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Abstract: The cDNA microarray technology is a tool for monitoring gene expression

levels on a large scale and has benn widely used in functional genomics. A basic

question in analyzing microarray data is proper normalization to ensure meaningful

down-stream analyses. We propose a two-way semilinear model for microarray data

with two important features. First, it does not require pre-selection of constantly

expressed genes or the assumptions that either the percentage of differentially ex-

pressed genes is small or there is symmetry in the expression levels of up- and down-

regulated genes. Second, when used for dection of differentially expressed genes,

it incorporates variations due to normalization in the assessment of uncertainty in

the estimated differences in gene expressions. The proposed model presents novel

and challenging theoretical questions in the area of semiparametric statistics due to

the presence of infinitely many nonparametric components. We provide theoretical

justification that unbiased statistical inference is possible in the two-way semilin-

ear model when self calibration is needed with a large number of parameters. We

also prove that the nonparametric optimal rate of convergence can be achieved in

estimating the normalization curves under appropriate conditions.

Key words and phrases: Asymptotic theory, gene expression, high-dimensional

model, microarray, normalization, semiparametric statistics.

1. Introduction

The cDNA microarray technology is a tool for monitoring gene expression

levels on a large scale and has been widely used in functional genomics (Brown

and Botstein (1999)). A basic question in analyzing microarray data is normal-

ization for the purpose of removing bias in the observed gene expression levels.

Many experimental factors can cause bias in the observed intensity levels, such as

differential efficiency of dye incorporation, differences in concentration of DNA

on arrays, differences in the amount of RNA labeled between the two channels,

uneven hybridizations, differences in the printing pin heads, and so on. Proper

normalization is crucially important in ensuring meaningful down-stream analy-

ses, such as detecting differentially expressed genes, clustering co-regulated genes,

and classifying biosamples using gene expression profiles.
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Normalization is accomplished by establishing a baseline intensity ratio curve

from florescent dyes Cy3 and Cy5 across the whole dynamic range for each ar-
ray. Researchers have considered various normalization methods. For example,

the analysis of variance (ANOVA) method has been used for joint normalization

and detection of differentially expressed genes (Kerr and Churchill (2000)). This

method takes into account the variations due to normalization, but it assumes
that normalization is a linear factor in the overall ANOVA model. Another

method employs local regression (loess, Cleveland (1979, 1986) and Fan and Gi-

jbels (1996)) to first regress the log-intensity ratio on the log-intensity product

using all the genes printed on a slide, and then uses the residuals of the regres-
sion as the normalized data in the subsequent analysis (Yang, Dudoit, Luu and

Speed (2001)). Thus this method takes into account nonlinear normalization

effects. However, because one uses all the genes, including those with differen-

tial expressions, the resulting normalization curves can be biased, and variations
due to normalization are not considered in the subsequent analysis. To allevi-

ate this problem, the loess normalization method requires the assumption that

either the number of differentially expressed genes is relatively small, or there is
symmetry in the expression values of up- and down-regulated genes. If it is ex-

pected that many genes have differential expressions, Yang et al. (2000) suggest

using dye-swap for normalization. This approach makes the assumption that the

normalization curves in the two dye-swapped slides are symmetric. Because of
slide-to-slide variation, this assumption may not be satisfied. Fan, Tam, Woude

and Ren (2004) introduce a Semi-Linear In-slide Model (SLIM) method for nor-

malization, which is expected to work well with balanced replications of genes

within individual arrays (Fan, Peng and Huang (2004)).
By definition, an unbiased normalization curve should be estimated using

genes whose expression levels remain constant and cover the whole range of the

intensity. Thus Tseng, Oh, Rohlin, Liao and Wong (2001) first used a rank-

based procedure to select a set of ‘invariant genes’ that are likely to be non-
differentially expressed, then used these genes in loess normalization. However,

the set of selected non-differentially expressed genes may not cover the whole

dynamic range of the intensity levels. In addition, a threshold value is required

in this rank-based selection procedure. How sensitive the final results are to the
threshold value may need to be evaluated on a case by case basis.

We propose a two-way semilinear model (TW-SLM) for microarray data.

We have introduced the TW-SLM in Huang, Kuo, Koroleva, Zhang, and Soares

(2003) and applied our method to a number of microarray datasets. In this
paper, we further develop TW-SLM and provide theoretical justification of our

method. More experiments with real and simulated data and an alternative

theory is provided in Huang, Wang and Zhang (2004), an updated version of

Huang et al. (2003).
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The TW-SLM grows out of the idea of the loess and ANOVA normalization

methods. In essence, the TW-SLM is a semiparametric analysis of covariance

model that includes nonlinear normalization factors. In addition, as can be seen

below, the loess method can be considered as the first step in an iterative fitting

algorithm in solving the proposed TW-SLM. There are two important features of

the TW-SLM. First, when TW-SLM is used for normalization, it does not require

the assumption that the percentage of differentially expressed genes is small,

nor does it require pre-selection of constantly expressed genes. Second, when

TW-SLM is used for detection of differentially expressed genes, it incorporates

variations due to normalization in the assessment of uncertainty in the estimated

differences in gene expressions.

The TW-SLM presents novel and challenging theoretical questions in the

area of semiparametric statistics. In the TW-SLM, the number of genes J is

always much greater than the number of arrays n. This fits the description of

the well-known “small n, large p” problem (we use p instead of J to be consis-

tent with the phrase used in the literature). In addition, both n and J play the

dual role of sample size and number of parameters. For estimating gene effects

J is the number of parameters and n is the sample size, but for estimating the

normalization curves n is the number of infinite-dimensional parameters and J

is the sample size. On one hand, sufficiently large n is needed for the inference

of gene effects, but a large n makes normalization more difficult since more non-

parametric curves need to be estimated. On the other hand, sufficiently large

J is needed for accurate normalization, but then estimation of β becomes more

difficult. Although there has been intensive research in semiparametric statis-

tics (Bickel, Klaassen, Ritov and Wellner (1993)), we are not aware of any other

semiparametric models in which n and J play such dual roles of sample size and

number of parameters. Indeed, here the difference between the sample size and

the number of parameters is no longer as clear as that in a conventional statis-

tical model. This reflects a basic feature of the microarray data in which self

calibration in the data is required when making statistical inference. Our results

in this paper provide theoretical justification that, for large J and n, unbiased

statistical inference is possible when self calibration is needed. An alternative

theory for large J (with large or fixed n ≥ 2) is provided in Huang, Wang and

Zhang (2004) under a different set of regularity conditions.

2. The Two-Way Semiparametric Regression Model

To motivate the model, we first consider the important special case of direct

comparison of two cell populations, in which two cDNA samples from the respec-

tive cell populations are competitively hybridized on the same slide. Suppose

there are J genes and n slides in the study. Let uij and vij be the intensity levels
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of gene j in slide i from the type 1 and the type 2 samples, respectively. Let

yij be the log-intensity ratio of the jth gene in the ith slide, and let xij be the

corresponding average of the log-intensities. That is,

yij = log2

uij

vij
, xij =

1

2
log2(uijvij), i = 1, . . . , n, j = 1, . . . , J. (2.1)

The proposed TW-SLM is

yij = fi(xij) + βj + εij , i = 1, . . . , n, j = 1, . . . , J, (2.2)

where fi is the normalization curve for the ith array, βj ∈ IR is the difference in

the expression levels of gene j after normalization, and εij is the residual error

term. The function fi is the normalization curve for the ith slide, because it is

the difference in the log intensities of red and green channels in the absence of

gene effects. Therefore, fi’s represent the experimental effects, and should be

removed from the log-intensity ratios. The βj ’s are the biologically meaningful

effects. We note that in (2.2), it is only made explicit that the normalization

curve fi is slide-dependent. It can also be made dependent upon regions of a

slide to account for spatial effects. For example, it is straightforward to extend

the model with an additional subscript in (yij, xij) and fi and make fi also depend

on the printing-pin blocks within a slide.

