

h(w) = w2 0.0077 0.115 0.114 93.3

m=20 h(w) = 0.5 0.0006 0.106 0.105 93.7
h(w) = w 0.0147 0.109 0.105 93.4

h(w) = w2 0.0081 0.105 0.104 93.4

h(·) is known -0.0046 0.076 0.074 93.7

m = 2 h(w) = 0.5 -0.0018 0.186 0.193 93.7

h(w) = w -0.0010 0.187 0.193 93.5

h(w) = w2 0.0020 0.176 0.189 94.2
m = 5 h(w) = 0.5 -0.0086 0.129 0.127 93.0

h(w) = w 0.0015 0.129 0.128 92.5

h(w) = w2 -0.0033 0.133 0.129 93.6

β0 = 2 m = 10 h(w) = 0.5 0.0055 0.114 0.113 93.7

h(w) = w 0.0048 0.110 0.113 94.8
h(w) = w2 0.0032 0.115 0.112 92.9

m = 20 h(w) = 0.5 -0.0006 0.104 0.105 95.0

h(w) = w 0.0130 0.101 0.104 94.6

h(w) = w2 0.0138 0.105 0.105 94.5
h(·) is known -0.0027 0.075 0.074 94.0

It is seen from the tables that the proposed slope estimates β̂ are quite

accurate. The empirical standard error and the estimated standard error are in

general close to each other, implying that the resampling method for inference is

appropriate. Moreover, the coverage probabilities are close to the nominal level

95%. In Table 1, the standard errors of the estimates, even for m = 5, are quite

close to those of the estimates with known h(·). This provides empirical evidence

to the claim that in some cases the proposed estimate can be as accurate as the

one with known h(·); see Remark 1 and Jin, Lin, Wei and Ying (2003) for more

discussion.

We apply the estimation procedure to a study on multiple myeloma; see

Krall, Uthoff and Harley (1975). There were 65 patients in the study. Among

them, there were 48 failures/deaths and 17 survivals/censoring. The partial
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linear model we consider is

Ỹ = β × log(BUN) + h(age) + ε,

where Ỹ is lifetime and log(BUN) is the logarithm of blood urea nitrogen. Age

might be a confounding factor and it is treated as the nonparametric component

in the model. For the stratification we chose m = 2 or 5 as the (equal) size of

strata. For m = 2, β̂ = −1.955, its estimated standard error obtained through

resampling (with 500 replications) is σ̂ = 0.807, and the 95% confidence interval

for β is (−3.538,−0.372). For m = 5, β̂ = −1.863, σ̂ = 0.396 and the 95%

confidence interval for β is (−2.641,−1.086). The two slope estimates are both

negative and the two confidence intervals are both in the negative part of the

real line. Blood urea nitrogen is negatively related to lifetime.
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Appendix

1. Proof of Proposition 1. More notation is needed. Let C̃i = Ci − β′
0Xi −

h(Wi). Let Ni(β; t) = δiI(Yi−β′Xi ≤ t), Mi(β; t) = Ni(β; t)−
∫ t
−∞

I(Yi−β′Xi ≥

s)dΛ{s−h(Wi)}. Then Mi(β0; t) is a counting process martingale. Set Rk(β; t) =
∑

i∈Jk
I(Yi − β′Xi ≥ t) and X̄k(β; t) =

∑

i∈Jk
XiI(Yi − β′Xi ≥ t)/Rk(β; t).

Notice that, for all large n, L(β) is a strictly convex function of β and there-

fore the minimizor β̂ is unique. It follows from the Law of Large Numbers and the

empirical approximation that, with probability 1, |L(β) − E{L(β)}|/(nan) con-

verges to 0 uniformly over any bounded region of β. Moreover, it can be shown

that β0 is the unique minimizor of the strictly convex function E{L(β)}/(nan).

It then follows that β̂ converges to β0 with probability 1. Let Bn be a sequence of

balls centered at β0 with radius rn ↓ 0 slowly enough. We have P (β̂ ∈ Bn) → 1.

Consider β in a fixed neighborhood of β0. Observe that
∑

i∈Jk
Rk(β; t){Xi −

X̄k(β; t)}I(Yi − β′Xi ≥ t) = 0. Let bk,1 = min{h(Wi); i ∈ Jk} and bk,2 =

max{h(Wi); i ∈ Jk}. Then

∑

i∈Jk

∫

Rk(β; t){Xi − X̄k(β; t)}I(Yi − β′Xi ≥ t)dΛ(t + bk,1) = 0.

Using C2−C3, one can verify that max{|bk,2− bk,1| : 1 ≤ k ≤ Kn} = max{|h(Wi)

−h(Wj)| : i, j ∈ Jk; 1 ≤ k ≤ Kn} = o(n−1/2). It then follows from C1−C3 and
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C5 that

Kn
∑

k=1

∑

i∈Jk

∫

Rk(β; t){Xi − X̄k(β; t)}I(Yi − β′Xi ≥ t)dΛ{t + h(Wi)}

=
Kn
∑

k=1

∑

i∈Jk

∫

Rk(β; t){Xi−X̄k(β; t)}I(Yi−β′Xi≥ t)[dΛ{t+h(Wi)}−dΛ(t+bk,1)]

= OP (an)
Kn
∑

k=1

∑

i∈Jk

∫ c

−∞

|λ(t + h(Wi)) − λ(t + bk,1)|dt

= OP (a2
n)

Kn
∑

k=1

∫ c

−∞

∫ t+bk,2

t+bk,1

|λ̇(s)|ds dt

= OP (a2
n)KnoP (n−1/2) = oP (n1/2an), (A.1)

where c is a large but fixed constant. Formally differentiate L(β) with respect to