In general, let zi ∈ Rd be a covariate vector associated with the ith slide.

The general form of the TW-SLM is:

yij = fi(xij) + z′iβj + εij, i = 1, . . . , n, j = 1, . . . , J, (2.3)

where βj ∈ Rd is the effect associated with the jth gene, z ′i is the transpose of

zi, and fi and εij are as in (2.2).

The covariate vectors zi can be used to code various types of designs and

can include other types of covariates. For example, for the two sample direct

comparison design, zi = 1, i = 1, . . . , n, which is (2.2). For an indirect comparison

design using a common reference, we can introduce a two-dimensional covariate

vector zi = (zi1, zi2)
′. Let zi = (1, 0)′ if the ith array is for the type 1 sample

versus the reference, and zi = (0, 1)′ if the ith array is for the type 2 sample versus

the reference. Now βj = (βj1, βj2)
′ is a two-dimensional vector and βj1 − βj2

represents the difference in the expression levels of gene j after normalization.

We denote the collection of the normalization curves by f = {f1, . . . , fn} and

the matrix of the gene effects by β = (β1, . . . , βJ)′. The TW-SLM is an extension

of the semiparametric regression model (SRM) proposed by Engle, Granger, Rice

and Weiss (1986) in a study of relationship between weather and electricity sales,

while adjusting for other factors. Specifically, if f1 = · · · = fn ≡ f and J = 1,

then the TW-SLM simplifies to the model of Engle et al. (1986), which has one
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infinite-dimensional component and one finite-dimensional regression parameter.
Much work has been done concerning the properties of the semiparametric least

squares estimator (SLSE) in the SRM, see e.g., Heckman (1986), Rice (1986),
Chen (1988) and Härdle, Liang and Gao (2000). For example, it has been shown

that, under appropriate regularity conditions, the SLSE of the finite-dimensional
parameter in the SRM is asymptotically normal, although the rate of convergence

of the estimator of the nonparametric component is slower than n1/2.
We study the computation, the asymptotic properties of the SLSE of β as

(n, J) → (∞,∞), and error bounds for normalization. Our results cover the

important case of n/J → 0 for the analysis of microarray data in which the
number J of genes is always several magnitude greater than the number n of

arrays. Because the cost of making cDNA arrays is getting less and less expensive,
and because many investigators now use adequate replication to ensure that

the analysis results are biologically meaningful, many microarray data sets now
have a respectable number of replicated arrays. Therefore, we consider the case

n/J → 0 as (n, J) → (∞,∞) as an approximation to the finite sample situation.
Our results provide theoretical justifications for the normalization and detection
of differentially expressed genes using microarray data in the framework of the

proposed TW-SLM.

3. Semiparametric Least Squares Estimation and Computation in the
TW-SLM

We assume that the normalization curves can be adequately approximated

by linear combinations of certain basis functions. Specifically. let

Si ≡ {ψi1(x) = 1, ψik(x), k = 2, . . . ,Ki} (3.1)

be the spaces of all linear combinations of the basis functions ψik, k ≤ Ki. For

example, these basis functions can be splines, wavelets, trigonometric functions,
or polynomials. We use members of Si to approximate the normalization curves

fi. Let ΩJ×d
0 be the space of all J × d matrices β ≡ (β1, . . . , βJ )′ satisfying∑J

j=1 βj = 0. It is clear from the definition of the TW-SLM model (2.2) that β

is identifiable only up to a member in ΩJ×d
0 , since we may simply replace βj by

βj −
∑J

k=1 βk/J and fi(x) by fi(x) +
∑J

k=1 z
′
iβk/J in (2.3). In what follows, we

assume

β ∈ ΩJ×d
0 ≡

{
β :

J∑

j=1

βj = 0
}
. (3.2)

Let

D2(β,f) =
n∑

i=1

J∑

j=1

(
yij − β′jzi − fi(xij)

)2
. (3.3)
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We define the SLSE of {β,f} to be the {β̂, f̂} ∈ ΩJ×d
0 ×∏n

i=1 Si that minimizes

D2(β,f):
(β̂, f̂) = arg min

(β,f)∈ΩJ×d
0

×
∏

i=1
Si

D2(β,f). (3.4)

For computational reasons, it is helpful to write out the definitions of β̂ and f̂

in terms of each other. When β̂ is given, the SLSE of fi is

f̂i ≡ arg min
f∈Si

J∑

j=1

(
yij − β̂′jzi − f(xij)

)2
, i = 1, . . . n. (3.5)

When the normalization curves f̂ are given, the explicit form of β̂ is

β̂j =
( n∑

i=1

ziz
′
i

)−1( n∑

i=1

zi
(
yij − f̂i(xij)

)
− 1

J

J∑

k=1

n∑

i=1

zi
(
yik − f̂i(xik)

))
(3.6)

as in standard linear models, provided that
∑n

i=1 ziz
′
i is positive definite. There-

fore the joint SLSE of {β,f} can be computed by iterating (3.6) and (3.5) until

convergence, with a simple initialization such as f̂i = 0. Since the square function
is strictly convex, the iteration between (3.6) and (3.5) converges monotonically

to the sum of residual squares.
We now consider orthogonalization of the design vectors in the TW-SLM.

The purpose is to define the observed information matrix for β in the presence

of the normalization curves f . In the cases of smaller values of J , if we use
local basis functions for approximating f , the orthogonalization can lead to di-

rect computation of the SLSE of β without resorting to the iterative procedure
described above.

Let xi = (xi1, . . . , xiJ)′, yi = (yi1, . . . , yiJ)′ and f(xi) ≡ (f(xi1), . . . , f(xiJ))′

for a univariate function f . We write (2.3) in vector notation as

yi = βzi + fi(xi) + εi, i = 1, . . . , n. (3.7)

We orthogonalize the design vectors for the SLSE as follows. Let

Vi ≡ {f(xi) : f ∈ Si} = {ψik(xi) : k ≤ Ki} (3.8)

be the linear spans of the bases in IRJ for approximating vectors fi(xi), where
Si are as in (3.1). Let Qi be the projection matrices from IRJ to Vi with

(IJ −Qi)f(xi) = 0, ∀f ∈ Si, K̂i ≡ rank
(
Qi

)
= dim

(
Vi

)
, (3.9)

where IJ is the J × J identity matrix. We show in the Appendix that in (3.4),

β̂ = arg min
β

n∑

i=1

∥∥∥yi − (IJ −Qi)βzi
∥∥∥
2
. (3.10)
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For d = 1 (scalar βj), β is a vector in IRJ and (3.10) is explicitly

β̂ = Λ̂−1
J,n

n∑

i=1

(IJ −Qi)yiz
′
i, (3.11)

since IJ − Qi are projections in IRJ , where Λ̂J,n is the ‘observed information
matrix’

Λ̂J,n ≡
n∑

i=1

(IJ −Qi)z
2
i . (3.12)

For d > 1, (3.10) is still given by (3.11) with

Λ̂J,n ≡
n∑

i=1

(IJ −Qi) ⊗ ziz
′
i. (3.13)

The information operator (3.13) is a sum of tensor products, i.e., a linear mapping
from ΩJ×d

0 to ΩJ×d
0 defined by Λ̂J,nβ ≡ ∑n

i=1(IJ −Qi)βziz
′
i.

Here and in the sequel, ‖ · ‖ denotes the Euclidean norm, and A−1 denotes
the generalized inverse of matrix A, defined by A−1x ≡ arg min {‖b‖ : Ab = x}.
If A is a symmetric matrix with eigenvalues λj and eigenvectors vj, then A =∑

j λjvjv
′
j and A−1 =

∑
λj 6=0 λ

−1
j vjv

′
j. The generalized inverse of Λ̂J,n is defined

by treating ΩJ×d
0 as a subspace of the Euclidean vector space IRdJ .

There is a clear interpretation for the above expressions from the semipara-
metric information calculation point of view. The projection Qi is from the
sample space of yi to the approximation space Si for fi. It ‘spends’ part of the
information in the data for estimating the unknown normalization curve fi. Thus
the remaining information for estimating β is the total information minus the
information spent on f , which is reflected in IJ −Qi (3.13).

Example 1. Polynomial spline SLSE: Let b1, . . . , bKi
be Ki B-spline base

functions (Schumaker (1981)). We approximate fi by si(x) = αi0+
∑Ki

k=1 bk(x)αik

≡ bi(x)
′αi ∈ Si, where bi(x) = (1, b1(x), . . . , bKi

(x))′, and αi = (αi0, αi1, . . .,
αiKi

)′ are coefficients to be estimated from the data. Let α = (α1, . . . , αn). The
LS objective function is

D(α,β) =
n∑

i=1

J∑

j=1

[yij − bi(xij)
′αi − z′iβj ]

2. (3.14)

Let Bij = (1, b1(xij), . . . , bKi
(xij))

′ be the spline basis functions evaluated at
xij, 1 ≤ i ≤ n, 1 ≤ j ≤ J . The spline basis matrix for the ith array is

Bi =




B′
i1
...

B′
iJ


 =




1 b1(xi1) . . . bKi
(xi1)

...
...

1 b1(xiJ) . . . bKi
(xiJ)


 .
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The projection matrix Qi defined in (3.9) is Qi = Bi(B
′
iBi)

−1B′
i, i = 1, . . . , n.

The iterative algorithm described earlier becomes the following. Set β (0) = 0.

Step 1: Compute α(k) by minimizing Dw(α,β(k)) with respect to α (the explicit

solution is α
(k)
i = (B′

iBi)
−1B′

i(yi − β(k)zi), i = 1, . . . , n).

Step 2: For the α(k) computed above, obtain β(k+1) by minimizing Dw(α(k),β)

with respect to α (the explicit solution is given by (3.6)).

Iterate between Steps 1 and 2 until the desired convergence criterion is sat-

isfied. Because the objective function is strictly convex, the algorithm converges

to the unique global optimal point. Suppose that the algorithm meets the con-

vergence criterion at step K. Then the estimated values of βj are β̂j = β
(K)
j ,

j = 1, . . . , J , and the estimated normalization curves are f̂i(x) = bi(x)
′α

(K)
i ,

i = 1, . . . , n.

Local regression (loess) method: The loess method can also be used to

estimate the TW-SLM. Let Wλ be a kernel function with window width λ. Let

sp(t;α, x) = α0(x) + α1(x)t + · · · + αp(x)t
p be a polynomial in t with order p,

where p = 1 or 2 are common choices. The objective function of the loess method

for the TW-SLM is

ML(α,β) =
n∑

i=1

J∑

j=1

J∑

k=1

Wλ(xij , xik)
(
yij − sp(xik,α, xij) − z′iβj

)2
. (3.15)

Let (α̂, β̂) be the value that minimizes ML. The loess estimator of fi at xij is

f̂i(xij) = sp(xij , α̂, xij).

Again, the back-fitting algorithm can be used to compute the loess estima-

tors. We expect that the performance and asymptotic properties of the loess

estimator and the spline estimator in the TW-SLM are similar. However, it

appears to be more difficult to work out the technical details for the loess esti-

mators. It is clear that if we set the initial value β = 0, then the values of α

resulting from the first iteration in the back-fitting gives the loess normalization

curves (Yang et al. (2001); Tseng et al. (2001)).

4. Distributional Theory and Normalization Error Bounds

In this section we develop methodologies for statistical inference about β

based on (3.4) and (3.13), and provide error bounds for normalization. We pro-

vide limiting distributions for certain pivotal quantities involving β and individ-

ual βj and the resulting approximate confidence regions and intervals for large

n and J . Our results allow the nonconventional situation of n/J → 0, which

is especially appropriate for microarray data. We assume throughout the sequel
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that zi are deterministic covariates. The proofs of our results are given in the

Appendix.

4.1. Distributions of pivotal quantities and approximate confidence

intervals

Unless otherwise stated, we assume in this section that εij are i.i.d. N(0, σ2)

variables given all the covariate variables. The normality condition can be weak-

ened, but it is not a main concern in this paper. The unknown error variance σ2

can be estimated by the residual mean squares in (3.4):

σ̂2 =
(
Jn− ν̂ −

n∑

i=1

K̂i

)−1
min

β

n∑

i=1

min
f∈Si

∥∥∥yi − βzi − f(xi)
∥∥∥
2
, (4.1)

where K̂i are the dimensions of Vi in (3.9) and ν̂ is the rank of the observed

information operator Λ̂J,n as a linear mapping in ΩJ×d
0 . Conditionally on the

covariates, σ̂2/σ2 is the ratio of a non-central chi-square variable and its degrees

of freedom.

Let β̂ and Λ̂J,n be as in (3.4) and (3.13), or equivalently (3.10) and (3.13).

Define

Σn ≡
n∑

i=1

ziz
′
i, σn ≡

n∑

i=1

‖zi‖2, Σ̂J,n ≡
n∑

i=1

(J − K̂i)ziz
′
i

J − 1
, (4.2)

with the K̂i in (3.9). Let χ2
1−α,ν be the (1−α)-quantile of the χ2-distribution with

ν degrees of freedom. Our confidence regions for β are based on the distributional

approximations

P
{ n∑

i=1

‖(IJ −Qi)(β̂ − β)zi‖2/σ̂2 ≤ χ2
1−α,ν̂

}
≈ 1 − α, (4.3)

with ν̂ being the rank of Λ̂J,n, together with

P
{ J∑

j=1

(β̂j − βj)
′Σ̂J,n(β̂j − βj)/σ̂

2 ≤ χ2
1−α,d(J−1)

}
≈ 1 − α, (4.4)

(
∑J

j=1 ‖β̂j − βj‖2)/σ̂2 − (J − 1)trace(Σ̂−1
J,n)

{2J trace(Σ̂−2
J,n)}1/2

D−→ N(0, 1). (4.5)

Our inference procedures about individual βj are based on

(
Σ̂

1/2
J,n/σ̂

)(
β̂j − βj

)
D−→ N(0, Id). (4.6)
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This should be compared with the case of known fi in which the LSE’s of βj are

multivariate normal vectors with means βj and covariance σ2Σ−1
n . In practice,

maxi≤n K̂i ≤ maxi≤nKi = o(J) so

(1 + o(1))Σn ≤ Σn min
i≤n

(J − K̂i)/(J − 1) ≤ Σ̂J,n ≤ Σn.

The above approximations are obtained under “smoothness” conditions on

fi of the form

Jq/2
n∑

i=1

ρ2
J,i

n
→ 0, Jq/2

∑n
i=1 ‖zi‖2pρ2

J,i

(
∑n

i=1 ‖zi‖2)p
→ 0, as (J, n) → (∞,∞), (4.7)

where ρ2
J,i are the distances between the vectors fi(xi) and the approximating

spaces (3.8),

ρJ,i ≡
[
E min

f∈Si

{ 1

J

J∑

j=1

∣∣∣fi(xij) − f(xij)
∣∣∣
2}]1/2

, (4.8)

with the Si in (3.1). For (4.4), (4.5) and (4.6), we further assume the following.