β and let U(β) be the gradient. Then β̂ is a zero crossing of U(β). Write

U(β) =
∂

∂β
L(β) =

Kn
∑

k=1

∑

i,j∈Jk

δi(Xi − Xj)I(Yi − β′Xi ≤ Yj − β′Xj)

=
Kn
∑

k=1

∑

i∈Jk

∫

Rk(β; t){Xi − X̄k(β; t)}dNi(β; t). (A.2)

It follows from (A.1) and (A.2) that

U(β) =
Kn
∑

k=1

∑

i∈Jk

∫

Rk(β; t){Xi − X̄k(β; t)}dMi(β; t) + oP (n1/2an). (A.3)

Define

Σn,1 =
1

n

Kn
∑

k=1

∑

i∈Jk

∫

{Rk(β0; t)/an}
2{Xi − X̄k(β0; t)}

⊗2dNi(β0; t), (A.4)

Σn,2 =
1

n

Kn
∑

k=1

∑

i∈Jk

∫

Rk(β0; t)

an
{Xi − X̄k(β0; t)}

⊗2I(Yi − β′

0Xi ≥ t)λ̇{t− h(Wi)}dt.

(A.5)

It follows from the Martingale Central Limit Theorem and (A.3) that

(n−1/2/an)Σ
−1/2
n,1 U(β0) → N(0, Ip), (A.6)
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where Ip is the p × p identity matrix. By a change of variable in t, (A.3) can be

written as

U(β) =
Kn
∑

k=1

∑

i∈Jk

∫

Rk(β; t − β′Xi){Xi − X̄k(β; t − β′Xi)}

×
[

dδiI(Yi ≤ t) − I(Yi ≥ t)dΛ{t − β ′Xi − h(Wi)}
]

+ oP (n1/2an).

Then, for β ∈ Bn, using the above expression, one can write

1

nan
{U(β) − U(β0)} = oP (n−1/2)

+
1

nan

Kn
∑

k=1

∑

i∈Jk

∫

Rk(β0; t − β′

0Xi){Xi − X̄k(β0; t − β′

0Xi)}X
′

i

(β − β0)I(Yi ≥ t)λ̇{t − β′

0Xi − h(Wi)}dt

= oP (n−1/2) +
1

n

[

Kn
∑

k=1

∑

i∈Jk

∫

Rk(β0; t)

an
{Xi − X̄k(β0; t)}

⊗2

×I(Yi − β′

0Xi ≥ t)λ̇{t − h(Wi)}dt
]

(β − β0)

= Σn,2(β − β0) + oP (n−1/2). (A.7)

Combining (A.7) with (A.6), we have

n1/2Σ
−1/2
n,1 Σn,2(β̂ − β0) → N(0, Ip). (A.8)

This proves the consistency and asymptotic normality of β̂ under C1−C3 and

C5. If, in addition C4 holds, it follows from the Law of Large Numbers that

Σn,1 →

∫

E
[

{g(W )P (ε > t)P (C̃ ≥ t|W )}2{X − E(X|C̃ ≥ t;W )}⊗2

×f(t)P (C̃ ≥ t|W )
]

dt,

= Σ1, say, (A.9)

Σn,2 →

∫

E
[

{g(W )P (ε ≥ t)P (C̃ ≥ t|W )}{X − E(X|C̃ ≥ t;W )}⊗2

×λ̇(t)P (ε > t)(P (C̃ ≥ t|W )
]

dt

=

∫

E
[

g(W ){X − E(X|C̃ ≥ t;W )}⊗2

×[ḟ(t){1 − F (t)} + f 2(t)]{P (C̃ ≥ t|W )}2
]

dt

= Σ2, say. (A.10)
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Hence (3) holds and the proof is complete.

2. Proof of Proposition 2. The proof follows that of Proposition 1. Ob-

serve that L∗(β) is also a strictly convex function and the minimizor β̂∗ is

therefore unique for all large n. Let Ω be the σ-algebra of (Yi, Xi,Wi, δi), i ≥

1. The conditional mean of L∗(β) given Ω is precisely L(β). It follows that

|L∗(β) − L(β)|/(nan) converges to 0 uniformly over any bounded region of β

with probability 1. Hence P (β̂∗ ∈ Bn|Ω) → 1 with probability 1 by the strong

consistency of β̂.

Let U∗(·) be the gradient of L∗(·). Then,

U∗(β) =
∂

∂β
L∗(β) =

Kn
∑

k=1

∑

i,j∈Jk

δiξi(Xi − Xj)I(Yi − β′Xi ≤ Yj − β′Xj).

Recall that β̂∗ and β̂ are zero crossings of U ∗(·) and U(·), respectively. Write

U∗(β̂∗) − U∗(β̂) = −U∗(β̂) = −U∗(β̂) + U(β̂)

= −
Kn
∑

k=1

∑

i∈Jk

∫

Rk(β; t){Xi − X̄k(β; t)}dNi(β; t)(ξi − 1).

Since ξi, i ≥ 1, are independent, identically distributed with mean 1 and variance

1 and are independent of Ω, the Central Limit Theorem implies that, conditioning

on Ω, the conditional distribution of n−1/2/an{U
∗(β̂∗)−U∗(β̂)} is approximately

N(0,Σn,1). On the other hand, analogous to (A.7), it can be shown that, with

probability 1,

1

nan
{U∗(β̂∗) − U∗(β̂)} = Σn,2(β̂

∗ − β̂) + oP ∗(n−1/2),

where P ∗ is the conditional probability given Ω. Consequently, the conditional

distribution of n1/2Σ
−1/2
n,1 Σn,2(β̂

∗ − β̂) given Ω is approximately N(0, Ip). The

proof is complete on observing (A.8) and the arguments following (A.8).
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