Condition A. The random vectors xi, i ≤ n, are pairwise independent and, for

each i, the {xij, j ≤ J} are exchangeable. Moreover, for each i the space Si in

(3.1) depends on the data only through the covariates {zi, i ≤ n} and the set

{xij , j ≤ J}.
Theorem 1. Suppose Ki ≤ κ∗J in (3.1) for certain fixed 0 < κ∗ < 1.

(i) If (4.7) holds for (p, q) = (0, 1), then (4.3) holds as (J, n) → (∞,∞).

(ii) Let Σn and σn be as in (4.2). Suppose Condition A holds and

λmax(Σn)

λmin(Σn)
= O(1), σ−2

n

n∑

i=1

‖zi‖4EK̂i = o(1), (4.9)

where K̂i is as in (3.9). If (4.7) holds with (p, q) = (1, 1), then (4.3), (4.4) and

(4.5) hold as (J, n) → (∞,∞). If (4.7) holds with (p, q) = (1, 0), then (4.6) holds

uniformly in j:

sup
j≤J

sup
‖b‖=1

sup
t

∣∣∣P
{
b′(Σ̂

1/2
J,n/σ̂)

(
β̂j − βj

)
≤ t

}
− P

{
N(0, 1) ≤ t

}∣∣∣ = o(1), (4.10)

where b ∈ IRd. Moreover, P{ν̂ = (J − 1)d} → 1, where ν̂ is the rank of Λ̂J,n.

Corollary 1. Theorem 1 holds with (4.7) replaced by J q/2 ∑n
i=1 ρ

2
J,i/n

p∧1 =

o(1) and (4.9) replaced by
∑n

i=1Ki/n
2 → 0, where Ki are as in (3.1), provided

that

lim sup
n→∞

(
max
i≤n

‖zi‖
)
<∞, lim inf

n→∞

(λmin(Σn)

n

)
> 0. (4.11)
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Suppose spline, wavelet or certain other bases are used in (3.1) with a cut-off

Ki for functions with smoothness index α > 0, so that with ‖Qi‖2
2 ≡ trace(Q′

iQi)

and M∗ depending on (α, γ,M),

max
i≤n

‖Qi‖2
2 ∼ J1/(2α+1), sup

f∈Fγ,M

max
i≤n

E‖(IJ −Qi)f(xi)‖2 ≤ M∗J

J2γ/(2α+1)
, (4.12)

for certain (e.g., Lipchitz or Sobolev) classes Fγ,M with smoothness indices γ ≤ α.

Corollary 2. Suppose Condition A, the first part of (4.9), (4.11) and (4.12) hold

for certain α > 0 with J/n2α+1 → 0. If {fi} ⊆ Fγ,M for certain γ satisfying

α/2+1/4 < γ ≤ α, then (4.3), (4.4) and (4.5) hold as (J, n) → (∞,∞). If fi are

uniformly continuous with a common compact support, then (4.10) holds.

Approximate confidence regions and intervals can be easily constructed based

on Theorem 1 and Corollaries 1 and 2. By the Central Limit Theorem applied

to i.i.d. χ2
1 variables, χ2

1−α,ν can be replaced by ν+χ1−2α,1

√
2ν for α ≤ 1/2. For

d = 1, (4.4) or (4.5) give 95% confidence regions Σ̂J,n‖β̂−β‖2/σ̂2 ≤ J+1.645
√

2J ,

and (4.10) gives 95% confidence intervals
√

Σ̂J,n|β̂j − βj |/σ̂ ≤ 1.96. If Ki ≤ κ∗J

and (4.9) holds, then all the eigenvalues of Σn and Σ̂J,n are of the order σn. If

(4.11) holds as in Corollaries 1 and 2, then σn is of the order n.

4.2. Bounds on the normalization error

It is of interest to assess the quality of normalization provided by the TW-

SLM, we turn to that here.

If β were known, we could have used many suitable smoothing method to

estimate fi, cf. Fan and Gijbels (1996), Efromovich (1999) and Hastie, Tibshirani

and Friedman (2001), to generate ideal normalizing curves. Consider linear ideal

normalizing curves of the form

f̃i(xi) ≡ Q∗
i (yi − βzi), (4.13)

where Q∗
i are linear mappings depending on covariates. Since β is not available

to us, we could use

f̂∗i (xi) ≡ Q∗
i (yi − β̂zi) (4.14)

instead of (4.13). In this case the normalized data are ŷ∗ij ≡ yij − f̂∗i (xij), 1 ≤
i ≤ n, 1 ≤ j ≤ J, while the unobservable ideally normalized data are ỹij ≡
yij−f̃i(xij), 1 ≤ i ≤ n, 1 ≤ j ≤ J. The problem of comparing the normalized data

ŷ∗ij and the unobservable ideally normalized data ỹij becomes that of comparing

f̂∗i and f̃i. Theorem 4 below provides upper bounds for the differences ŷ∗ij − ỹij =

f̃i(xij)−f̂∗i (xij) between the actual and ideal normalized data. We use two norms
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for linear mappings A (including matrices and tensor products): the operator

norm ‖A‖ ≡ {‖Av‖ : ‖v‖ = 1} = λmax(A
′A), and the Hilbert-Schmidt norm

‖A‖2 ≡ {trace(A′A)}1/2.

Theorem 2. Suppose {εij} are uncorrelated with Eε2ij ≤ σ2.

(i) Suppose Ki ≤ κ∗J for certain κ∗ < 1, and that (4.9) and Condition A hold.

Then,

1

J

∥∥∥f̂∗i (xi) − f̃i(xi)
∥∥∥
2
≤ OP (‖zi‖2)

(‖Q∗
i ‖2

σ2
n

n∑

k=1

‖zk‖2ρ2
J,k +

‖Q∗
i ‖2

2

Jσn

)
. (4.15)

(ii) Suppose Condition A, the first part of (4.9), (4.11) and (4.12) hold for certain

α > 0 with J/n2α+1 → 0. Suppose ‖zi‖‖Q∗
i ‖ = OP (1) and ‖zi‖2‖Q∗

i ‖2
2 =

OP (J1−2γ/(2α+1)) uniformly in i ≤ n. If {fi} ⊂ Fγ,M then, uniformly in

i ≤ n,

1

J

∥∥∥f̂∗i (xi) − f̃i(xi)
∥∥∥
2

= oP (J−(2γ+1)/(2α+1)). (4.16)

Consequently, uniformly in i, f̂∗i converges at the optimal rate

1

J

∥∥∥f̂∗i (xi) − fi(xi)
∥∥∥
2

= OP (J−2γ/(2γ+1)), (4.17)

provided that (4.12) holds with (α,Qi) replaced by (γ,Q∗
i ) and (2γ + 1)2 ≥

2γ(2α + 1).

Remark. Suppose conditions of Theorem 2 (ii) hold. If (4.12) holds with (α,Qi)

replaced by (γ,Q∗
i ) and (2γ + 1)2 ≥ 2γ(2α + 1), then in the case of β = 0, Q∗

i

provides the optimal rate of convergence in mean for fi ∈ Fγ,M :

1

J
E

∥∥∥f̃i(xi) − fi(xi)
∥∥∥
2

=
1

J
E

∥∥∥(IJ −Q∗
i )fi(xi)

∥∥∥
2
+
σ2

J
E‖Q∗

i ‖2
2

= O(J−2γ/(2γ+1)). (4.18)

Moreover, if J/n(2γ+1)2/(2γ) → 0, then the estimators f̂∗i achieve the optimal

convergence rate in probability for all β with Ki ∼ J1/(2α+1) and ‖Q∗
i ‖2

2 ∼
J1/(2γ+1), where α = (2γ + 1)2/(4γ) − 1. If (4.12) holds with J/n2α+1 → 0

and {fi} ⊂ Fα,M , then |f̂∗i (xij) − f̃i(xij)|2 is small, o(1/J) in average, with

large probability, so that Q∗
i = Qi can be directly used to achieve the optimal

convergence rate

1

J

∥∥∥f̂i(xi) − fi(xi)
∥∥∥
2

= OP (J−2α/(2α+1)). (4.19)
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4.3. Inequalities about the SLSE and the observed information oper-

ator

A crucial step in proving Theorems 1 and 2 is to understand the effects of

approximation errors for the unknown functions fi on the SLSE of β in (3.10)

and the distribution of eigenvalues of the observed information operator (3.13).

Here we provide upper bounds for the effects of the approximation errors and

the variance of the observed information operator.

We measure the variance of Λ̂J,n by E‖Λ̂J,n − EΛ̂J,n‖2
2, where ‖ · ‖2 is

the Hilbert-Schmidt norm. Let 〈A,B〉2 ≡ trace(B ′A) be the inner product of

matrices A and B of common finite-dimensions, so that the Hilbert-Schmidt

norm of A is ‖A‖2 ≡ 〈A,B〉1/2
2 . The inner-product 〈·, ·〉2 and the Hilbert-

Schmidt norm ‖ · ‖2 for tensor products are defined by treating them as linear

mappings. For example, for tensor products Aj ⊗ Bj of common dimensions,

〈A1 ⊗B1, A2 ⊗B2〉2 = 〈A1, A2〉2〈B1, B2〉2. Let

Ω̂J,n ≡
{
Λ̂J,nβ : β ∈ ΩJ×d

0

}
⊆ ΩJ×d

0 (4.20)

be the range of (3.13). Given X ≡ (x1, . . . ,xn)′, Ω̂J,n is a linear space of finite

dimension, thus we can define a standard normal random matrix Z ∈ Ω̂J,n such

that, conditionally on X,

〈A,Z〉2 ∼ N
(
0, ‖A‖2

2

)
, ∀A ∈ Ω̂J,n. (4.21)

Theorem 3. Let β̂ and Λ̂J,n be as in (3.10) and (3.13). Set Zn ≡ Λ̂
−1/2
J,n

∑n
i=1(IJ

−Qi)εiz
′
i. Then, Λ̂

1/2
J,n(β̂ − β) − Zn is an unobservable matrix-valued function of

covariates X and {zi, i ≤ n} such that

E
∥∥∥Λ̂

1/2
J,n(β̂ − β) − Zn

∥∥∥
2

2
≤ J

n∑

i=1

ρ2
J,i . (4.22)

Moreover, if the errors {εij , i ≤ n, j ≤ J} in (2.2) are i.i.d. N(0, σ2) given X,

then Zn/σ given X is a standard normal matrix in Ω̂J,n as in (4.21).

Theorem 3 is derived from the standard theory of linear models. Theorem 4

below provides much stronger results under Condition A on the distribution of

covariate vectors xi. This theorem is a key step in establishing Theorem 1 (ii)

and Theorem 2.

Theorem 4. Suppose Ki ≤ κ∗J for certain κ∗ < 1 and (4.9) and Condition

A hold. Then

∥∥∥(β̂ − β) − Λ̂
−1/2
J,n Zn

∥∥∥
2

2
≤ OP (J/σ2

n)
n∑

i=1

‖zi‖2ρ2
J,i, (4.23)
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with σn ≡ ∑n
i=1 ‖zi‖2 as in (4.2). With ej = (0, . . . , 0, 1, 0 . . . , 0)′,

max
1≤j≤J

Emin
{
1, σn

∥∥∥(β̂j − βj) −
(
Λ̂
−1/2
J,n Zn

)′
ej

∥∥∥
2}

≤ o(1) +O(σ−1
n )

n∑

i=1

‖zi‖2ρ2
J,i,

(4.24)

as (J, n) → (∞,∞). Moreover, P{ν̂ = d(J − 1)} → 1 with ν̂ being the rank of

Λ̂J,n and

E
∥∥∥Λ̂J,n − IJ,0 ⊗ Σ̂J,n

∥∥∥
2

2
≤

n∑

i=1

‖zi‖4EK̂i = o(σ2
n), (4.25)

where IJ,0 ≡ IJ − J−1ee′ with e ≡ (1, . . . , 1)′.

5. Concluding Remarks

We have shown that, under appropriate conditions, statistical inference

about β in the TW-SLM can be carried out in the same order of precision as

in a regular semiparametric model. This suggests that some important inference

tools, such as the bootstrap, can be consistently applied to the TW-SLM.

It was not intuitively clear to us at the outset whether many βj might be in-

estimable due to the singularities of (3.12) or (3.13) if reasonably rich approxima-

tion spaces Si are used to estimate the fi in (3.4). We were particularly intrigued

by the presence of the large number of nonparametric components fi, i = 1, . . . , n,

where n is the sample size for estimating β. Thus, from the asymptotic point of

view, the TW-SLM is an infinite-dimensional semiparametric model. In contrast,

in the standard semiparametric models, such as the semiparametric regression

model and the proportional hazards model, there is only one or a fixed number

of nonparametric components. This appears to be a key distinction between the

TW-SLM and the standard semiparametric models and renders that the existing

theory for semiparametric models (Bickel et al. (1993)) inapplicable here.

There are several interesting and challenging questions that have not been

addressed in this paper. For example, it is of interest to extend our results to

robust estimators (Huber (1981)) of the TW-SLM. Our analysis makes essential

use of the fact that the least squares estimators can be considered as orthogonal

projections. The second extension is to allow heteroscedasticity in the TW-

SLM. For microarray data, this is desirable since the variability of the intensity

ratios usually tend to be higher in the low intensity range than in the high

intensity range. However, both the computation and the theoretical analysis of

a heteroscedasticity TW-SLM will be more complicated. The third question is

how to incorporate correlation into the TW-SLM. This may provide a way of

identifying groups of genes that have differential expressions, instead of a single
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gene at a time. This is useful, because genes tend to express in a coordinated

fashion corresponding to different functional groups. This appears to be a difficult

modeling problem because of the high dimension of any typical gene expression

data set. Integration of known biological functions of the genes under study will

be essential to make such modeling exercises successful.
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Appendix. Proofs

Proof of (3.10). Since Qi in (3.9) is a projection to Vi, Qiβzi + v ∈ Vi for

v ∈ Vi and

min
f∈Si

∥∥∥yi − βzi − f(xi)
∥∥∥
2

= min
v∈Vi

∥∥∥yi − βzi − v
∥∥∥
2

= min
v∈Vi

∥∥∥yi − (IJ −Qi)βzi − v
∥∥∥
2

=
∥∥∥yi − (IJ −Qi)βzi

∥∥∥
2
− ‖yi‖2 + min

v∈Vi

∥∥∥yi − v
∥∥∥
2
,

due to (I −Qi)v = 0, ∀v ∈ Vi. Thus, (3.4) and (3.10) are equivalent.

Proof of Theorem 3. Let ri ≡ (IJ −Qi)fi(xi). As in (3.11),

Bn ≡ arg min
β∈ΩJ×d

0

n∑

i=1

∥∥∥ri − (IJ −Qi)βzi
∥∥∥
2

= Λ̂−1
J,n

n∑

i=1

(IJ −Qi)riz
′
i. (A.1)

Since (IJ −Qi)fi(xi) = (IJ −Qi)ri and β is a LSE of β for εij = fi(xij) = 0, by

(3.10) and (3.11)

Λ̂
1/2
J,nBn = Λ̂

−1/2
J,n

n∑

i=1

(IJ −Qi)fi(xi)z
′
i = Λ̂

1/2
J,n(β̂ − β) − Zn (A.2)

are functions of covariates. Since ‖Λ̂1/2
J,nBn‖2

2 = 〈Bn, Λ̂J,nBn〉2, it follows from

(3.13) that

∥∥∥Λ̂
1/2
J,nBn

∥∥∥
2

2
=

n∑

i=1

〈Bn, (IJ −Qi)Bnziz
′
i〉2

=
n∑

i=1

z′iB
′
n(IJ −Qi)Bnzi =

n∑

i=1

‖(IJ −Qi)Bnzi‖2.
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This and the definition of Bn in (A.1) imply that E‖Λ̂1/2
J,nBn‖2

2 ≤ E
∑n

i=1 ‖ri‖2,

so that by (4.8) E‖Λ̂1/2
J,nBn‖2

2 ≤ J
∑n

i=1 ρ
2
J,i. Thus, (4.22) holds in view of (A.2).

Under the i.i.d. normality assumption on εij , Zn is a linear combination of εij

standardized by the root of its covariance operator, so that Zn is a standard

normal matrix. The proof of Theorem 3 is complete.

We need the following proposition for the proof of Theorem 4.

Proposition 1. (i) Let Σ̂J,n be as in (4.2). Then,

τ̂J,n ≡
∥∥∥Λ̂J,n − IJ,0 ⊗ Σ̂J,n

∥∥∥
2

= min
C

∥∥∥Λ̂J,n − IJ,0 ⊗C
∥∥∥
2
. (A.3)

(ii) If {xij , j ≤ J} is exchangeable for each i and Si depends on data only through

{zi, i ≤ n} and the set {xij , j ≤ J} for each i, then

EΛ̂J,n = IJ,0 ⊗EΣ̂J,n = IJ,0 ⊗
n∑

i=1

J −EK̂i

J − 1
ziz

′
i. (A.4)

(iii) If xi are pairwise independent random vectors, then

E
∥∥∥Λ̂J,n −EΛ̂J,n

∥∥∥
2

2
≤

n∑

i=1

‖zi‖4EK̂i. (A.5)

Proof. (i) Setting (∂/∂t)‖Λ̂J,n − IJ,0 ⊗ (C + tA)‖2
2 = 0 at t = 0, we find

〈IJ,0, IJ,0〉2〈C,A〉2 = 〈Λ̂J,n, IJ,0 ⊗A〉2 =
n∑

i=1

〈IJ −Qi, IJ,0〉2〈ziz′i, A〉2

by (3.13). Since ψi1(x) = 1, e ≡ (1, . . . , 1)′ is an element of Vi in (3.8), so that

(IJ −Qi)e = 0. Thus, 〈IJ −Qi, IJ,0〉2 = trace(IJ −Qi) = J − K̂i, which implies

(J − 1)〈C,A〉2 = 〈IJ,0, IJ,0〉2〈C,A〉2 = (J − 1)〈Σ̂J,n, A〉2 by (4.2). This proves

(A.3) since A is an arbitrary d× d matrix.

(ii) By the exchangeability, the diagonal elements of E(IJ−Qi) must all equal

c1 ≡ E trace(IJ −Qi)/J = (J −EK̂i)/J . Similarly, the off-diagonal elements of

E(I −Qi) must share a common value c2. Since (IJ −Qi)e = 0, the constant c2
satisfies J(J − 1)c2 + Jc1 = Ee′(IJ −Qi)e = 0, which implies c2 = −c1/(J − 1).

Thus,

E(IJ −Qi) = (c1 − c2)IJ + c2ee
′ =

Jc1
J − 1

(
IJ − J−1ee′

)
=
J −EK̂i

J − 1
IJ,0.

This proves (A.4) in view of (3.13) and (4.2).
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(iii) The pairwise independence of xi implies that of Qi. Since the square of

the Hilbert-Schmidt norm of a matrix is just the sum of squares of all its elements

and tensor products are linear mappings, by (3.13)

E
∥∥∥Λ̂J,n −EΛ̂J,n

∥∥∥
2

2
=

n∑

i=1

E
∥∥∥(Qi −EQi) ⊗ ziz

′
i

∥∥∥
2

2
=

n∑

i=1

E
∥∥∥(Qi −EQi)

∥∥∥
2

2
‖ziz′i‖2

2.

This implies (A.5) since ‖ziz
′
i‖2

2 = ‖zi‖4 and E‖(Qi −EQi)‖2
2 ≤ E‖Qi‖2

2 = EK̂i.

The proof of Proposition 1 is complete.

Proof of Theorem 4. For linear mappings A and B, e.g., A = Λ̂J,n, the

following relationships hold with their operator norm ‖A‖ = max{‖Aβ‖ : ‖β‖ =

1} and the Hilbert-Schmidt norm ‖A‖2:

‖A‖ ≤ ‖A‖2, ‖AB‖2 ≤ ‖A‖‖B‖2, ‖(A+B)−1‖ ≤ ‖A−1‖
1 − ‖A−1‖‖B‖ , (A.6)

since A and B are matrices operating in linear spaces (e.g., ΩJ×d
0 ). The first

two inequalities follow easily from the fact that ‖A‖2
2 =

∑
k ‖Avk‖2 for any

orthonormal basis {vk}, while the third follows from ‖A−1‖−1 = min {‖Aβ‖ :

‖β‖ = 1,β ∈ ΩJ×d
0 }. If A is positive-definite, ‖A−1‖ is simply the reciprocal of

the smallest eigenvalue of A.

Now, since λmax(Σn)/λmin(Σn) = O(1) and d is fixed, all the eigen-values of

Σn are of the order trace(Σn) = σn ≡ ∑n
i=1 ‖zi‖2. The same is true for Σ̂J,n as

matrices and IJ,0 ⊗ Σ̂J,n as operators in ΩJ×d
o , since (1−κ∗)Σn ≤ Σ̂J,n ≤ Σn due

to K̂i ≤ Ki ≤ κ∗J . In particular ‖IJ,0 ⊗ Σ̂J,n‖ = O(σn) and ‖(IJ,0 ⊗ Σ̂J,n)−1‖ =

O(σ−1
n ). It follows from Proposition 1 and (4.9) that

∥∥∥Λ̂J,n − IJ,0 ⊗ Σ̂J,n

∥∥∥
2

2
≤

∥∥∥Λ̂J,n −EΛ̂J,n

∥∥∥
2

2
= OP (1)

n∑

i=1

‖zi‖4EK̂i = oP (σ2
n),

so that by (A.6) and algebra, e.g., A−1 −B−1 = A−1(B−A)B−1, for all integers

k,

‖Λ̂k
J,n‖ = OP (σk

n), ‖Λ̂k
J,n − (IJ,0 ⊗ Σ̂J,n)k‖2

2 = oP (σ2k
n ). (A.7)

It follows from (A.1), (A.2), (A.6) and (A.7) that (β̂ − β) − Λ̂
−1/2
J,n Zn = Bn and

∥∥∥Bn

∥∥∥
2

2
=

∥∥∥Λ̂−1
J,n

n∑

i=1

riz
′
i

∥∥∥
2

2
≤

∥∥∥Λ̂−1
J,n

∥∥∥
2∥∥∥

n∑

i=1

riz
′
i

∥∥∥
2

2
≤ OP (σ−2

n )
∥∥∥

n∑

i=1

riz
′
i

∥∥∥
2

2
.

Since ri is a permutation symmetric IRJ -valued function of exchange variables

xij, j = 1, . . . , J , its components are also exchangeable. Thus, JEri = ee′Eri =
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eEe′(IJ −Qi)fi(xi) = 0. Since the ri are pairwise independent, E‖∑n
i=1 riz

′
i‖2

2 =∑n
i=1 E‖riz

′
i‖2

2 =
∑n

i=1 ‖zi‖2E‖ri‖2 = J
∑n

i=1 ‖zi‖2ρ2
J,i. This and the bound for

‖Bn‖2
2 above imply (4.23).

Finally, let us prove (4.24). As in the proof of (4.23) above, we find by

(A.2) that (β̂j − βj) − (Λ̂
−1/2
J,n Zn)′ej = B′

nej =
(
Λ̂−1

J,n

∑n
i=1 rizi

)′
ej are exchange-

able. Thus, by (4.23), maxj Emin
(
1, σn‖B′

nej‖2
)

= E
∑

j min (1, σn‖B′
nej‖2)/J

is bounded by

Emin
(
1, σn

J∑

j=1

‖B′
nej‖2

J

)
= Emin

(
1, σn

‖Bn‖2
2

J

)

= Emin
(
1, OP (σ−1

n )
n∑

i=1

‖zi‖2ρ2
J,i

)

which, in turn, is bounded by o(1) + O(σ−1
n )

∑n
i=1 ‖zi‖2ρ2

J,i. Therefore, (4.24)

holds. Since ‖Λ̂−1
J,n‖ <∞ implies that it is of full rank as an operator in ΩJ×d

0 with
rank d(J − 1), the first part of (A.7) with k = −1 implies P{ν̂ = d(J − 1)} → 1.
Moreover, Proposition 1 implies (4.25) directly. Hence, the proof of Theorem 4
is complete.

Proof of Theorem 1. By (3.13), Λ̂J,n is a sum of nonnegative definite tensor
products, so that Λ̂J,nβ = 0 iff (I − Qi)βzi = 0 for all i. Thus, m ≡ nJ −
ν̂ − ∑n

i=1 K̂i in (4.1) is indeed the residual degrees of freedom, and σ̂2 the mean
residual sum of squares. Furthermore m ≥ J{n(1− κ∗)− d} due to ν̂ ≤ (J − 1)d

and, conditionally on X, the noncentrality parameter, say θ0, of the residual
sum of squares is bounded by

∑n
i=1 ‖ri‖2/σ2 with the ri in (A.1). Thus, since

E|N(θ0, θ0)| ≤
√
θ2
0 + θ0 ≤ θ0 + 1/2 and Var(χ2

k) = 2k, the first part of (4.7)

with q = 1 implies

E
∣∣∣ σ̂

2

σ2
− 1

∣∣∣ ≤ E
∣∣∣N(θ0, θ0)

m

∣∣∣ +E
∣∣∣χ

2
m

m
− 1

∣∣∣

≤ E
{ 1

2m
+

n∑

i=1

‖ri‖2

σ2m
+

( 2

m

)1/2}

≤ O(1)
{ n∑

i=1

ρ2
J,i

σ2n
+

1√
nJ

}
=
o(1)√
J
. (A.8)

(i) Let Bn ≡ β̂ − β − Λ̂
−1/2
J,n Zn as in (A.1) and (A.2). By Theorem 3,

(A.6), (A.7) and (4.7) with (p, q) = (0, 1), E[|〈Λ̂1/2
J,nBn, Zn〉2|

2|X] = ‖Λ̂1/2
J,nBn‖2

2 =

oP (
√
J), so that

n∑

i=1

‖(IJ −Qi)(β̂ − β)zi‖2 = ‖Λ̂1/2
J,n (β̂ − β)‖2

2 = ‖Zn‖2
2 + oP (

√
J). (A.9)
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Now, given X, ‖Zn‖2
2/σ

2 has the chi-square distribution with ν̂ ≤ d(J−1) degrees
of freedom, so that ‖Zn‖2

2 = OP (J). Moreover, by (3.13) the eigenvalues of Λ̂J,n is
no greater than σn ≡ ∑n

i=1 ‖zi‖2, so that σnν̂ ≥ trace(Λ̂J,n) =
∑n

i=1 ‖zi‖2(J−K̂i),
which implies ν̂ ≥ J(1 − κ∗). Thus, by (A.8), (A.9) and the Central Limit
Theorem applied to i.i.d. χ2

1-variables,
∑n

i=1 ‖(IJ−Qi)(β̂−β)zi‖2−σ̂2ν̂

σ̂2
√

2ν̂
=

‖Zn‖2
2/σ

2−ν̂√
2ν̂

+oP ((J/ν̂)1/2)
D−→ N(0, 1).

Since (χ2
1−α,m −m)/

√
2m→ z∗,α as m→ ∞ with P (N(0, 1) ≤ z∗,α) = 1−α, the

left-hand side of (4.3) is approximated by

P
{‖Zn‖2

2/σ
2−ν̂√

2ν̂
+oP ((J/ν̂)1/2)≤

χ2
1−α,ν̂

−ν̂
√

2ν̂

}
→P

{
N(0, 1)≤z∗,α

}
=1−α.(A.10)

(ii) First of all P{ν̂ = d(J − 1)} → 1 by Theorem 4. Since ‖Λ̂k
J,n‖ = OP (σk

n)
by (A.7), by (A.6), (4.23) and (4.7) with (p, q) = (1, 1),

‖Λ̂k
J,nBn‖2

2≤‖Λ̂k
J,n‖2‖Bn‖2

2 =OP (σ2k
n )OP (J/σ2

n)
n∑

i=1

‖zi‖2ρ2
J,i =oP (σ2k−1

n

√
J)

(A.11)

for all real k. In particular, we have ‖Λ̂1/2
J,nBn‖2

2 = oP (
√
J), so that (4.3) holds as

in the proof of (i) leading to (A.10).
For (4.4) we have, by (A.2),

J∑

j=1

∥∥∥Σ̂
1/2
J,n(β̂j − βj)

∥∥∥
2

=
∥∥∥(β̂ − β)Σ̂

1/2
J,n

∥∥∥
2

2
=

∥∥∥(Λ̂
−1/2
J,n Zn +Bn)Σ̂

1/2
J,n

∥∥∥
2

2
. (A.12)

Since ‖Σ̂1/2
J,n‖ ∼ σ

1/2
n as in the second paragraph of the proof of Theorem 4, by

(A.6) and (A.11), ‖BnΣ̂
1/2
J,n‖2

2 ≤ σn‖Bn‖2
2 = oP (

√
J). Since Zn is a standard

normal matrix, by (A.6) and (A.11),

E[〈BnΣ̂
1/2
J,nZnΣ̂

1/2
J,n〉22|X] = E[〈Λ̂−1/2

J,n BnΣ̂J,n, Zn〉22|X]

= ‖Λ̂−1/2
J,n BnΣ̂J,n‖2

2 ≤ ‖Σ̂J,n‖2‖Λ̂−1/2
J,n Bn‖2

2 = oP (
√
J).

Inserting the above approximations into (A.12) yields

J∑

j=1

∥∥∥Σ̂
1/2
J,n(β̂j − βj)

∥∥∥
2

=
∥∥∥Λ̂

−1/2
J,n ZnΣ̂

1/2
J,n

∥∥∥
2

2
+ oP (

√
J). (A.13)

Since Λ̂
−1/2
J,n ZnΣ̂

1/2
J,n = (IJ,0 ⊗ Σ̂

1/2
J,n)Λ̂

−1/2
J,n Zn and ‖AZn‖2

2 = 〈A′AZn, Zn〉2, by
(A.6) and (A.7)

E
[(
‖Λ̂−1/2

J,n ZnΣ̂
1/2
J,n‖

2
2 − ‖Zn‖2

2

)2 ∣∣∣X
]
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= E
[
〈{Λ̂−1/2

J,n (IJ,0 ⊗ Σ̂J,n)Λ̂
−1/2
J,n − IJ,0 ⊗ Id}Zn, Zn〉22

∣∣∣X
]

≤
∥∥∥Λ̂

−1/2
J,n (IJ,0 ⊗ Σ̂J,n)Λ̂

−1/2
J,n − IJ,0 ⊗ Id

∥∥∥
2

2
3ν̂

≤ ‖Λ̂−1
J,n‖2

∥∥∥IJ,0 ⊗ Σ̂J,n − Λ̂J,n

∥∥∥
2

2

{
3d(J − 1)

}
= oP (J). (A.14)

Note that for a standard normal matrix Z and self-adjoint operator A with eigen-

values λk, k ≤ m0, E〈AZ,Z〉22 = E(
∑

k λkχ
2
1,(k))

2 ≤ ∑
k λ

2
km0Eχ

4
1 = ‖A‖2

2(3m0),

where χ2
1,(k) are i.i.d. χ2

1 variables. This fact is used in the derivation of the first in-

equality in (A.14). It follows from (A.13), (A.14) and (A.8) that
∑J

j=1 ‖Σ̂
1/2
J,n(β̂j−

βj)‖2/σ̂2 = ‖Zn‖2
2/σ

2 + oP (
√
J), which then implies (4.4) via (A.10).

The proof of (4.5) is simpler. We obtain from (A.2) and (A.11) that

J∑

j=1

‖β̂j − βj‖2 = ‖Bn + Λ̂
−1/2
J,n Zn‖2

2 = ‖Λ̂−1/2
J,n Zn‖2

2 + oP (
√
J/σn),

and then obtain from (A.7), as in (A.14),

E
[(
‖Λ̂−1/2

J,n Zn‖2
2 − ‖(IJ,0 ⊗ Σ̂J,n)−1/2Zn‖2

2

)2∣∣∣X
]

= E
[
〈(Λ̂−1

J,n − IJ,0 ⊗ Σ̂−1
J,n)Zn, Zn〉22

∣∣∣X
]

≤
∥∥∥Λ̂−1

J,n − IJ,0 ⊗ Σ̂−1
J,n

∥∥∥
2

2
{3J(d − 1)} = oP (J/σ2

n).

Since ‖(IJ,0 ⊗ Σ̂J,n)−1/2Zn‖2
2 = ‖ZnΣ̂

−1/2
J,n ‖2

2, the above facts and (A.8) imply

σn

σ̂2

J∑

j=1

‖β̂j−βj‖2 =
σn‖ZnΣ̂

−1/2
J,n ‖2

2

σ̂2
+oP (

√
J)=

σn‖ZnΣ̂
−1/2
J,n ‖2

2

σ2
+oP (

√
J). (A.15)

Given X and ν̂ = d(J − 1), ‖ZnΣ̂
−1/2
J,n ‖2

2/σ
2 is a sum of J − 1 i.i.d. ‖N(0, Σ̂−1

J,n)‖2

variables. In addition, E[‖N(0, Σ̂−1
J,n)‖2|X] = trace(Σ̂−1

J,n) and Var[‖N(0, Σ̂−1
J,n)‖2|

X] = 2 trace(Σ̂−2
J,n). Since trace(Σ̂−k

J,n) ∼ σ−k
n for integers k and P{ν̂ = d(J −

1)} → 1, by (A.15),

{
2J trace(Σ̂−2

J,n)
}−1/2( J∑

j=1

‖β̂j − βj‖2/σ̂2 − (J − 1)trace(Σ̂−1
J,n)

)

=
‖ZnΣ̂

−1/2
J,n ‖2

2/σ
2 − (J − 1)trace(Σ̂−1

J,n)

{2J trace(Σ̂−2
J,n)}1/2

+ oP (1)
D−→ N(0, 1).

Finally, let us prove (4.10). By (4.24), σ
1/2
n {β̂j −βj − (Λ̂

−1/2
J,n Zn)′ej} = oP (1)

uniformly in j. Since Zn/σ is a standard normal matrix, 〈A,BZn〉2 = 〈B′A,Zn〉2
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is a normal variable with mean zero and variance σ2‖B′A‖2
2 = σ2〈A,BB′A〉2.

Thus, since ejb
′ is a J × d matrix, conditionally on X and ν̂ = J(d− 1),

σ1/2
n b′(Λ̂

−1/2
J,n Zn)′ej/σ = σ1/2

n 〈ejb
′, Λ̂

−1/2
J,n Zn〉2/σ ∼ N

(
0, σn〈ejb

′, Λ̂−1
J,n(ejb

′)〉2
)
.

Let Σ̃J,n = (1 − 1/J)−1Σ̂J,n. Since

〈ejb
′, (IJ,0 ⊗ Σ̂J,n)−1(ejb

′)〉2 = e′jIJ,0ej b
′Σ̂−1

J,nb = (1 − 1/J)b′Σ̂−1
J,nb = b′Σ̃−1

J,nb

and ‖ejb
′‖2

2 = ‖ej‖2‖b′‖2 = 1, we find by (A.7) that, uniformly in j,

σn

∣∣∣〈ejb
′, Λ̂−1

J,nejb
′〉2 − b′Σ̃−1

J,nb
∣∣∣ ≤ σn‖Λ̂−1

J,n − (IJ,0 ⊗ Σ̂J,n)−1‖ = oP (1).

Thus, σ
1/2
n (β̂j − βj)/σ are uniformly within oP (1) of some N(0, σnΣ̂−1

J,n) vectors.

Since ‖Σ̂k
J,n‖ = O(σk

n) for k = ±1/2, Σ̂
1/2
J,n(β̂j − βj) are uniformly within oP (1)

of some N(0, σ2Id) random vectors. Since σ̂ = σ + oP (1) via the inequalities

in (A.8) and the first part of condition (4.7) with (p, q) = (1, 0), (4.10) holds.

Hence, the proof is complete.

Proof of Theorem 2. (i) By the definition of f̃i and f̂∗i in (4.13) and (4.14),

f̂∗i (xi) = Q∗
i (yi − β̂zi) = f̃i(xi) −Q∗

i (β̂ − β)zi. Thus, by (4.23)

∥∥∥f̂∗i (xi) − f̃i(xi)
∥∥∥ =

∥∥∥Q∗
i (β̂ − β)zi

∥∥∥

≤
∥∥∥Q∗

i Λ̂
−1/2
J,n Znzi

∥∥∥ +OP (‖zi‖)
‖Q∗

i ‖
σn

(
J

n∑

k=1

‖zk‖2ρ2
J,k

)1/2
.

Since E[〈Zn, AZn〉2|X] ≤ σ2trace(A) for all operators A, by (A.6) and (A.7),

E
[∥∥∥Q∗

i Λ̂
−1/2
J,n Znzi

∥∥∥
2∣∣∣X

]
= E

[
〈Zn, (IJ,0 ⊗ ziz

′
i)Λ̂

−1/2
J,n (Q∗

i )
′Q∗

i Λ̂
−1/2
J,n Zn〉2

∣∣∣X
]

≤ σ2trace
(
(IJ,0 ⊗ ziz

′
i)Λ̂

−1/2
J,n (Q∗

i )
′Q∗

i Λ̂
−1/2
J,n

)
≤ σ2‖zi‖2‖Λ̂−1/2

J,n ‖2trace
(
(Q∗

i )
′Q∗

i

)

≤ ‖zi‖2OP (σ−1
n )‖Q∗

i ‖2
2.

(ii) By (4.12), maxk≤n ρ
2
J,k = O(J−2γ/(2α+1)), so that (4.16) holds after in-

serting σn ∼ n, J = o(n2α+1), and the rates of ‖zi‖‖Q∗
i ‖ and ‖zi‖‖Q∗

i ‖2 into

(4.15). If (4.12) holds with (α,Qi) replaced by (γ,Q∗
i ), then ‖f̃i(xi) − fi(xi)‖ =

OP (J1−2γ/(2γ+1)) uniformly in i, so that (4.17) follows from (4.16), (4.18) and

the condition (2γ + 1)2 ≥ 2γ(2α + 1).
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